Tectonic & Structural Controls of Great Basin Geothermal Systems: Developing Successful Exploration Strategies

Keeping Nevada in Hot Water!

April 23, 2013

James Faulds

University of Nevada, Reno Nevada Bureau of Mines and Geology

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Geothermal = 24/7 Renewable Energy

UNR Team and Collaborations

UNR Team

- 3 Faculty (Faulds, Cashman, and Bell)
- 1 post-doc (Siler)
- 2 research scientists (Hinz and Sadowski)
- 5 graduate students
- 2 undergrads

Project collaborators

- Industry partners Ormat,
 U.S. Geothermal, Gradient
 Resources, MagmaEnergy,
 Enel, U.S. Navy
- Desert Research Institute
- Zonge Engineering gravity surveys
- DOE support (EE0002748)

Tectonic Setting: Why is Nevada in Hot Water?

- Western USA distributed plate motion
- San Andreas 4 cm/yr right-lateral motion
- Walker Lane 1cm/yr right-lateral motion
- Basin and Range several mm's/year of extension
- Transtensional to extensional domains
- Volcanism not a major factor

Distribution of Geothermal Fields and Power Plants

San Andreas Fields

Basin-Range Fields

- Does geothermal activity and thus potential correlate with strain rate?
- Does power plant capacity correlate with strain rate?
- What are the favorable structural settings for geothermal activity?

Geothermal Activity vs. Strain Rates

- Strain decreases to NW as Walker Lane ends
- Broad enhanced strain to NE of northern WL
 - Dextral shear transferred to extension
 - NW Great Basin in broad transtensional region
- Fields most abundant in areas of greatest strain
 - Eastern Great Basin
 - NW Great Basin
 - Walker Lane
- San Andreas lacks systems except in pull-aparts and magmatic areas
- Extension/transtension required

Distribution of Geothermal Systems

All Systems (>37°C)

High-Temperature (>150°C)

Power Potential vs. Strain Rates

- Basin and Range tens of megawatts
- Walker Lane few hundreds of megawatts
- San Andreas several hundreds of megawatts

Challenges, Barriers, and Problems Addressed

- Current technology cannot identify best geothermal sites with a high degree of certainty without drilling.
 - Permeability
 - Temperature
- Major problems that MYRDD describes:
 - Barrier A "the ability has not been sufficiently demonstrated to assess potential EGS resources, prioritize potential sites for EGS, and achieve acceptable levels of site selection risk ahead of expensive drilling investments".
 - Barrier B "inadequate measuring techniques and knowledge preclude low-risk options to effectively select sites and characterize their physical parameters as potential EGS reservoirs before stimulation".
- Better characterization of known systems needed to address these problems.
- Our approach Characterize structural settings favorable for geothermal activity and develop more comprehensive, conceptual structural models that can facilitate exploration.

Exploration Challenges

Exploration Challenges

- Spring directly above upflow from deep source (uncommon)
- Outflow from source (common)
- Hidden or blind systems (common)
- Results significant drilling risk
 - Hot dry wells
 - Overturn in down-hole temperatures
- Need better conceptual models to:
 - Locate areas of upflow
 - Avoid typically less productive outflow zones

Great Basin Region

- Region of warm crust
- Crust pulling apart or extending
- As crust thins, hot rocks get closer to surface
- Saudi Arabia of geothermal
- Cannot drill 6 km deep (20,000 ft) economically
- Faults allow hot water to reach shallow levels
- Must find hot water pathways using geologic and geophysical techniques

Scientific/Technical Approach

- Main goal Characterize structural settings of known systems to better target blind or hidden systems
- Approach
 - Develop comprehensive catalogue of favorable structural settings and models
 - Select 5-6 representative sites for detailed analysis
 - 3D modeling of several systems
 - Slip and dilation tendency analysis
 - Synthesize findings
- Combine conventional and innovative quantitative techniques to define fluid pathways
- Major impacts on exploration strategies:
 - Reduce risk of drilling non-productive wells in conventional systems
 - Exploration for undiscovered blind systems
 - Expansion of conventional systems
 - Selecting best sites EGS development

Great Basin Geothermal Systems: Distribution of known systems long established, but structural settings of systems not systematically defined

Geothermal Education/Field Trips

Geothermal Exploration Course

- Taught in Spring 2011 20 graduate students
- Purpose training new generation of geoscientists in techniques
- Analyzed geothermal systems in variety of tectonic settings around the world
- Reconnaissance trips for structural inventory includes students
 - Western Utah
 - East-central Nevada
 - Southern Oregon
 - North-central to NE Nevada

"Educational" Field Trips

Structural Controls Overview

- Most fields <u>not</u> on mid-segments of major faults
- Most on less conspicuous normal faults
- Common occurrences
 - Steps or relay ramps in normal fault zones
 - Fault tips: Terminating, horse-tailing faults
 - Accommodation zones: Overlapping opposing faults
 - Intersecting faults dilational
 - Pull aparts in strike-slip faults
- Similar findings in other extensional settings
 - TVZ of New Zealand (Rowland & Simmons, 2012)
 - Western Turkey
 - Worldwide (Curewicz and Karson, 1997)

Most Common Setting – Step-Overs or Relay Ramps

Structural Inventory: Major Findings

- Structural settings for geothermal fields:
 - Major normal fault (~5%)
 - Step-over or relay ramp in normal fault (~32%)
 - Normal fault tip or termination (~22%)
 - Fault intersection-normal and strike-slip or oblique fault (~22%)
 - Displacement transfer zone (~5%)
 - Accommodation zone (~9%)
 - Pull-apart (~4%)
- Quaternary faults within or near most systems
- Most common settings critically stressed areas, where fluid pathways more likely to remain open
- Many highly productive systems characterized by >1 type of favorable setting at single locality

- Stepover or relay ramp in normal fault zones
- Major normal fault

- Antithetic normal fault to major range-front fault
- Analyzed system, structural setting not yet defined
- Displacement transfer zone

Structural Settings - ~300 Systems Analyzed

Representative Sites for Detailed Study

Selected sites for detailed study

- Neal Hot Springs, eastern Oregon
- Tuscarora, northeast Nevada
- McGuiness Hills, central Nevada
- Gerlach, northwest Nevada
- MacFarlane, northwest Nevada
- Soda Lake, west-central Nevada
- Salt Wells, west-central Nevada
- Patua, west-central Nevada
- Columbus Marsh, southwest Nevada

Criteria for selection

- Tectonic and structural setting
- Quality of surface exposure
- Availability of subsurface data
- Potential for new or enhanced development

Gray circles denote fields selected for detailed study

Methodology

Stress inversion from fault-slip data

Slip-Dilation tendency analysis

- Detailed mapping
- Structural analysis
 - Fault kinematics
 - Stress determinations
 - Slip-Dilation tendency analyses
- Gravity surveys
- Integrate available geophysics
- 3D Modeling

Work Flow

Neal Hot Springs, Oregon

- Selected based on location outside Basin-Range and abundant data
- US Geothermal constructing power plant
- Master's thesis Joel Edwards
- Methods detailed mapping, structural analysis, core-chip logging, integration of geophysics, 3D model
- Structural Setting Step over or relay ramp
- Stress field change from E-W to NE-SE extension

Neal Hot Springs, Oregon Conceptual Model

- Step over or relay ramp formed originally in mid to late Miocene E-W extension – left step in normal fault zone
- Reactivated in later NE-SW extension
- Step-over transformed into small pull apart

Tuscarora, Northeastern Nevada

ENERGY Energy Efficiency & Renewable Energy

- Selected based on location in NE Nevada, where geothermal systems poorly studied
- Abundant data with new Ormat 18 MWe plant
- Master's thesis Greg Dering
- Methods detailed mapping (110 km²), structural analysis, well logging (1,000 m), integration of geophysics, 3D model
- Structural Setting (two settings)
 - Broad left step or relay ramp in normal fault system
 - Small accommodation zone in step over (intermeshing oppositely dipping faults)
 - Reservoir in Paleozoic metasedimentary rocks near margin of Eocene caldera

Soda Lake, Western Nevada

- Selected based on blind system in central part of large basin (Carson Sink)
 - MagmaEnergy expanding power plant
 - Abundant geophysical + well data
- Ph.D. dissertation Holly McLachlan
- Methods Well logging, integration of geophysics, and 3D modeling
- Structural Setting
 - Two NNE-striking, over-lapping, oppositely dipping normal faults
 - Best production near oblique accommodation zone formed between graben-bounding faults
 - Interaction between overlapping opposing faults generates broad damage zone that provides conduits for upwelling geothermal fluids

Construction of 3D Models of Representative Fields

- Detailed mapping of bedrock, Quaternary, and surficial geothermal features
- Incorporate well data
- Interpretation of seismic reflection data
- Construct detailed cross sections

3D Modeling – Enhancing 3D "Thinking"

- Faults and stratigraphic horizons digitized based on maps, cross-sections, seismic interpretations, well data, etc.
- Fault hierarchy established to guide model, <u>challenging geoscientist to think in 3D</u>
- Positive feedback into the original map and cross sections

3D Modeling: Quantifying and Visualizing Fluid-Flow Fairways

- Combine with slip and dilation tendency analysis
- 3D visualization of density of fault intersections
- Hitting the target fluid-flow fairways?

Fluid-Flow Fairways

- Fracture permeability accentuated on fault segments
 - critically stressed under ambient stress conditions. AND
 - at fault tips and fault intersections where stress concentrations produce and maintain dense fracture networks.
- Geothermal 'fairway' of high fracture permeability and fluid flow where
 - collocation of critically stressed fault segments, and
 - high fault intersection density.

Conclusions

- Characterization of geothermal systems critical for exploration & development
 - Better conceptual models
 - Catalogues of key settings and indicators of such settings
 - Involves integrated geologic-geophysical work Structural only one perspective
- 3D models critical for future development & reducing risks in drilling
- Many undiscovered blind geothermal systems

Future Directions

- Continued characterization of existing systems to find signatures
 - Structural setting
 - MT
 - Gravity
 - Soil gas
- Integrate multiple techniques
 - Geological
 - Geophysical
- Target green-field blind systems
- Apply to EGS development
- Develop a "Temperability" Meter!

