Smart Grid Implementation Workshop Breakout Group Report

Optimizing Asset Utilization and Operating Efficiency Efficiently

June 20, 2008 Washington DC

Major Findings/Caveats

- Optimizing asset utilization and operating efficiently depends on proper integration of technologies with business processes and associated IT
- Build metrics, by definition, need to be updated regularly to reflect new technology
- Build metrics should not be technology prescriptive or result in narrowing technology options for Smart Grid (should be as "technology agnostic" as possible)
- Build metrics need to differentiate between statistics measuring number of deployed widgets/data versus having the widgets/data available for use
- Focused value metrics are probably more critical, relevant, and meaningful than "build" metrics; however, build metrics could be considered as "leading indicators" of SG
- Build metrics will be different for transmission, distribution and consumer parts of the "asset utilization and operating efficiently" smart grid characteristic
- Advanced materials and equipment, local communications and local intelligence are also part of the solution for Smart Grid

Metrics for Measuring Progress

Transmission	Distribution	Consumer
 # of assets deferred and period of deferral (better use of exstg) # of MW that are controlled by VOLT-VAR % of assets with real-time condition monitoring and diagnostics # of lines with dynamic rating capability # miles of line with expanded transmission capacity through advanced materials, e,g, superconductors, FCLs, and composite conductors, etc. 	 # MW of DG/storage connected to grid as dispatchable asset % of smart grid enabled switches/reclosers/ capacitor banks # of MW that are controlled by VOLT-VAR % of assets with real-time condition monitoring and diagnostics # of customers connected per automated circuit segment 	 # of smart meters # of customers utilizing real time pricing # of MW of dispatchable demand response

of IEDs (smart sensors) deployed

- % of IEDs with communications that allows it to perform its function
 - # of operational IT applications that are integrated

Metrics Issues (General)

- Need to determine who (organization) is responsible for "owning" the metric (collect, publish)
- How to get data (historical and future) from utility
- Need to identify critical data needed to calculate metric
- Need to define common method to "measure" the parameter
- Need to define division of responsibility for data collection policy → state (distribution) vs Federal (transmission)
- Before selecting communication infrastructure we need to know all smart grid functionalities and technologies that will be implemented

Crosscutting Metrics (T, D, and C)

of IEDs (smart sensors) deployed

- Issues
 - Easiest to measure
 - Should be used as the baseline
 - What should be the end point
 - Break into categories: 1) asset monitors, 2) power monitors, 3) meters, 4) controllers
 - There will be a different metric for each area of the power system (Transmission, Distribution, and Consumer)

Transmission Metrics (1)

of assets deferred and period of deferral

- This is investment that is deferred while still maintaining the same result (e.g. reliability/performance) through better utilization of existing assets
- Assets need to be tracked by category (large investment items)
 - Transmission lines
 - Substations
 - Substation transformers

Transmission Metrics (2)

- % of assets with real time condition monitoring and diagnostics
 - Need to track according to each category of asset
 - Substation transformers
 - Circuit breakers
 - Static Var systems, FACTs devices
 - Capacitor banks, Shunt reactors, series capacitors
 - Transmission lines (e.g. dynamic line rating) this was listed as a separate index but can be included in this set of indices
 - Surge Arresters
 - Insulators
 - Towers
 - Need to define the criteria that qualifies as real time condition monitoring and diagnostics
 - Communications
 - Diagnostics
 - Notification/alarming
 - Etc.

Transmission Metrics (3)

- Amount of active Voltage and Var control on transmission systems
 - What technologies are included
 - FACTS
 - SVC
 - Series capacitors
 - HVDC
 - What is metric?
 - MVAR of compensation/active control (could include storage)
 - Increase in transmission capacity (MW)
 - % of MW or MVAR that are controlled with advanced equipment

Transmission Metrics (4)

- # miles of line with technologies for expanded transmission capacity
 - Need to identify examples of technologies that are included in this metric
 - Superconducting cables
 - Composite conductors
 - Distributed transmission line var compensation
 - FCLs mentioned as technology to consider but may not be appropriate for this specific metric - this could be a separate metrics related to advanced fault management
 - Miles of line may not be the best metric for measuring the increased transmission capacity - if we used another metric like the increased capacity itself, we could include technologies like FACTS, FCLs, etc.

Transmission Metrics (5)

of IEDs (smart sensors) deployed

- There are multiple categories of devices
 - Voltages, currents, powers, etc
 - Physical quantities (temperature, pressure, wind, etc.)
 - Analytical quantities (gas analysis, etc.)
- We should track these by elements of the system that are being monitored/managed
 - Transformers
 - Lines
 - Breakers
- Criteria for including
 - Communications
 - Intelligence?

Transmission Metrics (6)

- Level of Implementation of Extensible Common Information Model and Integration Bus
 - This is an infrastructure metric
 - It needs to be measured with some kind of matrix of the applications that are integrated with interfaces that are standardized
 - EMS/SCADA (%)
 - GIS (%)
 - Asset Management Systems (%)
 - Etc. need a full list for tracking

Consumer Metrics (1)

of smart meters

- Percentage of meters with
 - 2-way communications
 - Open protocol (plug and play)
 - Load management capability
 - Home area network enabled
- Sources
 - Utilities/meter companies

Consumer Metrics (2)

of customers with dynamic pricing

- Percentage of meters with
 - Time of use
 - Real time\dynamic pricing (enabled and utilized for both
- Sources
 - SECF (??- handwriting unclear....)
 - Utilities

Consumer Metrics (3)

of MW dispatchable

- Percentage of meters participating
- Available kW/meter
- Realized kW/meter
- Analysis needs:
 - Participation dynamics
 - Factors driving predictability (or prepilatability? Or predilatability? handwriting unclear)
- Sources
 - Utilities

Value Metrics (Parking Lot)

Deferred generation

- Maintenance costs versus reliability
- Time to convert data to action
- Hours of overtime
- Transmission grid/line power losses (%) over time
- Joules of energy consumed/joules of energy sold
- Improved circuit load factors
- # or cost of assets where upgrades are deferred/eliminated that can be directly attributable to a technology/approach

- System load utilization (peak load/average load)
- Unplanned outage rates
- Reduction in reliability violations
- \$ savings by optimizing and utilization of existing transmission assets
- Capital improvement costs versus demand and energy (load factor)
- Increase in capacity/cost (\$)
- Transmission and distribution losses (total energy delivered/total energy generated)
- # years of equipment life increase