A Novel Concept for Energy Storage

Grigorii Soloveichik GE Global Research

Trans-Atlantic Workshop on Storage Technologies for Power Grids Washington, DC, October 19-20, 2010

This work supported as part of the Center for Electrocatalysis, Transport Phenomena, and Materials for Innovative Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001055

imagination at work

Acknowledgements

GE EFRC team

P. Bonitatibus M. Doherty H. Lam L. Lewis T. Miebach R. Perry A. Peters J. Presley O. Siclovan D. Simone J. Stein A. Usyatinsky G. Yeager G. Zappi K. Zarnoch

imagina

imagination at work

Yale team V. Batista

R. Crabtree

S. Konezny

O. Luca

T. Wang

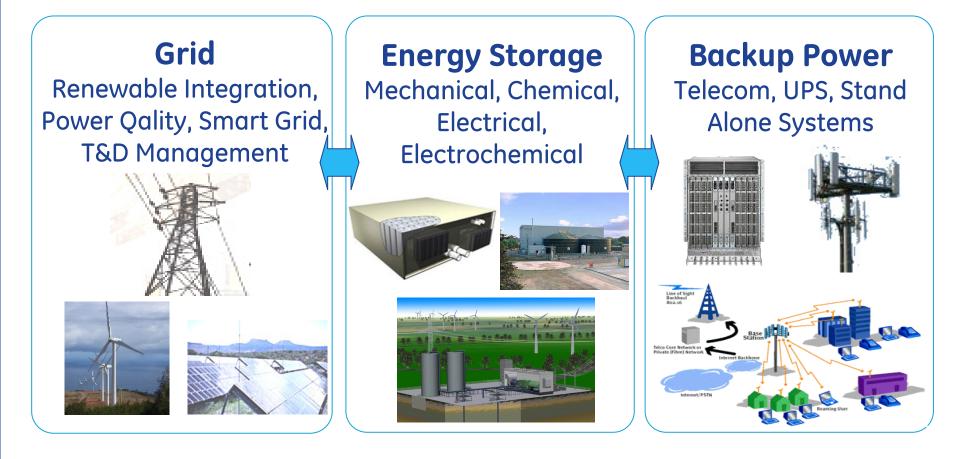
LBL/Berkeley team J. Kerr J. Arnold

T. Devine

R. Fish

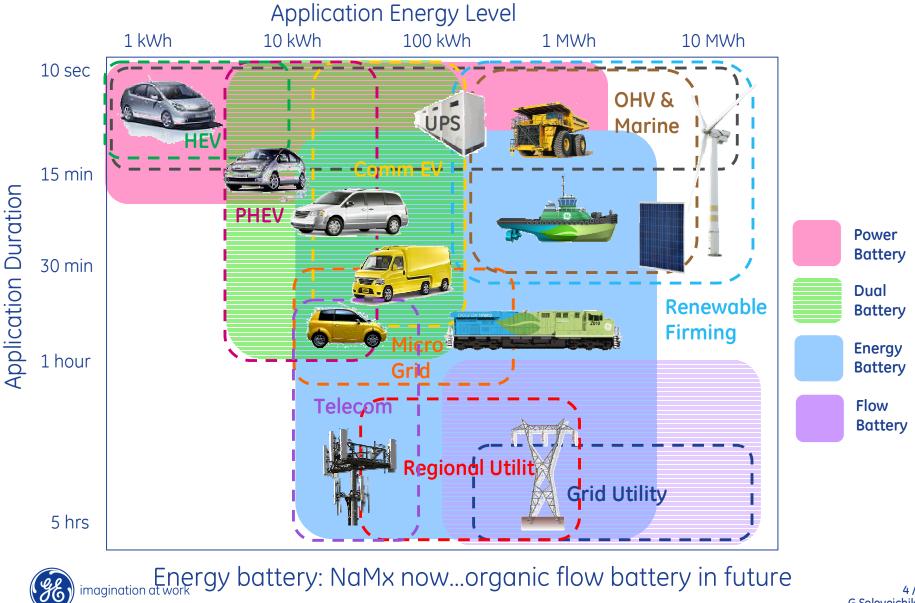
K. Clark

D. Kellenberger


S. Rozenel

Stanford team C. Chidsey V. Ziadinov A. Hosseini

> **DOE - BES** J. Vetrano A. Carim



Megatrends ... fuel cost, emission reduction & digitization
Intermittent renewables, smart grid deployment
Opportunities for an advanced energy storage

Application Energy Storage Requirements

Energy Storage Market

- Global investment in electric power ancillary services systems will reach \$6.6 billion by 2019
- Deployment of renewables and smart grid is the strongest driver to push the grid storage market 3 – 5 times by 2016
- The global stationary energy storage business \$35 billion by 2020
- ➤ 11 competing technologies
- \succ Li ion batteries may be 1/4 of revenue
- > Compressed air, flywheel and sodium-sulfur batteries follow
- Stationary fuel cells revenue \$0.7 1.2 billion in 2013
- Stationary energy storage got a boost from transportation energy storage development (market size \$19.9 billion in 2012)

Sources: <u>http://www.pikeresearch.com/category/research/energy-storage</u> <u>http://www.luxresearchinc.com/press/RELEASE 41B Energy Storage Market.pdf</u> <u>http://www.netl.doe.gov/energy-analyses/</u>

Electrochemical Energy Storage Options

Secondary batteries

- Stationary electrode materials
- Mature technology (lead acid, NiCd, NiNH, NaS)
- Emerging technologies (NaMCl₂, Li-ion)
- New chemistries (Li-air, Li-S, Zn-air)

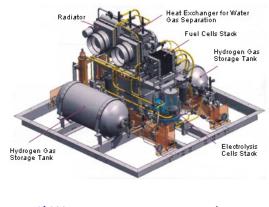
NGK 34 MW NAS alongside 51 MW Wind Farm

Source:http://www.ngk.co.jp/englis h/products/power/nas/

magination at work

Redox flow batteries

- Flowing electrode materials
- Mature technology (zincbromine, all-vanadium)
- Emerging technologies (cerium-zinc, iron-chromium)
- New chemistries (vanadium-bromine, soluble lead)

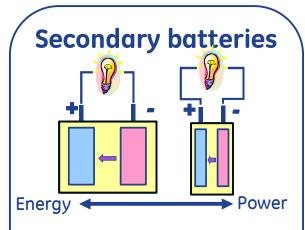


VRB (Prudent Energy) PacifiCorp (Moab, Utah) 2 MWh VRB-ESS

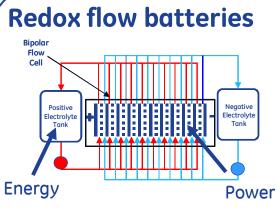
Source: http://www.pdenergy.com/

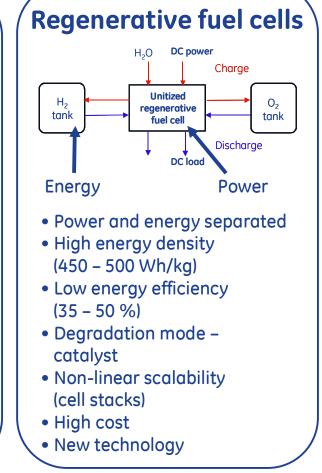
Regenerative fuel cells

- Gaseous electrode materials
- Emerging technologies
 - $(H_2-O_2 \text{ conventional and unitized})$
- New chemistries $(H_2-Br_2, H_2-H_2O_2, NaBH_4-H_2O_2)$



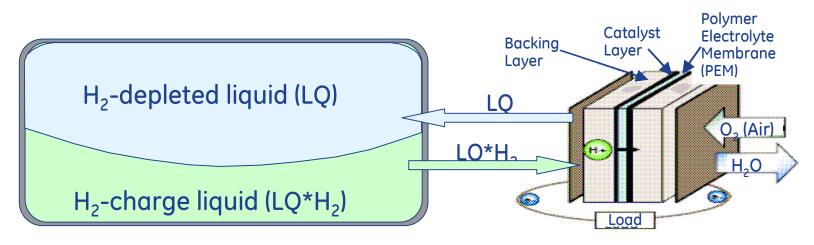
1kW-prototype Regenerative Fuel Cell System


Source: www.apg.jaxa.jp


Electrochemical Energy Storage Comparison

- No power-energy separation
- Moderate energy density (50 - 240 Wh/kg)
- High energy efficiency (65 - 90%)
- Degradation mode electrode
- Linear scalability (small cells)
- Moderate cost
- Mature technology

- Power and energy separated
- Low energy density (10 - 50 Wh/kg)
- High energy efficiency (65 - 78%)
- Degradation mode membrane
- Non-linear scalability (cell stacks)
- Low cost
- Emerging technology

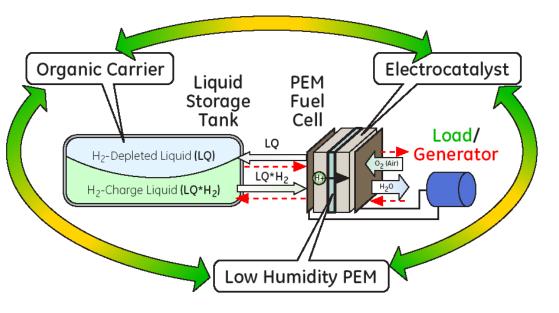

•Combination of high energy density and efficiency, long cycle life, high DOD, low cost, fire and environmental safety desirable

- Main focus on transportation, more efforts on stationary storage needed
- New concepts wanted

7/ eichik /2010

Direct organic fuel cell/flow battery concept

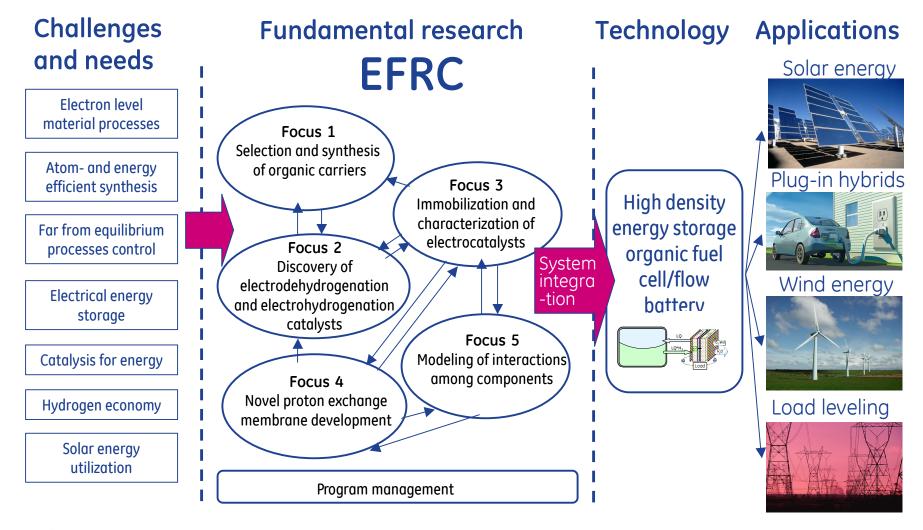
- Feed the hydrogenated organic liquid carrier directly into the fuel cell where it will be electrochemically dehydrogenated to a stable, hydrogen depleted organic compound without ever generating gaseous H₂ to produce power
- The spent organic carrier may be replenished either mechanically or electrochemically from water splitting
- Minimize the balance of plant by excluding a catalytic reactor and a heat exchanger
 - High theoretical energy density (up to 1350 Wh/kg)
 - Low membrane crossover high efficiency
 - Energy conversion and storage separated low packaging
 - Reversibility (fuel cell \leftrightarrow flow battery)
 - Excellent safety, zero carbon emission



Center for Electrocatalysis, Transport Phenomena, and Materials for Innovative Energy Storage Dr. Grigorii Soloveichik (GE Global Research)

Electrocatalysis, transport phenomena and membrane materials basic research aimed to three novel components of an entirely new high-density energy storage system combining the best properties of a fuel cell and a flow battery: organic carriers, electro(de)hydrogenation catalysts, and compatible PEM

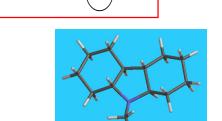
Focus areas:


- C-H bond catalysis/
- Electro(de)hydrogenation catalyst
- Organic fuel
- Low humidity proton exchange membrane

Award DE-SC0001055

Yale University STANFORD University an Office of Basic Energy Sciences Energy Frontier Research Center

Task interactions and program vision



Fuel (organic carrier) focus

LQ = liquid carrier **Traditional approach** $LQH_n \Leftrightarrow LQ + n/2 H_2$ ΛH to be minimized **EFRC** approach LQ = liquid carrier $LQH_n + n/4O_2 \Leftrightarrow LQ + n/2H_2O$ $\Delta(G_{LQHn} - G_{LQ})$ to be minimized to maximize cell voltage Theoretical cell voltage 0.95 – 1.1 V O*F (depends on organic hydrogen carrier) LQ = liquid carrier

Organic fuel requirements

- Minimal ΔG dehydrogenation of organic carriers via molecular modeling guidance
- Scalable synthesis of aromatic precursors and hydrogenation to saturated carriers (high pressure lab)
- Liquid at ambient conditions, low vapor pressure

∧ = heat

PRODUCTS

Organic fuels molecular modeling

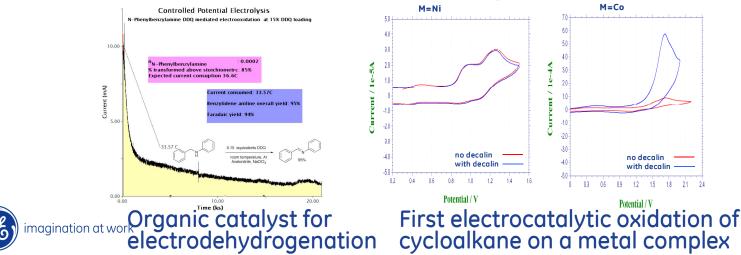
Comparison of dehydrogenation energies for model and promising fuels in kcal/mol H₂ by DFT calculation (method B3LYp, basis set 6-311++G**)

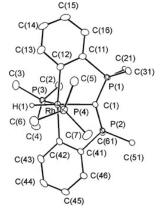
Electrooxidation of model fuels on Pt electrode

First dehydrogenation step most critical

Single-bond and multiple-bond model and promising fuels selected based on computational modeling

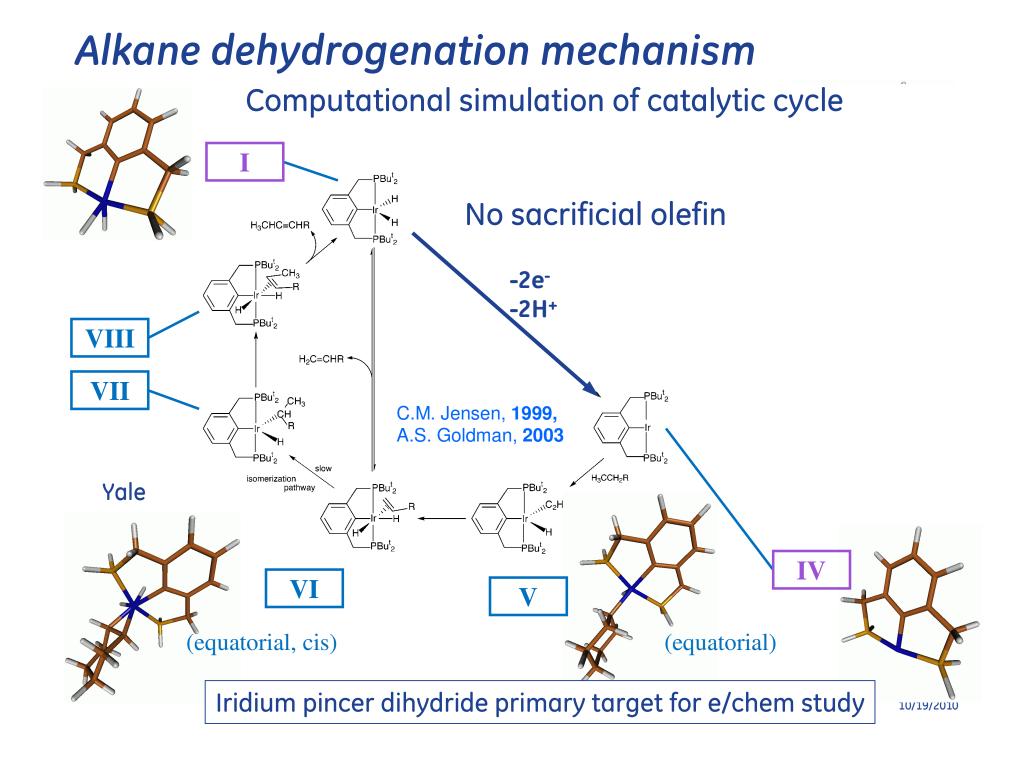
C-H bond catalysis focus

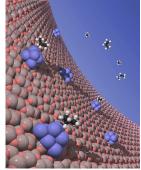

Homogenous C-H bond activation **and** electron transfer


 $LH_n - ne^- \iff L + nH^+$

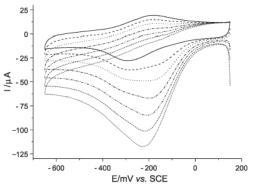
Utilize defined metal centers for catalysis understanding

Catalyst requirements


- Catalytic activity in the C-H bond activation and further dehydrogenation of saturated hydrocarbons
- Redox activity in target electrochemical potential windows
- Microscopic reversibility (dehydrogenation/hydrogenation)
- Ability to transfer multiple electrons and protons
- Tunable redox potentials to selected organic fuels

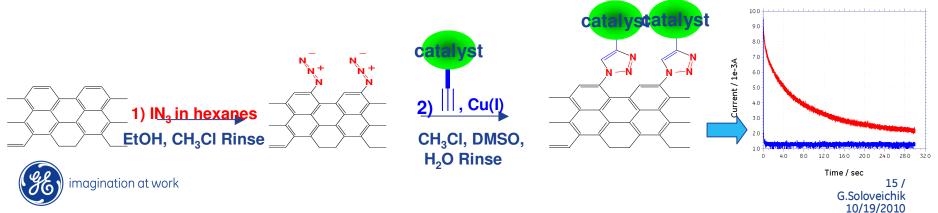

Rh-based pincer complex

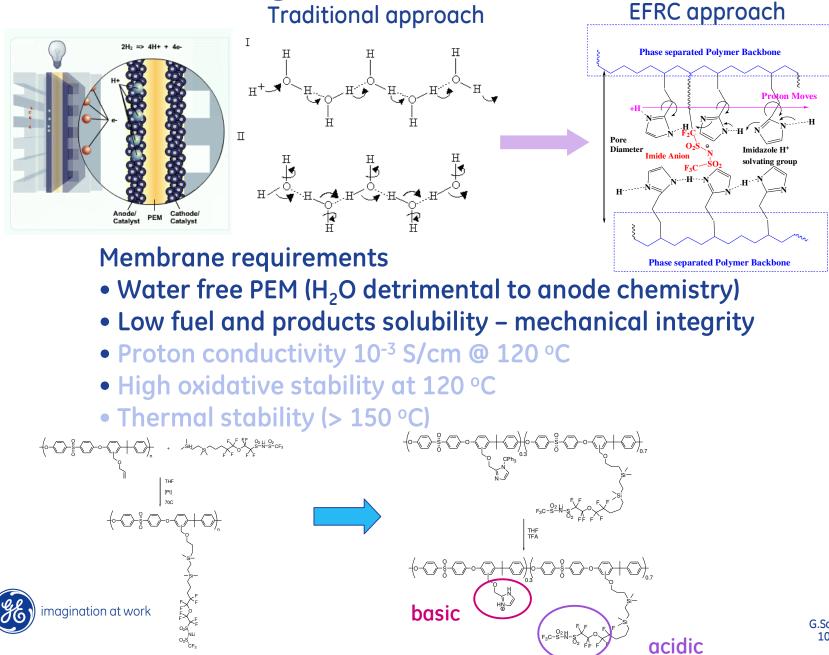
/ 13 G.Soloveichik 10/19/2010



Electrocatalysis focus

Electrocatalysis for dehydrogenation and hydrogenation


 $LH_n - ne^- \iff L + nH^+$


Electrocatalyst requirements

- Fast electron transfer from metal centers through a linker to electrode via study of the transport mechanism and determination of controlling factors
- Fast proton transport to PEM via structured catalyst/support
- Robust catalyst that tolerant to impurities/reaction products
- design catalyst ligand environment for selectivity
- use nanosized metal alloys catalysts supported on carbon

Chronoamperometry of baseline RVC (blue) and functionalized RVC (red)

Proton exchange membrane focus

Direct organic hydride fuel cell testing

Membrane Electrode Assembly (MEA)

Cyclohexane/air cell

042

4

A 35

0

0 P

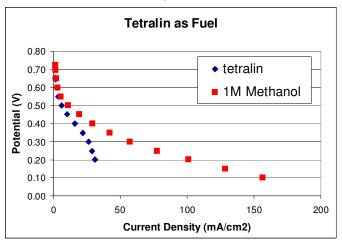
41

.

line in

Cell Voltage (flow rate fixed at 1 sccm)

• 5 cm² active area


99

- Anode: 4mg/cm² 60% PtRu/C,
- C-cloth anode GDL
- Cathode: 2 mg/cm² 40% Pt/C
- •115 Nafion® membrane

Fuel Cell Assembly

Tetralin/air cell

Significant current observed for tetralin

Liquid fuel cells OCV, V Fuel Theory Exp. MeOH 1.21 0.73 Decalin 1.10 0.55 Tetralin 1.08 0.66

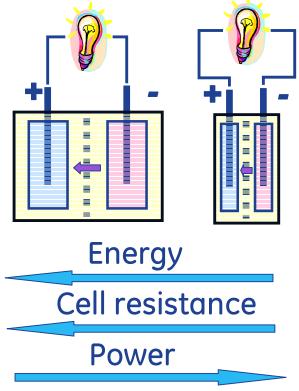
Fuel Cell Testing Station

Membrane dehydration, new membranes needed

Temperature. °C

Use of liquid hydrocarbon fuel in fuel cell demonstrated

Conclusions


- Smart grid development and deployment of intermittent renewables require performance and cost effective energy storage
- New concept of high energy density storage system combining a PEM fuel cell and a flow battery suggested
- Energy Frontier Research Center targets major components of this system: organic fuel, electrocatalyst and low humidity PEM

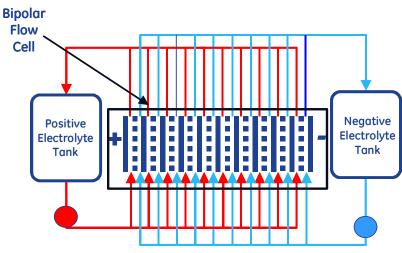
Backup slides

Secondary batteries

5				
Туре	Cell voltage , V	Energy density, Wh/kg	Demo scale, MW	Major players
Lead acid	2.04	30 - 50	20	C&D Battery, Exide Technologies, Hagen Batterie AG, Storage Battery Systems
NiCd	1.29	50 - 75	27	Saft Batteries, Storage Battery Systems
ΝαS	1.78 - 2.07	150 - 240	34	NGK Insulators Ltd.
Li-ion	3.3 - 4.2	75 - 200	20	A123, Ener1, Altair Nanotechnologies, Saft Batteries
NaNiCl ₂	2.58	135	-	FZ Sonick SA, GE
LiS	2.2	350	-	SION Power, PolyPlus

Advantages:

- Mature technology
- High round trip efficiency
- High power or high energy
- Modular design



imagination at work

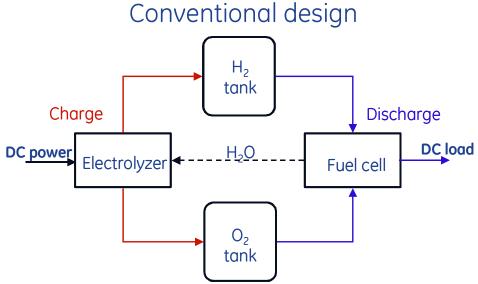
Major technical challenges:

- High cost for advanced batteries
- Linear scalability (kW to MW)
- No deep cycling
- Electrode degradation, short lifetime
- Corrosion (high temperature batteries)
- Safety

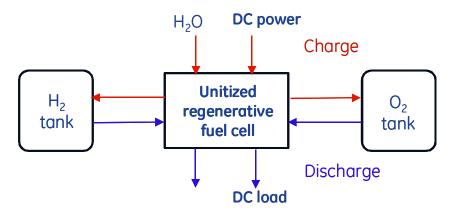
Flow batteries

Advantages:

- Separation of energy and power
- Non-linear scalability (kW to MW)
- High round trip efficiency
- Modular design
- Long lifetime
- Low cost


imagination at work

Туре	Cell voltage, V	Membrane	Energy efficiency, %	Major players	
All- vanadium	1.26	PEM	78	Prudent Energy, Sumitomo, VFuel Pt	
Polysulfide -bromine	1.36	lon- 77 selective		Prudent Energy (IP holder)	
Zinc- bromine	1.85	Porous diaphragm	73	ZBB Energy, Premium Power, Primus Power	
Cerium- zinc	2.48	PEM		Plurion	
lron- chromium	1.18	lon- selective	66	Deeya Energy	
Soluble lead acid	2.04	No membrane	65	General Atomics	


Major technical challenges:

- Low energy density (25 70 Wh/kg)
- Corrosion, expensive plumbing
- Environmental issues

Regenerative H_2/O_2 fuel cells

Unitized design

F. Mitlitsky et al., LLNL <u>https://www.llnl.gov/str/Mitlit.html</u> F. Barbir et al., IEEE A&E Systems Magazine, 2005 500 Wh/kg with roundtrip efficiency of 34%.

> Major players: EnStorage URFC

Major technical challenges:

- Dual function oxygen electrode (unitized FC)
- Low roundtrip energy efficiency
- Low energy density storage system
- Cost

D. Bents et al., NASA Glenn Research Center, 2008 http://gltrs.grc.nasa.gov

Major players:

Giner, Proton Energy Systems

Advantages:

- High energy density (500 Wh/kg)
- Separation of energy and power
- Long lifetime
- No environmental issues

imagination at work

Electrochemical energy storage systems

System	Energy density, Wh/kg	Round trip efficiency, %	Cost, \$/kWh	Cycle life	Deep cycling	Scale	Response time	EHS issues
Lead acid	41	78	150	short	no	kWh	+	Toxic, corrosive
Na/S	120	72	450	long	no	MWh		Thermal runaway
Na/MCl2	135	75	400	moderate	no	kWh		Molten Na
Li-ion	130	60 - 80	1300	moderate	no	kWh	+	Thermal runaway
VRB	35	78	800	long	yes	MWh	+	Corrosive, toxic
ZBB	70	73	500	long	yes	MWh		Toxic, corrosive
RFC	450	35 - 50	?	long	yes	kWh	+	Flammable

• Solid electrodes – degradation, liquid electrodes – low energy density

imagination at work