

US Department of Energy

MAR 2 0 2008

Electricity, Delivery and Energy Reliability

March 19, 2008

Anthony Como, Director Permitting and Siting, U.S. Department of Energy 1000 Independence Avenue Room 6H-050, OE-20 Washington, DC 20585

Subject:

Submittal of Addendum for Baja Wind U.S. Transmission, LLC

Application for Presidential Permit, PP-334

Dear Mr. Como:

Sempra Generation on behalf of Baja Wind U.S. Transmission, LLC (Baja Wind U.S.) hereby submits an addendum to the Application for a Presidential Permit Docket Number PP-334. As you know, our December 18, 2007 application indicated that we would construct a 500-kV generation tie line to electrically interconnect up to 1250 MW from renewable energy generators (to be located in the vicinity of La Rumorosa, Baja California, Mexico) with the Imperial Valley-Miguel segment of the Southwest Powerlink (SWPL) 500-kV transmission line.

Since submittal of the application, there has been further refinement of various matters associated with the project:

1. In our December application, we indicated the potential to cross the international border with a double circuit 230-kV generation tie line instead of a single circuit 500-kV generation tie line. Since the time of our December application, the double circuit 230-kV alternative has been confirmed as a viable option, and we are hereby adding it to the interconnection alternatives included in the application. The overall maximum capacity of the generation tie line remains unchanged at 1250 MW, and each 230-kV circuit would have a capacity of 1250 MW for purposes of redundancy only. The preferred routes are Route A1 for a 500-kV generation tie line and Route A2 for a 230-kV generation tie line, both of which are entirely within private property.

Attached are (i) Table 1 providing design information for the 500-kV and 230-kV alternatives, (ii) a revised Exhibit B detailed area map showing Routes A1 and A2, and (iii) supplemental Exhibits D4 and D5 providing drawings of typical lattice tower and steel monopole structures for the 230-kV alternative. As compared with our December application, Route A1 has shifted to reflect additional information from SDG&E concerning design of the SWPL loop-in substation. Depending upon the final design, Route A1 or A2 could shift within the shaded, V-shaped area depicted in Exhibit B, but the crossing point at the international border will remain unchanged.

- 2. We have eliminated Route C, the westernmost route, from further consideration, due to potential aviation impacts on a local air strip near the town of Jacumba.
- 3. We have eliminated from consideration the potential for undergrounding of the generation tie line.
- 4. We have eliminated the initial activity described in our December application of installing 10 MW of wind generation to have been interconnected locally to the CFE electrical grid (the Jacume Project).
- The wind turbine layout for Phase I described in our December application has been modified to reduce the number of turbines to between 65 and 75 turbines. Depending upon the manufacturer and model, this translates to between 130 MW and 190 MW of generating capacity.
- 6. In our December application, power flow plots were provided from an approved WECC 2009 Heavy Summer case, which is prior to the planned in-service date for the Sunrise Powerlink transmission line proposed by SDG&E to extend from Imperial Valley substation to the San Diego area. Since the time of our December application, the CAISO has indicated that the Sunrise Powerlink or other transmission upgrade will be necessary to delivery energy from our wind energy development in the La Rumorosa area. Attached is a revised Exhibit E providing power flow plots that reflect this change and also show the generation tie line fully loaded to 1250 MW.

Should you have any questions or comments on the application, please contact Ms. Joan Heredia at (619) 696-1824. We look forward to working with on this project.

Sincerely,

Joseph H. Rowley

Vice President - Project Development

Noseph Howley

Sempra Generation

Enclosures

cc: Alberto Abreu

Joan Heredia

LIST AND SUMMARY OF ATTACHED EXHIBITS

Following are summaries of the exhibits contained in this addendum:

Table 1 Design information for the 500-kV and 230-kV alternatives

Exhibit B Detailed area map (revised)

Exhibit D4 Typical 230-kV lattice tower

Exhibit D5 Typical 230-kV steel monopole

Exhibit E System power flow plots (revised)

TABLE 1

Design information for the 500-kV and 230-kV alternatives

Presidential Permit Application

Baja Wind U.S. Transmission, LLC


500-kV and 230-kV Alternatives

	Parameter	500-Kv	230-kV
1	Maximum Capacity	1250 MW	1250 MW
2	Nominal Operating Voltage	500-Kv	230-kV
3	Maximum Operating Voltage	525-Kv	245-kV
4	Number of Circuits	Single Circuit	Double Circuit
	Redundancy Provided	No	Yes
5	Conductor Type per Phase	1 x 2156 kcmil ACSR/AW or 2 x 954 kcmil ACSR *	2 x 2156 kemil ACSR/AW or 2 x 1113 kemil ACSS *
6	Insulators per Phase	Double	Single
7	Horizontal Spacing between Phases	31 ft	34 ft
8	Vertical Spacing between Phases	Not Applicable	21 ft
9	Horizontal Spacing between the Structure and Each Phase	13 ft	13 ft
10	Vertical Spacing between the Structure and Each Phase	11 ft	9 ft
11	Minimum Ground Clearance	39 ft	34 ft
12	Permanent Right-of-Way	214 ft	130 ft
13	Temporary Construction Easement	100 ft additional to ROW	70 ft additional to ROW
14	Number of Structures	4 or 5	4 or 5
15	Maximum Spacing of Structures	1500 ft	1500 ft
16	Temporary Land Disturbance at Each Structure	150 ft x 200 ft (0.69 acre)	120 ft x 160 ft (0.44 acre)
17	Temporary Land Disturbance for All Structures	3.45 acres for 5 Structures	2.20 acre for 5 Structures
18	Temporary Land Disturbance at Wire Stringing Site	120 ft x 250 ft (0.69 acre)	130 ft x 180 ft (0.54 acre)
19	Permanent Land Disturbance at Each Structure	50 ft x 50 ft (0.06 acre)	45 ft x 45 ft (0.05 acre)
20	Permanent Land Disturbance for All Structures	0.30 acre for 5 Structures	0.25 acre for 5 Structures
21	Maximum Height of Lattice Towers	150 ft	150 ft
22	Maximum Base of Lattice Towers	34 ft x 34 ft	29 ft x 29 ft
23	Foundation of Lattice Towers at Each Corner	3-6 ft diameter	3-6 ft diameter
24	Maximum Height of Steel Monopoles	170 ft	150 ft
25	Base of Steel Monopoles	4-6 ft diameter	3-6 ft diameter
26	Top of Steel Monopoles	1-2 ft diameter	1-2 ft diameter
27	Foundation of Steel Monopoles	7-9 ft diameter	6-9 ft diameter

^{*} Conductors may be alternative types of similar ampacity.

EXHIBIT B

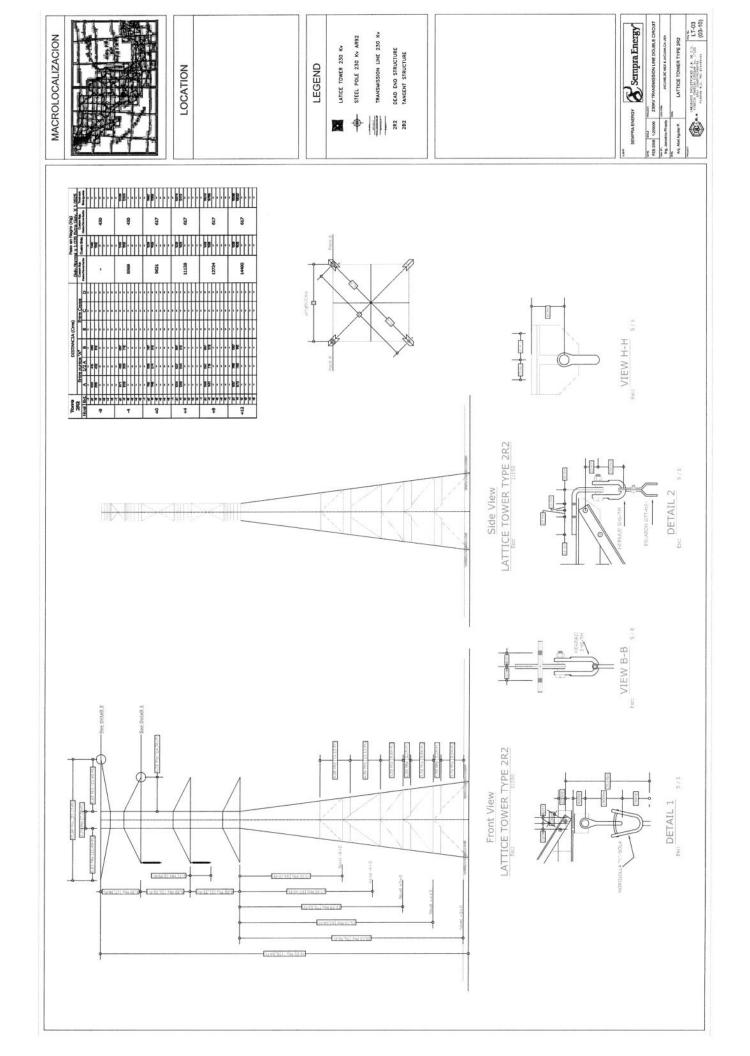

Detailed area map (revised)

EXHIBIT D4

Typical 230-kV lattice tower

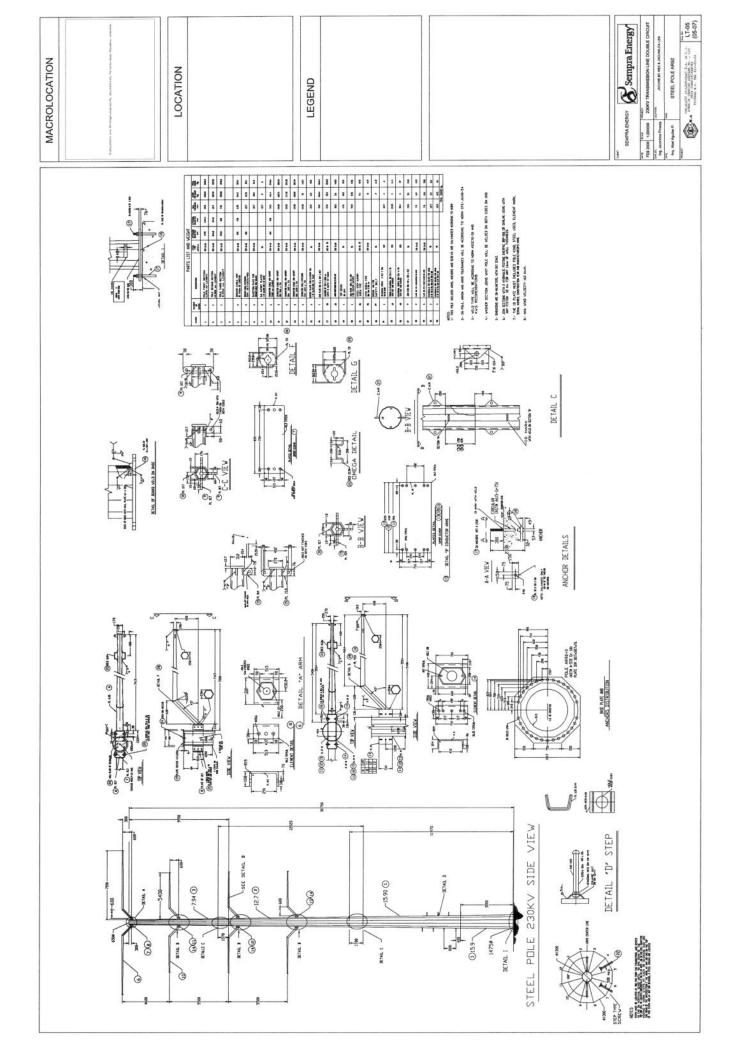
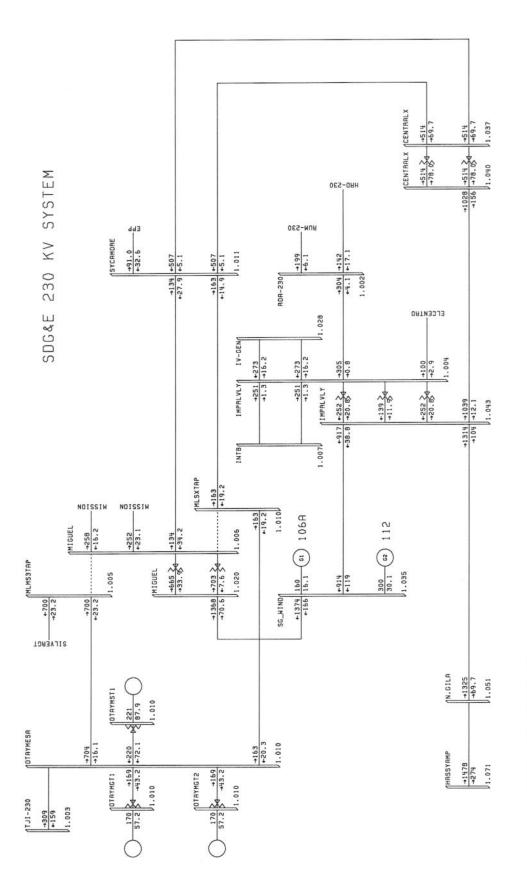
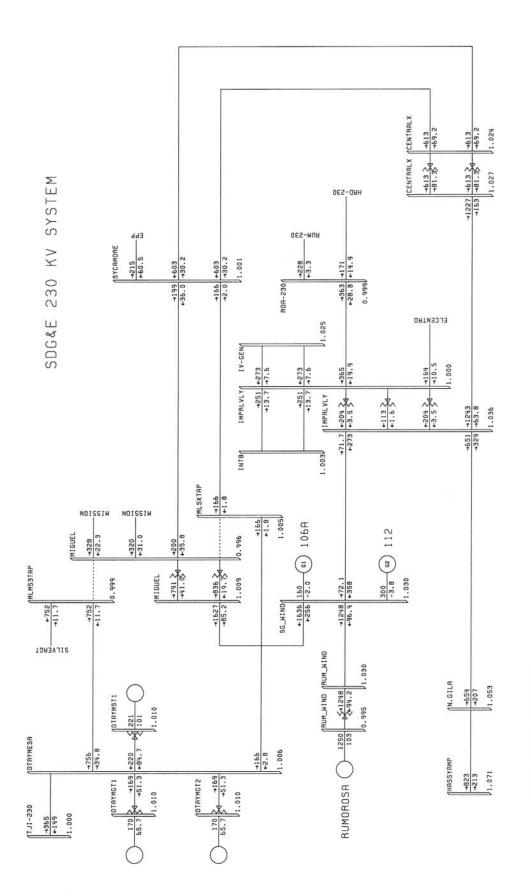

(see Table 1 for governing dimensions)

EXHIBIT D5


Typical 230-kV steel monopole

(see Table 1 for governing dimensions)

EXHIBIT E


System power flow plots (revised)

500 KV SYSTEM

BASE CASE, NO PVD2, Q106A=160, Q112=300 - 10HSWNDA0	SEMPRA WIND NOT INSTALLED	MODEL W/O BUMORDSA WIND SAT. MAR 15 2008 11:19
2010 BASE CA	SEMPRA WIND	BASE MODEL M
7	2	TECHNOLOGIES

BUS - VOLTAGE(PU) BRANCH - MW/MVAR EQUIPMENT - MW/MVAR

500 KV SYSTEM

J	SEMPF	SEMPRA WIND AT	CHSE, D AT	1250 MW	, 0106A=160, 0112=300	0112=3	00	- 10	10HSWNDA1
TECHNOLOGIES INC.0	BASE	MODEL	MITH	BRSE MODEL WITH RUNDROSA	WIND SAT,	_	15	MAR 15 2008	11:22

BUS - VOLTAGE (PU) BRANCH - MW/MYAR EQUIPMENT - MW/MYAR