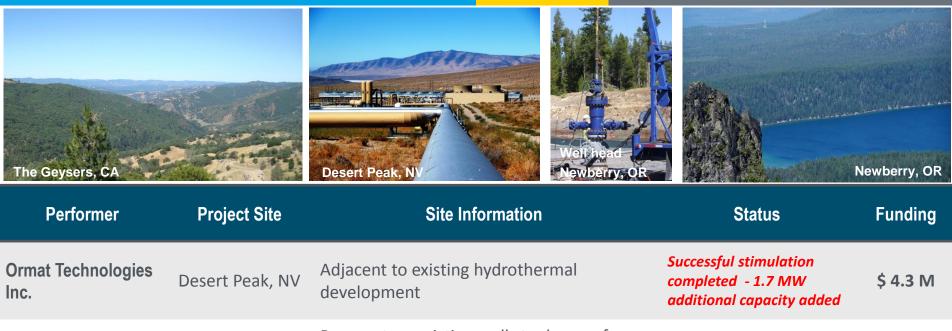
FORGE & EGS Program Outlook

Energy Efficiency & Renewable Energy



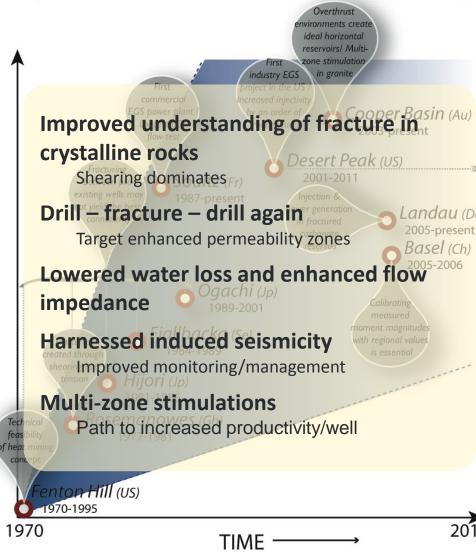
Lauren Boyd EGS Program Manager Geothermal Technologies Office

EGS Demonstration Portfolio

Core Area Results

Inc.	Desert Peak, INV	development	additional capacity added	Ş 4.5 IVI
Geysers Power Company, LLC	The Geysers, CA	Reopen two existing wells to deepen for injection and stimulation in inactive part of field	Successful stimulation completed – 5 MW equivalent created	\$ 6.2 M
University of Utah	Raft River, ID	Improve the performance of the existing Raft River geothermal field	Successful Stimulation underway – injectivity increasing daily	\$ 8.9 M
AltaRock Energy Inc.	Newberry Volcano, OR	High potential in an area without existing geothermal development	Successful stimulation completed – multiple zones stimulated	\$ 21.4 M
Ormat Technologies Inc.	Bradys Hot Springs, NV	Improve the performance of the existing Brady's geothermal field	Initial stimulation complete & long term strategy under development	\$ 3.4 M

Foundational EGS Projects


Key Technical Advancements Through EGS History

Critical Needs:

- Characterization of local stress, chemical potential, and thermal pathways
- Achieving *sufficient productivity* (and stimulated volume) for commercial EGS power generation

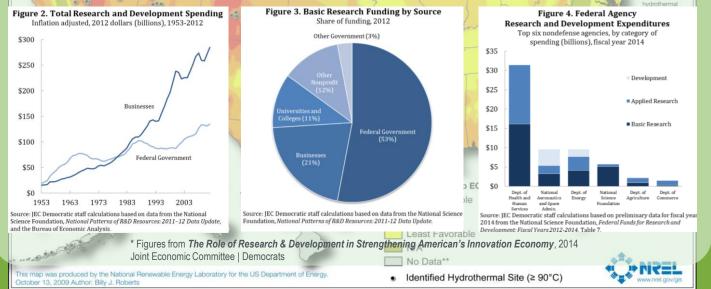
Path Forward:

- Remaining gaps are the foundation of the EGS portfolio
- Most technology needs are evolutionary- not revolutionary!

KNOWLEDGE

Why FORGE?

Energy Efficiency & Renewable Energy


Opportunity Space

- Heat is present almost everywhere at depth
- Potential resource is estimated to be on the order of 100+ GWe (USGS)

Geothermal Resource of the United States Locations of Identified Hydrothermal Sites and Favorability of Federal Roger Systems (EGS)

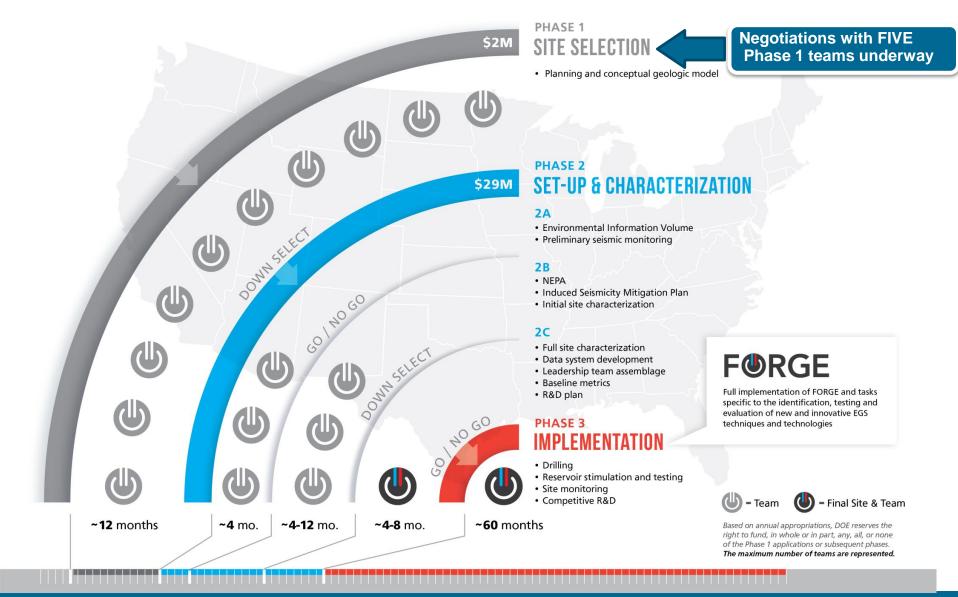
- Test technologies/take technical risks not possible in private sector
 High risk, high pay-off research and development
 Advance innovation domestic & international
- Work under aggressive timeframe

 Map does not include shallow EGS resources located near

Critical FORGE Objectives

SHARE, COMMUNICATE, and EDUCATE the broader technical and non-technical community

- Gain a fundamental understanding of the key mechanisms controlling EGS success
- Develop, test and improve new fundamental and techniques in an ideal EGS environment.
- Make Integrated comparison of technologies and tools in a controlled environment
- □ Rapidly **disseminate technical data** and **communicate** to the research community, developers, and other interested parties.


- Well characterized, with high temperatures in the target formation in the range of 175-225 °C
- Moderate permeability of order 10⁻¹⁶ m², below the limit that typically supports natural hydrothermal systems
- Target formation between **1.5-4 km depth**, to avoid excessive costs associated with the drilling of new wells while attaining stress and temperature characteristics that are suitable to EGS and advancement of new technologies
- Must not be within an operational hydrothermal field
- Does not stimulate or circulate fluids through overlying sedimentary units, if applicable

Other site selection considerations included:

- **Owner/lease holder commitment** to the project
- Environmental review and regulatory permitting
- Available **infrastructure** necessary for carrying out the operation of FORGE

Energy Efficiency & Renewable Energy

Duration: 1 year Up to 10 projects Total Federal Funds available \$2M

The Phase 1 objective is to complete mission-critical technical and logistical tasks that demonstrate site viability and the Applicant's full commitment and capability to meet envisioned FORGE objectives through Phases 2 and 3. Minimum requirements for Phase 1 include:

- Assess all available site characterization data;
- Compile site data into a conceptual geologic model of the proposed site;
- Archive site data used to support the conceptual geologic model to GTO's Existing NGDS Node, the Geothermal Data Repository (GDR)
- Finalize all teaming and cost-sharing arrangements; and
- Develop the key operational plans
- Develop Environmental Information Synopsis

End Phase 1: down select to 1-3 sites via Renewal Application

Duration: 1-2 years 1- 3 projects Total Federal Funds available \$29M

- The objective of Phase 2 is to fully instrument the site and bring FORGE to full readiness for the testing of new technologies and techniques in Phase 3.
- Phase 2 is split into the following three sub phases:
 - Phase 2A Environmental Information Volume (EIV) and Preliminary Seismic Monitoring
 - Phase 2B NEPA Compliance, Final Induced Seismicity Mitigation Plan, and Initial Site Characterization
 - Phase 2C Subsurface Characterization and Site Readiness

Phase 2A

<u>4 months – 1-3 Teams – *\$2M*</u>

4-12 months – 1-3 Teams – *\$17M*

- Environmental Information Volume : skeleton of NEPA document
- Surface MEQ monitoring array: At least 5 surface stations operational, with telemetry and collecting data

GO/NO-GO at conclusion of PHASE 2A

Phase 2B

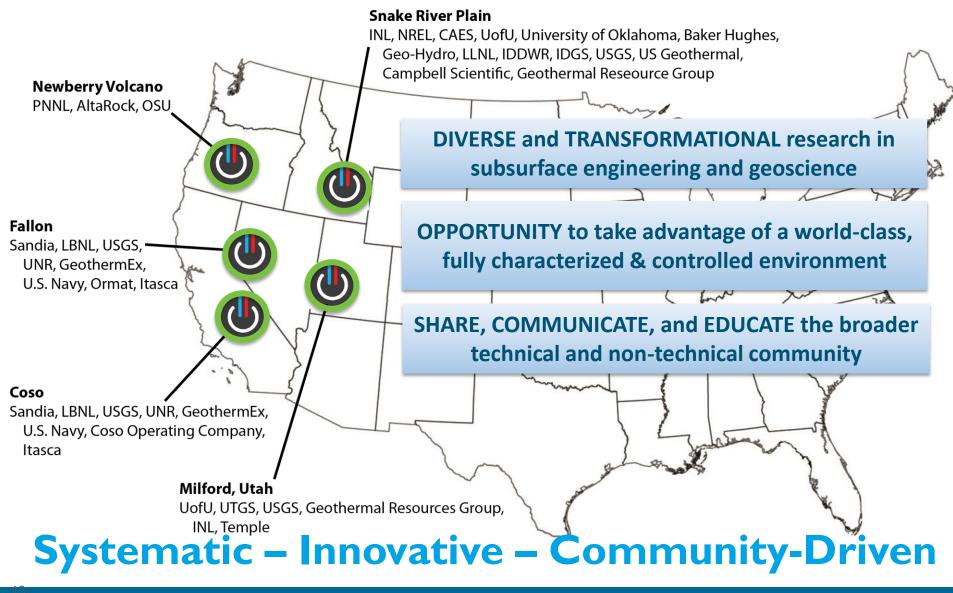
- Implementation & completion of National Environmental Policy Act
- Comprehensive site characterization & monitoring:
 - Seismic, Geological analysis, Conceptual Modeling
 - Development of Induced Seismicity Mitigation Plan

DOWNSELECT at the end of Phase 2B

Phase 2C

<u>4-8 months – 1 Team – *\$10M*</u>

- Full site characterization (subsurface and invasive characterization)
- Develop and deploy data-system to serve live site data for project life
 - Real-time data sharing via data system
- STAT Charter and governance document
- First round of R&D solicitation
- Baseline metrics
- Updated geologic model


Duration: 5 years 1 project Total Federal Funds available subject to appropriations

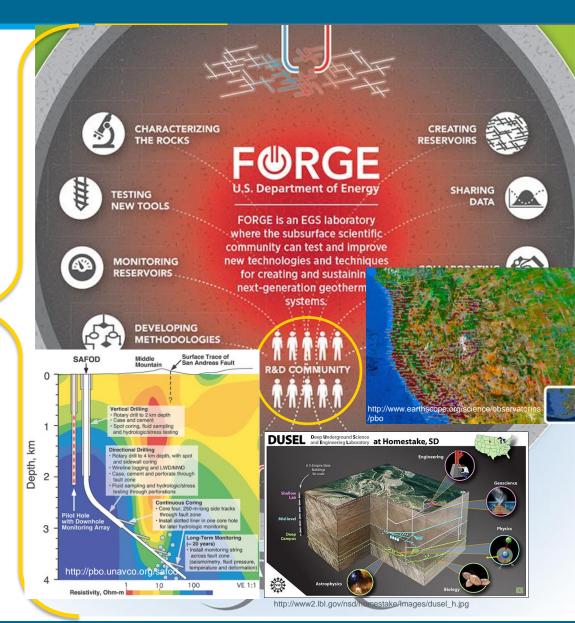
- Phase 3 involves full implementation of FORGE and tasks specific to the solicitation, selection, testing and evaluation of new and innovative EGS tools, techniques, and supporting science.
- Requires drilling of two or more full-sized wells, reservoir stimulation, connectivity and flow testing, dynamic reservoir modeling, and continuous monitoring
- Annual R&D solicitations will be issued with 10-20 subcontracts awarded for research and technology testing per competition (subject to annual appropriations) in the following categories:
 - Reservoir characterization (coupled imaging, drilling for interrogation and monitoring, high-temperature tools and sensors)
 - Reservoir creation (formation access, fracture characterization, zonal isolation, stimulation technologies)
 - Reservoir sustainability (long-term testing, monitoring, and operational feedback)
 - All entities (including industry, universities, Federally Funded Research and Development Centers, non-profit organizations, government agencies, etc.) will be eligible to submit proposals for testing and evaluating innovative tools and techniques at FORGE.
- At least 50% of annual Phase 3 FORGE funding must be directed towards competitive R&D solicitations, exclusive of funds dedicated to innovative drilling and flow testing.

Selected Teams

Broad Collaboration & Data Rich Sites

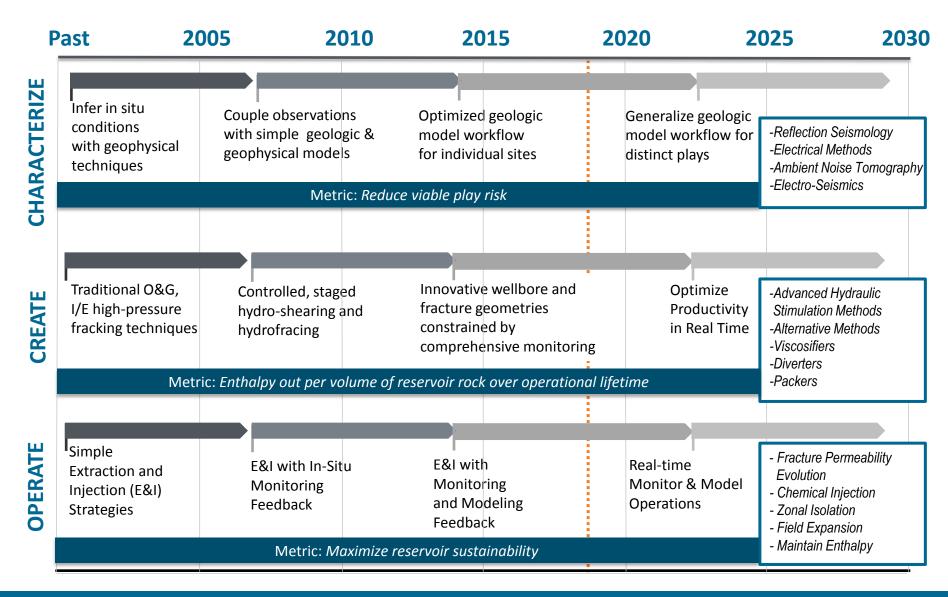
FORGE Communications - DOE

U.S. DEPARTMENT OF


Develop a comprehensive and innovative plan for communications, education, and outreach in collaboration with DOE and stakeholders to increase geothermal science technology literacy

- Variety of communications, education, and outreach methods will be utilized
- Education and workforce development to occur through engagement of students and educators (K-12 and higher education) onsite and in the classroom regarding EGS science and technology
- Frequent public meetings to report on FORGE status to take place with local stakeholders and the broader technical community

Community



- Community engagement
 - Communications
 - Science Technology
 Analysis Team
 - EGS Roadmap 2.0
- Community driven transformational research
 - Deep Underground
 Science and Engineering
 Lab (DUSEL)/ Sanford
 Underground Research
 Facility (SURF)
 - NSF Plate Boundary Observatory (PBO)
 - The San Andreas Fault
 Observatory at Depth
 (SAFOD)

EGS Technology Evolution Characterize, Create and Operate

U.S. DEPARTMENT OF

EGS Technology Pathway Metrics

Measuring R&D Progress

Торіс	Metric	Technology Pathway	Metric	Description
Characterize	Risk Reduction	Identify Natural Fractures and Flow Paths	Spatial resolution and ability to predict a priori reservoir performance	Develop precision geophysical methods, validated play books, and improved tools for subsurface.
Create	Reservoir Performance	Create New Fractures and Flow Paths	Fractured rock volume ability to predict a priori reservoir performance	Develop techniques to maximize heat extraction from a given volume of reservoir rock with a minimum of boreholes.
Create/Operate	Reservoir Performance	Monitor Flow Paths	Enthalpy and/or fractured rock volume	Develop ability to more accurately monitor and control flow paths in the reservoir.
Create/Operate	Reservoir Performance	Zonal Isolation	Enthalpy and/or fractured rock volume	Demonstrate the ability to isolate sections of the wellbore and reservoir.
Operate	Reservoir Performance	Manage Fractures and Flow Paths	Thermal drawdown and reservoir sustainability	Develop the ability to manage EGS reservoirs improving reservoir lifetime and productivity.
All	RR and RP	Drilling	ROP/Costs	Develop next generation rock reduction, drilling and well completion technologies.
All	RR and RP	Modeling	Ability to predict a priori and manage in real time reservoir performance	Develop robust, capable, and validated models of the subsurface.
All	RR and RP	Tools	T/P limits, sensitivity and durability	Develop tools that can withstand hostile EGS environments.

FORGE Milestones (potential)

- At the start of Phase 3 demonstrate full functionality
 of an NGDS-compatible, data-sharing mechanism (FORGE Data System/Node) for real-time sharing of all site characterization and monitoring data.
- At the conclusion of year 1, design of first FORGE well based on in-situ stresses and informed by continuously updated reservoir models. Initiate drilling of first well in year 2.
- Issue R&D solicitations annually and ensure all awards are made and work initiated within the fiscal year of solicitation release.
- Demonstrate sustained functionality of transient reservoir interrogation tools at 200 ° C for at least 6 months or in-situ monitoring tools for at least one year.
- Demonstrate at least three innovative stimulation techniques for initiating or re-opening fractures.
- Demonstrate the ability to enhance multiple reservoir volumes from a single wellbore and correlate to progressively-increased well performance as a function of number of stimulated zones.

- Demonstrate innovative precision geophysical methods that increase spatial resolution of subsurface features over state-of-the-art and validate methods with actual subsurface data or mine back.
- Demonstrate the functionality of innovative drilling tools and components capable of operating at 200+ °C in crystalline rock, uninterrupted for 30 hours.
- Demonstrate validation of reservoir and site models based on ability to predict post-stimulation fracture initiation directions, total reservoir volume, and connectivity.
- Validate the capability of new tracers to improve flow path, volume, and fracture surface area estimates.
- Develop sufficient flow paths between wellbores over a reservoir volume greater than 1 km3 and quantitatively constrain their capacity to sustain production with less than 2°C temperature decline over one year.
- Demonstrate a methodology for reproducible EGS reservoir creation and sustainability.

PLUG INTO THE PLANET FORGE U.S. Department of Energy

FRONTIER OBSERVATORY FOR RESEARCH IN GEOTHERMAL ENERGY