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 DOE-OE has a responsibility to promote a resilient 
energy infrastructure in which continuity of 
business and services are maintained through 
secure and reliable information sharing, 
coordinated response capabilities, and trusted 
relationships between public and private partners 
at all levels of industry and government. 
 
 This analysis is intended to provide an 

opportunity for utilities to receive information 
from subject matter experts in industry and 
government.  
 
 Argonne was engaged by DOE-OE in May 2012 to 

develop a drought scenario to elicit discussion 
with sector partners.  

Study Background 

3 



OFFICIAL USE ONLY 

Purposes of the Study 
 Develop a hypothetical but plausible drought 

scenario involving the U.S. Southwest 
 Assess the impacts of the drought scenario on 

the power systems comprising the U.S. 
Southwest: 
− supply-demand balance 
− thermal and hydro capacity losses 
− reserve margin reductions 
− overall system reliability and vulnerability 

 Analysis results presented at two levels: 
Regional and Per-State 
 Analysis is high-level and is more of a 

screening analysis representing a first-cut 
attempt based on limited time 
 Provide pertinent drought and power–related 

information for educational purposes 
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General Impacts of Drought and High Temperatures on Power Systems 

 Reductions in Power Generation and Transmission: 
−Thermo-electric plants: 

              * Use surface water for cooling, fuel processing, and emission control 
              * Low water level limits the amount of water that can be withdrawn (Min water elevation limits) 
              * Intake structures could be exposed (above water level) 
              * Higher water temperature at intake may lead to violation of water discharge regulations 
              * High temperatures lowers plant heat rate (efficiency)  
− Hydro-electric plants: 

              * Lower inflows means low power output (run-of-river) 
              * Lower reservoir levels mean less water available for power generation and degraded  
                 water-to energy conversion factors 
− Gas-fired plants: 

              * High ambient temperatures limit cooling ability of air-cooled systems 
            * High temperatures decrease efficiency and capacity  
−  Photovoltaic Cells: 
        * High temperatures reduce efficiency and outputs of PV units 
− Transmission lines: 

              * High temperatures lower the thermal limits of transmission lines and circuit breakers 
              * High temperatures increase transmission loss and operational cost 
              * High ambient temperatures lower throughputs of transformers 

 Increased Production Cost of Electric Power and Increased Emissions: 
−  Purchased power from spot market tend to cost more 
−  More expensive natural gas is used as less-efficient gas turbine output is increased 
−  Output from low-risk thermal plants is increased leading to elevated CO2 emissions  
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General Impacts of Drought and High Temperatures on Power Systems 
(Contd.) 

 System reliability: 
− High deterioration rates of system components 
− Lower reserve margins 
− Increased susceptibility to faults and cascading 

failures 
− High probability of longer and more wide-

spread blackouts 
  

 Recent examples of reduced power 
production from drought: 

− Southeast U.S. in 2007 – nuclear and coal-fired 
plants in TVA system were forced to shutdown 
or curtail operations. Intake water exceeded 90  
F for 24 hours. 
 

− Mississippi River in 2006 – affected nuclear 
plants in Illinois and Minnesota. Drought and 
heat wave warmed intake water. 
 

− France in 2003 – loss of 7% to 15% of nuclear 
capacity for 5 weeks; loss of 20% of hydro 
generation capacity. 
 

Southeast Drought - 2007 

Drought Brings Low Water 
to Mississippi River 

Drought in France - 2003 
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General Response Strategies Pertaining to Drought 

 Electric Supply Alternatives 
    - Spot market Purchases 
    - Option or Firm Purchases 
    - Power Exchanges (“credit line”) 
    - Subject to transmission constraints 

 Electricity Demand Response 
    - Interruptible-load Contracts 
    - Demand Exchange or Management  
    - Energy Efficiency and Conservation 

 Alternative Water Supplies 
   - Water Banks 
   - Water Supply Contracts 
   - Groundwater Wells 
   - Processed waste water for cooling  

 Water Demand Response 
   - Education and Conservation Campaigns 
   - Water Use Restrictions 
   - Rate Surcharges 
 

 
 

SOURCE: Harto, C.B and E. Yan, “Analysis of Drought Impacts on 
Electricity Production in the Western and Texas Interconnection”, 
Environmental Science Division, Argonne National Laboratory,  Dec 2011  
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Reservoir Management as a Strategic Response 

 Reservoirs allow for storage of water which 
is crucial for managing impacts of drought. 
Reservoirs permit the controlled release of 
water to maximize benefits.  

 Reservoirs are traditionally managed  
through heuristic regulation policies based 
on historical system response.  

 Reservoir operation faces many constraints 
including: 
− Minimum flow requirements 
− Limits on ramp rates 
− Environmental consideration such as fish life 

and support of ecosystems 
− Irrigation and domestic water use 
− Industrial use and plant cooling 
− Recreational and navigational use 

 At times, power generation is lowest 
priority; environmental is top priority. 

 Computer models are employed to optimally 
manage reservoirs to maximize usage and 
minimize risk. 
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Depth of Intake Below Surface of Power Plants in the U.S. 

Distribution of Power Plant Intakes by Depth from Surface
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* SOURCE: Kimmel, T. and J. Veil, “Impact of Drought on U.S. Steam Electric Power Plant Cooling Water Intakes and Related Water 
Resource Management Issues” Argonne National Laboratory, April 2009. 
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Location of Thermal Plants with Depth of Intake Information 

SOURCE: 
EIA Form 

860  
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Recent Incidents Affecting Power Plant Operation 
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■ Power plant operations have historically been 
affected by both drought and heat wave conditions. 
 

■ Low water levels affect coal-fired and nuclear 
power plants’ operations:  
− The Millstone nuclear plant in Waterford, CT had 

to shut down one of its reactors in mid-August 
2012 because the water it drew from the Long 
Island Sound was too warm to cool critical 
equipment outside the core. 

− A twin-unit nuclear plant in Braidwood, IL needed 
to get special permission to continue operating 
this summer because the temperature in its 
cooling-water pond rose to 102 degrees, four 
degrees above its normal limit. 

− Another Midwestern plant stopped operating 
temporarily because its water-intake pipes ended 
up on dry ground from the prolonged drought. 

− Another power plant in Illinois had to shut down 
because it was overheating due to its cooling 
water intake pipe being blocked with dead fish 
killed by low water levels. 

− In July 2012, US nuclear-power production hit its 
lowest seasonal levels in nine years as drought 
and heat forced nuclear power plants from Ohio 
to Vermont to slow output. 

 
  

Source: U.S. Energy Information Administration 
forms EIA-923, Power Plant Operations Report, 
and EIA-860, Annual Electric Generator Report. 

■ Low water levels impede the passage 
of coal barges along the Mississippi 
River:  
− This summer’s drought disrupted 

the transport of coal delivered by 
barges on the Mississippi, and the 
U.S. Army Corps of Engineers had 
to use dredges to deepen the 
navigation channel. 
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Major Assumptions for Scenario Development 
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■ The Southwest Region (SW) is defined as the U.S. 
western area encompassing the states of CA, AZ, NM, 
TX, NV, UT and CO   

■ A five-year drought period is assumed with stream flow 
level variations following conditions experienced during 
1930 to 1934 (Dust Bowl years): 
 
 
 
 
 
 
 
 
 
 

■ Drought conditions would occur in areas within the SW 
region 

■ Analysis considers impacts to surface water 
■ The reference normal average year would be 2010 
■ Wind capacity assumed available during peak periods 
■ No plant maintenance during peak summer months 
  

Arizona 

Texas 

New Mexico 

Colorado Utah 

Nevada 

California 

Oklahoma 

Kansas 
Missouri 

Iowa 

Oregon 
Idaho Wyoming 

Nebraska 

Arkansas 

Louisiana 

Highlighted States in 
Southwest Region 
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Dust Bowl Years of 1930 to 1934 
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■ The 1930s are remembered as the driest and warmest 
decade for the U.S.:  
− The drought events of the 1930s are widely 

considered to be the “drought of record” for the Nation 
■ During the Dust Bowl years of 1930 to 1934, severe 

drought struck the Great Plains region: 
− In the summer of 1931, the rain stopped coming and 

a drought that would last for most of the decade 
descended on the region 

− Drought conditions during 1934 covered 79.9 percent 
of U.S. land area 

■ Dust Bowl drought of the 1930s was arguably one of the 
worst environmental disasters of the 20th century: 
− The Dust Bowl affected 100,000,000 acres, centered 

on the panhandles of Texas and Oklahoma, and 
adjacent parts of New Mexico, Colorado, and Kansas 

− Lack of precipitation affected wildlife and plant life, 
and created water shortages for domestic needs 

■ Many proactive measures taken after the 1930s drought 
reduced rural and urban vulnerability to drought, 
including new or enlarged reservoirs and improved 
domestic water systems 
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Comparison: Normal versus Assumed Drought Scenario 

14 

Normal Reference Year (2010) Assumed Drought Scenario (5-years) 

Current Conditions 
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Drought Index Translation Across Selected Severity Indices 
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Increasing 
Drought  
Severity 

SOURCE: National Drought Mitigation Center 
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WECC Sub-Regions defined by NERC 
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Typical Demand Levels and Reserve Margins for  
Normal Year in the SW (Peak Summer Case)  
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*TRE = Texas Reliability Entity (now  Electric Reliability Council of Texas [ERCOT]). ERCOT is more vulnerable system 
relative to WECC because ERCOT is an isolated system while WECC is more interconnected. 

* 
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Methodology 
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■ Define scope of U.S. SW affected by drought  
■ Establish base case power system to represent normal year: 
   - Supply-demand balance summer case 
 - WECC-sub-regions and exchange capabilities 
 - Energy and capacity mix 
 - Reserve margins and reliability status 
 - Critical transmission corridors                    
■ Define extent and severity of drought: 
 - Based on 1930 to 1934 historic stream flows levels  
 - Derive corresponding hydro-thermal capacity loss  
                     factors  using HUC-2 and HUC-4 water basin flows 
■ Identify low- and high-risk thermal and hydro plants: 
                   - Low risk: renewables and groundwater- or seawater- 
                     dependent 
 - High-risk: surface water-dependent and hydro plants 
■ Calculate amount of reduction in capacity: 
                   - Use Harto and Yan’s 1st order formula for capacity  
                     loss calculation 
                   - Depict reduction regionally and per-state 
                   - Examine impact on inter-state transfer capability  
■ Consider transmission line failures and assess further effects 

on reliability.   
 
 

Note: “X”s indicate possible line failures due to wild fires 
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Data Sources 
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■ Hydrologic Data:  
                  - Harto and Yan Files* 
                  - U.S.G.S. website   
■ Power Plant Capacity and Technical Characteristics: 
   - Platts PowerMap 
 - EIA 860, 767, and 923 
 - FERC 715 
 - EPA website  
■ Plant and Transmission Operational Data: 
 - 2010 Transmission Atlas by Energy Visuals  
 - FERC 715 April 2010 Filings  
                   - EIA website (Form 860, 423) 
                   - WECC website (path rating studies) 
   Drought Severity data: 
                   -  Drought Monitor website 
 -  NOAA website                   - 
 System Reliability and Reserve Margin Data:  
                   - NERC website 
                   - ERCOT Reports 
                   - WECC Reports 
 * SOURCE: Harto, C.B and E. Yan, “Analysis of Drought Impacts on 

Electricity Production in the Western and Texas Interconnection”, 
Environmental Science Division, Argonne National Laboratory,  Dec 2011  
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Harto and Yan* 1st Order Formula for  
Hydro Capacity Loss Factor Calculation 

20 

Loss of Hydro Gen (MWH) = Ave Annual Hydro Gen (MWH)x 
(1-HGF) 

 Where: 
 

               HGF (Fraction)   =   Hydro Gen Factor  
                                            =   Drought Flow/Average Flow 
 

* SOURCE: Harto, C.B and E. Yan, “Analysis of Drought Impacts on Electricity Production in the Western and Texas 
Interconnection”, Environmental Science Division, Argonne National Laboratory,  Dec 2011  
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Loss of Thermal Gen (MWH) = At Risk Thermal Gen (MWH) 
x (1-TGF) 

Harto and Yan* 1st Order Formula for  
Thermal Capacity Loss Factor Calculation 

21 

      Where: 
 
 

      TGF(Fraction) =  Thermal  Gen Factor  
                               =  Drought Flow/(Min [Ave Flow: 2010 Water Demand]) 
 

* SOURCE: Harto, C.B and E. Yan, “Analysis of Drought Impacts on Electricity Production in the Western and Texas 
Interconnection”, Environmental Science Division, Argonne National Laboratory,  Dec 2011  
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Comparison of NERC Sub-Regions and HUC Water Basins 
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 NERC Sub-Regions HUC-2 Water Basins 
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Analysis Results:  
Characteristics of the  

Southwest Region 
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Installed Capacity Mix by Fuel Type in the “SW” 
(including ERCOT) 
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Total Installed Capacity :  265,555 MW 

Note: The high dependence of the region on natural gas presents a unique 
vulnerability to natural gas disturbance. A long-term disruption of a major gas pipeline 
serving the region could spell disaster especially during drought season.  
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Share of High-Risk Capacity in the Southwest (SW) 
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Dispersal Pattern of High-Risk Hydro Plants within  
WECC and ERCOT 
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Dispersal Pattern of High-Risk Thermal Plants within  
WECC and ERCOT 
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Supply Demand Balance in the Southwest 
(2010 Summer Peak FERC 715 ) 
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Internal Demand:  112,807 MW (100%) 
Internal Generation: 106,785 MW   (95%) 
Imported Power:     6,022 MW   (5%) 

Internal Demand:  73,000 MW (100%) 
Internal Generation: 73,000 MW (100%) 
Imported Power:          0 MW    (0%) 

Texas 

Southwestern States 

6,022 MW 
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Assumed Transmission Transfer Capability Between 
WECC Sub-Regions  
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Major 500-kV and DC Transmission Lines Serving the SW 
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Round Mountain 
500 kV 

Sylmar 
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Water Consumption for Electric Generation 

31 

 Water withdrawn is the total volume removed from a water source such as a 
lake or river. Often, a portion of this water is returned to the source and is 
available to be used again   
 

 Electric power plants account for more than 40 percent of water withdrawal in 
the U.S., but consume only a fraction of that amount 
 

 Electric generation in the Southwest States consumes less than 2-percent of 
the total amount of water withdrawn: 
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Analysis Results:  
Hydrological Data and Drought-

Driven Capacity Loss Factors 
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Stream Flow Levels During Drought  
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Hydrological Data and Drought-Driven Capacity Loss 
Factors 
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Analysis Results: 
 Impacts on Region-Wide 

Power Supply Capability and 
Reserve Margins 
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Regional Reserve Margins as Affected by Drought Conditions 
(Plant Maintenance not considered) 
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NERC’s Reference 
Reserve Margin of 

14%  

NERC’s Reference 
Reserve Margin of 

14%  
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Percent Capacity Reduction in Hydro, Thermal and Other Capacity 
as Affected by Drought Conditions in the Southwest 
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Impact on Regional Reserve Margins over Five-Year 
Drought Scenario 

NERC’s Reference 
Reserve Margin of 14%  
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Impact on Regional Supply Capability over Five-Year 
Drought Scenario 
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 The five year drought sequence will result in a region-wide 
capacity loss and new reserve margin levels (without imported 
power) as follows:   
 
 

 
         
 
 
 

 
 Regional-wide reliability indices (with 6,000 MW imports) are as 

follows: 
 
             

 
 

Summary of Impacts: Regional Level 
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Analysis Results: 
 Impacts on Per-State Reserve 

Margins 
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Supply-Demand Conditions and Reserve Margin Levels in Year 1  
(based on 1930 stream flow) of Drought Scenario in the Southwest 

YEAR 1 

Transmission Lines 
 Operational 

Peak Load  = 57,994  
Capacity   = 60,377 
RM  =    4% 
Normal RM    =    15% 

Peak Load =  8,210  
Capacity  = 11,716 
RM  =   43% 
Normal RM  =    39% 

Peak Load  =  18,721  
Capacity   =   26,816 
RM   =    43% 
Normal RM   =      41% 

Peak Load  =  3,451 
Capacity    =  8,381 
RM               =   104% 
Normal RM   =    136% 

Peak Load = 6,238  
Capacity   =  7,545 
RM  =   21% 
Normal RM   =    20% 

Peak Load  =  10,960 
Capacity    =  14,096 
RM =     29% 
Normal RM   =      26% 

Peak Load  = 74,338   
Capacity     =  84,705 
RM    =   14% 
Normal RM   =    34-48% 
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Supply-Demand Conditions and Reserve Margin Levels in Year 2  
(based on 1931 stream flow) of Drought Scenario in the Southwest 

YEAR 2 

Transmission Lines 
 Operational 

Peak Load  = 64,016  
Capacity  = 53,297 
RM =   -8% 
Normal RM   =    15% 

Peak Load =  8,210  
Capacity = 10,894 
RM =   33% 
Normal RM   =    39% 

Peak Load  =  18,721  
Capacity   =   24,917 
RM   =    33% 
Normal RM   =      41% 

Peak Load  =  3,451 
Capacity    =  8,368 
RM               =   142% 
Normal RM   =    136% 

Peak Load = 6,238  
Capacity   =  7,143 
RM =   15% 
Normal RM   =    20% 

Peak Load  =  10,960 
Capacity    =  13,971 
RM =     27% 
Normal RM   =      26% 

Peak Load  = 73,127   
Capacity  =  91,405 
RM   =    23% 
Normal RM   =    34-48% 
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Supply-Demand Conditions and Reserve Margin Levels in Year 3  
(based on 1932 stream flow) of Drought Scenario in the Southwest 

 YEAR 3 

Transmission Lines 
 Operational 

Peak Load  = 64,015  
Capacity  = 61,958 
RM =    7% 
Normal RM   =    15% 

Peak Load =  9,210  
Capacity    =  10,029 
RM =   22% 
Normal RM   =    39% 

Peak Load  =  18,721  
Capacity    =   28,517 
RM  =    52% 
Normal RM   =      41% 

Peak Load  =  3,451 
Capacity  =  8,382 
RM               =   143% 
Normal RM   =    136% 

Peak Load = 6,238  
Capacity   =  7,558 
RM              =    21% 
Normal RM   =    20% 

Peak Load  =  10,960 
Capacity    =  14,105 
RM =    29% 
Normal RM   =      26% 

Peak Load  = 73,127   
Capacity  = 101,024 
RM  =   36% 
Normal RM   =    34-48% 
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Supply-Demand Conditions and Reserve Margin Levels in Year 4  
(based on 1933 stream flow) of Drought Scenario in the Southwest 

YEAR 4 

Transmission Lines 
 Operational 

Peak Load  = 64,015  
Capacity  = 59,940 
RM =    3% 
Normal RM   =    15% 

Peak Load =  8,210  
Capacity = 10,954 
RM =   33% 
Normal RM   =    39% 

Peak Load  =  18,721  
Capacity   =   25,186 
RM   =    35% 
Normal RM   =      41% 

Peak Load  =  3,451 
Capacity    =  8,376 
RM               =   143% 
Normal RM   =    136% 

Peak Load = 6,238  
Capacity   =  7,520 
RM =   21% 
Normal RM   =    20% 

Peak Load  =  10,960 
Capacity    =  14,033 
RM =     28% 
Normal RM   =      26% 

Peak Load  = 73,127   
Capacity  =  65,103 
RM =     4% 
Normal RM   =    34-48% 
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Supply-Demand Conditions and Reserve Margin Levels in Year 5  
(based on 1934 stream flow) of Drought Scenario in the Southwest 

 YEAR 5 

Peak Load  = 64,015  
Capacity  = 59,197 
RM =    02% 
Normal RM   =    15% 

Peak Load =  9,210  
Capacity    =  9,476 
RM =   15% 
Normal RM   =    39% 

Peak Load  =  18,721  
Capacity    =   21,443 
RM  =    15% 
Normal RM   =      41% 

Peak Load  =  3,451 
Capacity  =  7,219 
RM               =   109% 
Normal RM   =    136% 

Peak Load = 6,238  
Capacity   =  6,587 
RM              =     6% 
Normal RM   =    20% 

Peak Load  =  10,960 
Capacity    =  13,385 
RM =    22% 
Normal RM   =      26% 

Peak Load  = 73,127   
Capacity  =  75,474 
RM  =    2% 
Normal RM   =    34-48% 

Transmission Lines 
 Operational 
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Summary of Impacts: State Level 

 The five-year drought would have a range of impacts on the 
power system reliability of the various states as follows: 
 
 
 

 
 
       

 
 
                Note: RM calculation assumes no units under maintenance or forced outage.  
                                          It further assumes limited availability of wind power during peak. 

 
 CA exhibited highest vulnerability to drought in terms of MW due 

to its water-dependent thermal units.   
 TX showed the largest capacity reduction among the states in the 

region with capacity loss of up to 30% during the last year (based 
on 1934 conditions) when stream flows were very low. 

 However, TX exhibited reserve margins for years 2 and 3 (1931 
and 1934) higher than the NERC reference level of 14%. 
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 Without imported power, CA was found to be most susceptible to 
capacity shortfall with RM raging from -3 % to -17% over all years. 

 
 Even with imported power from the northwest, CA was still susceptible to 

serious capacity shortfall with RM ranging from -8% to 7% in all drought 
years of the scenario. It needs additional import power from AZ. 

 
 CO, NV, AZ, and NM appear impervious to all drought events even with 

1930 and 1934 stream conditions. These four states maintain positive 
reserve margins during all drought years.           
 

 CO, NV, AZ, and NM, in particular, exhibited RM consistently above or 
equal to NERC’s reference RM of 14% throughout the drought period. As 
such, CO, NV, AZ and NM are the only states within SW region that 
could export power (although at reduced levels) to more supply-deficient 
states even during 1930 and 1934 stream flow drought conditions.  

Summary of Impacts: State Level 
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 During summer months, heat index through out most of the region 
hover at 100 degrees Fahrenheit or greater. 
 

 High temperatures cause power system stress in many respects: 
 

- Lowers power-carrying capability of system elements such as 
transmission lines, transformers, circuit breakers, etc. 

- Accelerate deterioration of dielectric materials, operating mechanism, 
supporting structures, and cooling/insulating liquids used in power 
apparatus 

- Induces greater overall wear and tear impacts on apparatus which 
leads to increased vulnerability to faults and cascading failures. 

- Shortens life of batteries that are crucial in supporting UPS and 
emergency response systems. 

- Significantly reduces the efficiency of PV solar panels 
- Reduces capacity and efficiency of gas and combustion turbines 

 
 Drought (affected by climate change) combined with possible 

exhaustion of aquifers could lead to population and power use shifts 
that could change electrical load patterns.  

Summary of Impacts: Other Effects 
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Contact Information 

Matthew Light 
Infrastructure Systems Analyst 

Matthew.Light@hq.doe.gov 

Stewart Cedres 
Director, Infrastructure Reliability 

Stewart.Cedres@hq.doe.gov 
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Supplemental Slides  
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Operational Water Consumption Factors for  
Electricity Generating Technologies  
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Normal Year Depiction of Drought Index 
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Spatial Extent of Assumed Drought Scenario 
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 Percent Capacity Reduction in Hydro, Thermal, and Others  
Capacity as Affected by Drought Conditions in AZ 
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Summer Capability = 23,755 MW 

ARIZONA 
Summer Cap:      26,400 MW 
Estimated Load: 18,721 MW 
Reserve Margin:  41% 
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Percent Capacity Reduction in Hydro, Thermal, and Others  
Capacity as Affected by Drought Conditions in CA 
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CALIFORNIA 
Summer Cap:      73,300 MW 
Estimated Load: 64,015 MW 
Reserve Margin: 15% 

Needs additional 
imported power from 
AZ, NM, and NV 
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Percent Capacity Reduction in Hydro, Thermal, and Others Capacity 
as Affected by Drought Conditions in CO 
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COLORADO 
Summer Cap:      13,800 MW 
Estimated Load: 11,000 MW 
Reserve Margin:  26% 
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Percent Capacity Reduction in Hydro, Thermal, and Others Capacity 
as Affected by Drought Conditions in NM 
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NEW MEXICO 

Summer Cap:      8,100 MW 
Estimated Load: 3,450 MW 
Reserve Margin:  136% 
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Percent Capacity Reduction in Hydro, Thermal, and Others Capacity 
as Affected by Drought Conditions in NV 
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NEVADA 

Summer Cap:    11,420 MW 
Estimated Load: 8,200 MW 
Reserve Margin:  39% 
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Percent Capacity Reduction in Hydro, Thermal, and Others  
Capacity as Affected by Drought Conditions in TX 
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TEXAS 

Summer Cap:    108,300 MW 
Estimated Load:  73,000 MW 
Reserve Margin:  48% 

Note: Reserve Margin (RM) 
calculation assumes that  wind power 
capacity of about 9,000 MW is 
available. If wind capacity is 
assumed unavailable RM drops to 
about 34 %. 
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Percent Capacity Reduction in Hydro, Thermal, and Others Capacity 
as Affected by Drought Conditions in UT 
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UTAH 

Summer Cap:      7,500 MW 
Estimated Load:  6,200 MW 
Reserve Margin: 20% 
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State-wide Reserve Margins as Affected by Drought 
Conditions in Arizona 

ARIZONA 
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State-wide Reserve Margins as Affected by Drought 
Conditions in California (with Imports from NW only) 

CALIFORNIA 
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State-wide Reserve Margins as Affected by Drought 
Conditions in Colorado 

COLORADO 
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State-wide Reserve Margins as Affected by Drought 
Conditions in New Mexico 

NEW MEXICO 
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State-wide Reserve Margins as Affected by Drought 
Conditions in Nevada 

NEVADA 
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State-wide Reserve Margins as Affected by Drought 
Conditions in Texas 

TEXAS 
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State-wide Reserve Margins as Affected by Drought 
Conditions in Utah 

UTAH 
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EPFast: Model for Uncontrolled Islanding and Load Flow Analysis 
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 Linear, steady-state model provides a quick       
estimate of impacts on downstream substations      
due to: 

⁻ Uncontrolled islanding 

⁻ Single or multiple transmission line outages 

⁻ Plant siting and line reinforcement studies 

 Can handle regional size networks:  
⁻ Up to 60,000 nodes and 70,000 lines  

⁻ WECC, ERCOT and Eastern Interconnection 

 User-friendly graphical user interface (GUI) 
⁻ Point-and-click technology 

 Graphical and tabular HTML – formatted outputs 
⁻ Amount of load reduction per substation 

⁻ Number and size of island grids formed  

 Applications 

   -    FEMA-DOE/OE  New Madrid Study 

⁻ DHS Regional Resiliency Studies 

⁻ General seismic and hurricane analysis 

⁻ Others– BLM Solar Energy Zone Transmission Study   
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