June 1994

Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium

Third Edition

R. Leino, D. C. George, B. N. Key, L. Knight, and W. D. Steele

Technical Measurements Center

Printed in the United States of America.

Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

> NTIS price codes Printed copy: A05 Microfiche copy: A01

James Lampley, Manager,
Grand Junction Projects Office
Daniel Varhus, DOE Program Manager,
Grand Junction Projects Office
John R. Duray, Program Manager,
Technical Measurements Center
W. D. Steele, Project Manager
Technical Measurements Center

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Errata Sheet

October 31, 2001

Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium, DOE/ID/12584-179, Third Edition, U.S. Department of Energy, Grand Junction Office, Grand Junction, Colorado, June 1994.

The following models have been removed from the Grand Junction Office facility and disposed of:

H Pads

P Pads

E Pads

L Pads

C Model

PW Model

PD Model

R Model

Thin Dipping Bed Models

300-Foot-Deep Test Hole

Long-Term Surveillance and Maintenance Program U.S. Department of Energy Grand Junction, Colorado, Office (970) 248-6000

Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium

Third Edition

R. Leino D. C. George B. N. Key L. Knight W. D. Steele

Technical Measurements Center

June 1994

Prepared by
RUST Geotech Inc.
P.O. Box 14000
Grand Junction, Colorado 81502

Work performed under DOE Contract No. DE-AC04-86ID12584 for the U.S. Department of Energy Grand Junction Projects Office

Contents

	Page
Preface	v
Summary	vii
1.0 Introduction and Discussion	1
1.1 Description of the Calibration Facilities	1 3
2.0 Bibliography	7
Appendix A Primary Field Calibration Facilities	A-1
Map to Grand Junction Calibration Site	A-4
Layout of Grand Junction Calibration and Test Site	A-5
Walker Field Large-Area Calibration Pads: Grand Junction	A-6
Grand Junction H Pads	A-7
Grand Junction P Pads	A-8
Grand Junction E Pads	A-9
Grand Junction L Pads	A-10
Grand Junction K, U, and T Models	A-11
Grand Junction KW Model	A-12
Grand Junction BL/BH, BT/BK, BU/BM, and BA/BB Models	A-13
Grand Junction N3, U1, U2, and U3 Models	A-15
Grand Junction WF Model	A-16
Grand Junction N1 Model	A-17
Grand Junction N2 Model	A-18
Grand Junction N4 Model	A-19
Grand Junction N5 Model	A-20
Grand Junction Thin Dipping Bed Models	A-22
Grand Junction A Models	A-23
Grand Junction D Model	A-25
Grand Junction SW Model	A-26
Grand Junction SS/SB Model	A-27
Grand Junction Granite Block Model	A-28
Grand Junction 300-Foot Test Hole	A-29
Appendix B Secondary Field Calibration Facilities	B-1
Map to Casper Calibration Site	B-4
Layout of Casper Calibration Site	B –5
Casper P Pads	B-6
Casper E Pads	B-7
Casper CBT/CBK, CBU/CBM, and CBA/CBB Models	B-8
Casper CH and CL Models	B-10
Map to Grants Calibration Site	B-11

Contents (continued)

	Pag
Layout of Grants Calibration Site	B-12
Grants P Pads	B-13
Grants E Pads	B-14
Grants GBT/GBK, GBU/GBM, and GBA/GBB Models	B-15
Grants GH and GL Models	B-17
Map to George West Calibration Site	B-18
Layout of George West Calibration Site	B-19
George West P Pads	B-20
George West E Pads	
George West TBT/TBK, TBU/TBM, and TBA/TBB Models	B-22
George West TH and TL Models	B-24
Appendix C Relocatable Field Calibration Pads	
NP Pads	
PP Pads	
T Pads	. C-6
Appendix D Conversion Factors	D-1
Appendix E Example Conversion Factor Derivation	E-1
Figure	
Figure 1. Locations of U.S. Department of Energy Calibration Facilities	. 2
Tables	
Table 1. Summary of Surface Calibration Facilities for Radiometric Instruments	4
Summary of Subsurface Calibration Facilities for Radiometric Instruments	5
3. Summary of Calibration Facilities for Nonradiometric Instruments	6

Preface

The first edition of this report, prepared by D. C. George and L. Knight and released in October 1982, presented physical-characteristic information for the various U.S. Department of Energy radiologic-instrument calibration facilities located throughout the United States. The primary and secondary calibration facilities are maintained by the Technical Measurements Center. The second edition, prepared by W. D. Steele and D. C. George and released in August 1986, was an effort to provide the most current information available regarding the calibration facilities. This third edition is necessary to keep current with changes to the facilities. Three secondary field calibration facilities were decommissioned and several models were added to or removed from the primary calibration facility. Every attempt has been made to ensure that the information presented is accurate.

Summary

This report describes calibration facilities located at Grand Junction, Colorado, and at three secondary sites. These facilities are available to contractors for the calibration of radiometric field instrumentation for in situ measurements of radium, thorium, and potassium.

The U.S. Department of Energy and its predecessor agencies constructed all of the calibration facilities described herein for use in annual uranium-reserve determinations. The use of these facilities for the calibration of radiometric field instruments used in remedial action is made possible by the commonality of the radiometric measurement technique for uranium and for radium. The use of these facilities standardizes remedial action measurements in a cost-effective manner.

1.0 Introduction and Discussion

The U.S. Department of Energy (DOE) Office of Environmental Management has responsibility for four major remedial action programs: the Grand Junction Remedial Action Program (GJRAP), authorized by congressional legislation,* the Uranium Mill Tailings Remedial Action Project (UMTRAP), also authorized by congressional legislation, the Formerly Utilized Sites Remedial Action Program (FUSRAP),† and the Surplus Facilities Management Program (SFMP).††

In support of these programs, the DOE Office of Environmental Management established the Technical Measurements Center (TMC) in 1982 at the DOE Grand Junction Projects Office in Grand Junction, Colorado. RUST Geotech Inc. is the current contractor responsible for operation of the TMC.

A key component of TMC support is the development, identification, standardization, and maintenance of calibration facilities for environmental radioelement measurements. The borehole facilities also can serve as standards to calibrate high-resolution passive gamma logging systems for analyses of cobalt-60, cesium-137, europium-152, europium-154, and other man-made nuclides (Koizumi et al. 1991; Brodeur et al. 1991; Koizumi et al. 1994). Logging systems calibrated for these anthropogenic gamma-ray emitters have been used to assess subsurface contaminants at the DOE Hanford nuclear weapons facility in Washington State.

Over the past 25 years, DOE and its predecessor agencies have been developing facilities for calibrating gamma-ray-measuring instruments used in uranium exploration. These facilities are also suitable for calibration of gamma-ray instruments used for remedial action measurements, specifically, in situ assays for natural radionuclides. The calibration facilities are available for use free of charge at four sites located throughout the United States (see Figure 1). The primary calibration facilities are located at Grand Junction, Colorado, and secondary facilities are located at each of three sites: Casper, Wyoming, Grants, New Mexico, and George West, Texas.

In addition, calibration pads are currently located at Niagara Falls, New York, and Middlesex, New Jersey (referred to herein as the PP and NP calibration pads). These pads (and the T pads currently located at Grand Junction, Colorado) may be moved as requirements change, and information as to their current location is available from the TMC.

To use any of the facilities described in this report, contact TMC personnel at

RUST Geotech Inc. P.O. Box 14000 Grand Junction, CO 81502 (303) 248–6702 Fax (303) 248–6040

1.1 Description of the Calibration Facilities

The calibration facilities provide distributed sources of radium, thorium, and/or potassium. In general, they were constructed by enriching a concrete mix with uranium ore, monazite sand, and/or orthoclase sand. The facilities consist of pads and borehole models with the following characteristics:

Public Law 92-314, "Radiation Exposure Remedial Action," dated June 16, 1972. Also, "Amendments to Program Providing Remedial Action Regarding Uranium Mill Tailings," dated February 21, 1978.

U.S. Public Law, 1976, "Uranium Mill Tailings Radiation Control Act of 1978," Public Law 95-604, November 8, 1978.

^{*}In 1974, the Atomic Energy Commission (AEC) initiated a survey program to identify all formerly utilized sites and determine their radiologic status. The survey program was continued by the Energy Research and Development Administration (ERDA) and the U.S. Department of Energy (DOE), successors to the AEC. In 1978, the Formerly Utilized Sites Remedial Action Program (FUSRAP) was established and a generic program plan was prepared by DOE. Legislative authority for 14 FUSRAP sites is implied in the Atomic Energy Act of 1954, as amended.

[&]quot;The Atomic Energy Act of 1954, as amended, is the DOE's charter that gives it responsibility for the many Federal sites and facilities involved in various nuclear programs. In 1978, a program plan, the Surplus Facilities Management Program (SFMP), was established by DOE for those sites and facilities classified as surplus and owned by the Federal Government. Beginning in FY 1982, Congress directed that surplus facility projects be budgeted according to their primary use during operation, that is, energy-related or defense-related.

Figure 1. Locations of U.S. Department of Energy Calibration Facilities

- Cylinders approximately 4 feet in diameter by 2 feet high, referred to as "scintillometer pads," "spectrometer pads," or simply "pads."
- Large-area slabs, 30 feet by 40 feet and 1.5 feet thick, referred to as "Walker Field pads" because they are located at Walker Field Airport in Grand Junction, Colorado.
- Cylinders and other equivalent configurations approximately 4 feet in diameter and up to 30 feet deep containing boreholes along their axes, referred to as "borehole models" or simply "models."

This report presents descriptions of the facilities and the accompanying physicalcharacteristic information contained in Appendices A, B, and C. The values for radioelement concentrations within the models and pads use information from studies conducted by George, Heistand, and Krabacher (1983), Heistand and Novak (1984), and George, Novak, and Price (1985). Information concerning dimensional descriptions of the models and pads, as well as maps to all of the calibration sites, have been updated as required to reflect the latest available information. Concepts and details of calibration procedures for specific instruments are beyond the scope of this report; however, many of these procedures are presented in other TMC reports (Marutzky and others, 1984; George and Price, 1982).

1.2 Characterization of the Calibration Facilities

Over the years, several studies have been performed to characterize the models and pads referred to in this document. The information provided in this third edition regarding the calibration facilities is as current as possible. Every effort has been made to ensure that the data are consistent with DOE remedial action contractor procedures. Concentrations were not assigned for the barren zones of the models in any of the recent studies. Consequently, barren-zone data have not been included in this report. Because some parameters for the Grand Junction A and D Models were not reassigned, the original assignments have been included here in an effort to present the most complete data set possible. Footnotes presented with each data set are intended to clarify the origin of the assigned parameters.

Tables 1, 2, and 3 are summary descriptions of pads and models at the calibration facilities. The entries in the column labeled "Intended Use" are not necessarily intended to be restrictions on the use of the calibration facility, because some models and pads are useful for several instrument types. The entries in the column labeled "Approximate Concentration" are meant only for order-of-magnitude comparisons. More precise values for the models and pads can be found in Appendices A, B, and C. The entries in the column labeled "Notes" suggest appropriate uses for the pads and models.

Discussions of calibration procedures for specific instrument types can be found in TMC reports by Marutzky and others (1984) and George and Price (1982). It is recommended that personnel involved in remedial action programs who intend to utilize the calibration facilities contact TMC personnel to discuss specific procedures not covered in these documents.

Several units of measure have been used over the years to represent radionuclide concentrations. The accepted units for remedial action programs are picocuries per gram. All concentrations stated herein are reported in picocuries per gram. Useful conversion factors are presented in Appendix D. In addition, Appendix D contains the constants used to derive these conversion factors. The derivation of the conversion factors is discussed in Appendix E.

Table 1. Summary of Surface Calibration Facilities for Radiometric Instruments

W 9	227 (1)	Appr	oximate Concentra	ation ^a		
	Pad Designation	Potassium-40 (pCl/g)	Radium-226 ^b (pCi/g)	Thorium-232 ^b (pCl/g)	Location	Notes
Portable	W1	10	1	1	Grand Junction	These large-area pads, 30 ft by 40 ft, are in-
or Mobile	W2	50	2	1	Airport	tended for calibration of spectral "surface-
Instrument	W3	20	2	5	# Sample and years	surveying" instruments.
Calibrations	W4	20	10	3		
Out of the control of	W5	50	8	2		**
Portable	H1	10	a i	1	GJPO°	These pads are intended for calibration of
Spectrometer	H2	50	1	1	p	portable spectral instruments.
Calibrations	нз	10	160	1		
Odilo di O	H4	10	10	70		
	Н5	50	100	20		
Portable	PK, XPK	50	1	0	All Sites	These pads are intended for calibration of
Scintillometer	PL, XPL ^d	15	80	1		both scintillometers and spectral instruments
and Spectrometer	PH, XPH ^d	15	400	1		
Calibrations	PT, XPT	15	7	30		
54,514,515	PB, XPB ^d	0	0	0		
	NPL, PPL	11	16	1	See Footnote e	
	NPH, PPH	50	11	1		
	TL1, TL2, TL3, TL4	2	1	10	GJPO ^c	
	TH1, TH3, TH3, TH4	5	1	40		
Portable	E1, E2, E4, E5	10, 10, 10, 10	30, 80, 400, 900	1, 1, 1, 1	GJPO ^c	These pads are intended for calibration of
Scintillometer Calibrations	XE2 ^d , XE4 ^d	10, 10	80, 400	1, 1	C, G, T ^c	portable total-count instruments.
Campianous	L1, L2, L3		100, 200, 400		GJPO [€]	These pads were made from the same materials as models A1, A2, and A3. These pads have a 2-lnch diameter vertical borehole through the center of the pad.

^{*}Concentrations shown are rounded to order of magnitude for purposes of comparison. Consult data sheets in Appendices A, B, and C for concentrations to be used for calibration. Values tabulated are radiometric equivalent (e) concentrations; see Appendices D and E.

^{*}GJPO—Grand Junction Projects Office; C, G, T—secondary sites as explained in footnote d.

*The X designates any of the three secondary sites. C = Casper, Wyoming; G = Grants, New Mexico; T = George West, Texas. For example CH is at Casper.

*At the time of publication, pad NPL was located at Niagara Falls, New York, and pad NPH was located at Middlesex, New Jersey.

Table 2. Summary of Subsurface Calibration Facilities for Radiometric Instruments

72 (143 F-376, 120 F-32)	(120)24	Appr	Approximate Concentration®			
	Pad Designation	Potassium-40 (pCl/g)	Radium-226 ^b (pCi/g)	Thorium-232 ^b (pCVg)	Location	Notes
Spectral	К	50	1	2	GJPO ^c	The K, U, and T models are used to deter-
Logging System	U	10	160	6		mine stripping factors for spectral logging
Calibrations	Ŧ	10	10	500		systems. The U, BU, and XBU models are
	KW	40	120	200		useful for Ra calibrations for total-count sys
	BK. XBK ^d	50	1	2	All Sites	tems. The KW model has five different born
	BU, XBU®	10	200	8		hole diameters; the enriched middle zone i
	BT, XBTd	10	10	600		a mixture of Ra-Th-K.
	BM, XBM ^d	40	130	500		
Total-Count	N3, U1,		700, 7000,		GJPO ^c	The high concentrations of models in this
Logging	U2, U3		3000, 1500		J.	group make them unsuitable for some log-
System	WF		800		Ž.	ging systems. Lower "radium-only" concen
Calibrations	XL, XH ^d		800, 6000		C, G, T ^c	trations can be found in other models. The
	BL, BH, XBL, XBH ^d		300, 3000		GJPO ^c	WF model is useful for water, casing, and hole size corrections; the D model has a lower Ra concentration and is similar to the WF model.
Total-Count	N1		700		GJPO ^c	The high concentrations of these models
Logging Systems	N2		1200			make them unsuitable for some logging
Measurements	N4		700, 2600			systems. These models are for
MASSES STORY	N5	30	00, 600, 700, 2700, 49	00		experimental use.
Total-Count and Spectral Logging Sy Measurements of Th Dipping Enriched Zo	nin	17	700	1	GJPO ^c	These models are intended for the total-count and spectral measurements of thin dipping enriched zones.
Fission-Neutron	A1, A2, A3, A4, A5, A6	90	, 200, 500, 600, 200, 2	200	GJPO ^c	These models are intended for fission-
Logging System	D		200		GJPO ^c	neutron logging system calibrations. How-
Calibrations	BA, BB, XBA, XBB ^d		60, 800, 900		All Sites	ever, they are useful for gamma-ray syster calibrations if they have not been recently used with a neutron source. The D model has seven different borehole diameters.

^{*}Concentrations shown are rounded to order of magnitude for purposes of comparison. Consult data sheets in Appendices A, B, and C for concentrations to be used for calibration. Evalues tabulated are radiometric equivalent (e) concentrations, see Appendices D and E.

GJPO-Grand Junction Projects Office; C. G. T-secondary sites as explained in footnote d.

The X designates any of the three secondary sites. C = Casper, Wyoming; G = Grants, New Mexico; T = George West, Texas. For example CH is at Casper.

Table 3. Summary of Calibration Facilities for Nonradiometric Instruments

Intended Use	Pad Designation			Location	Notes
		Porosity (vol %)	Dry Bulk Density (g/cm³)	*	
Moisture/Porosity and Density	SW SS, SB	40 20, 5	1.6 2.2, 2.6	GJPO [®]	These models are intended for calibration of moisture/porosity and/or density measurement systems. Model SW is water and sand also is suitable for tool background determination.
		Magnetic Susceptibility (μCGS)	Dry Bulk Density (g/cm ³)		
Magnetic Susceptibility Calibration	Granite Block	385	2.63	GJPO*	This model is intended for calibration of magnetic susceptibility measurement systems.
		Dept	th (ft)		
Depth Odometer Verification	300-Foot Test Hole	180 180	0.9 0.5	GJPO ^a	This model is intended for verification of depth odometers using measurements of radium sources placed at various depths.

^{*}GJPO—Grand Junction Projects Office

2.0 Bibliography

Bristow, Q., J. Conaway, and P. Killeen, 1984. "Application of Inverse Filtering to Gamma-Ray Logs: A Case Study," *Geophysics*, Volume 49, Number 8, pp. 1369–1373.

Brodeur, J.R., C.J. Koizumi, W.H. Ulbricht, and R.K. Price, 1991. Calibration of a High-Resolution Passive Gamma-Ray Logging System for Nuclear Waste Assessment, Proceedings of the Fourth International Symposium on Borehole Geophysics for Minerals, Geotechnical, and Groundwater Applications, Minerals and Geotechnical Logging Society, Toronto, Ontario (Canada).

Emilia, D.A., J.W. Allen, R. B. Chessmore, and R. B. Wilson, 1981. The DOE/Simplec Magnetic Susceptibility Logging System, GJBX-75(81), Bendix Field Engineering Corporation, Grand Junction Office, U.S. Department of Energy, Grand Junction, Colorado, and Simplec Manufacturing Co., Inc. (Wilson), Dallas, Texas, March 1981.

George, D.C., 1986. Parameter Assignments for Sandstone Models, Internal Memorandum, Bendix Field Engineering Corporation, Grand Junction, Colorado, July 17, 1986.

George, D.C., and R.K. Price, 1982. Abbreviated Total-Count Logging Procedures for Use in Remedial Action, GJ/TMC-03(82), Technical Measurements Center, U.S. Department of Energy, Grand Junction Area Office., Grand Junction, Colorado.

George, D.C., B.E. Heistand, and J.E. Krabacher, 1983. Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems, GJBX-39(83), Bendix Field Engineering Corporation, Grand Junction, Colorado.

George, D.C., E.F. Novak, and R.K. Price, 1985. Calibration-Pad Parameter Assignments for In-Situ Gamma-Ray Measurements of Radium, Thorium, and Potassium, GJ/TMC-17, Technical Measurements Center, U.S. Department of Energy, Grand Junction Projects Office, Grand Junction, Colorado.

Heistand, B.E., and E.F. Novak, 1984. Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models, GJBX-2(84), Bendix Field Engineering Corporation, Grand Junction, Colorado.

Koizumi, C.J., 1979. Logging Calibration Models for Fission Neutron Sondes, GJBX-267(81), Bendix Field Engineering Corporation, Grand Junction, Colorado.

Koizumi, C.J., 1980. Thin, Dipping Ore Zone Logging Models: Log Studies, GJBX-54(80), Bendix Field Engineering Corporation, Grand Junction Operations, U.S. Department of Energy, Grand Junction, Colorado, March 1980.

Koizumi, C. J., J.R. Brodeur, W.H. Ulbricht, and R.K. Price, 1991. Calibration of the RLS HPGe Spectral Gamma Ray Logging System, Westinghouse Hanford Company, publication WHC-EP-0464, Richland, Washington.

Koizumi, C. J., J.R. Brodeur, R.K. Price, J.E. Meisner, and D.C. Stromswold, 1994. "High-Resolution Gamma-Ray Spectrometry Logging for Contamination Assessment," *Nuclear Geophysics*, Volume 8, Number 2.

Lederer, C.M., and V.S. Shirley (eds.), 1978. Table of Isotopes, Seventh Edition, John Wiley and Sons, New York, New York.

Marutzky, S.J., W.D. Steele, B.N. Key, and K. L. Kosanke, 1984. Surface Gamma-Ray Measurement Protocol. GJ/TMC-06, Technical Measurements Center, U.S. Department of Energy, Grand Junction Projects Office, Grand Junction, Colorado.

Matthews, M., 1975. Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound, Bendix Field Engineering Corporation, Grand Junction, Colorado.

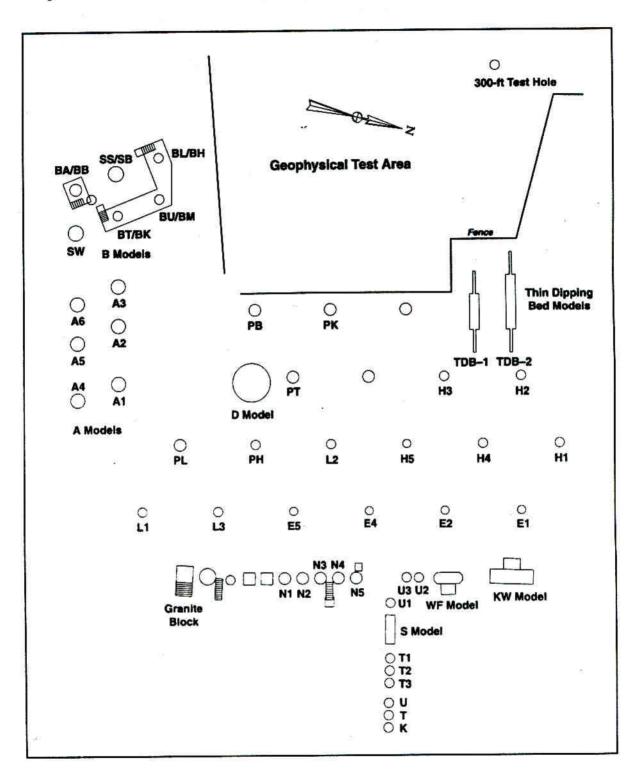
Walker, F.W., G.J. Kirouac, and F.M. Rourke, 1977. Chart of the Nuclides, Twelfth Edition, General Electric Corporation, San Jose, California.

Appendix A Primary Field Calibration Facilities

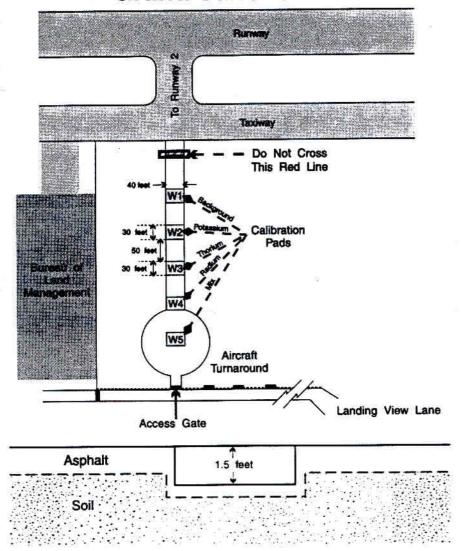
Primary Field Calibration Facilities

This appendix presents detailed information concerning location, layout, pad and model descriptions, and radioelement concentrations for the primary calibration facilities at Grand Junction, Colorado. These facilities are administered by the U.S. Department of Energy Grand Junction Projects Office and are maintained and operated by the Technical Measurements Center.

Questions concerning use of the facilities and/or calibration procedures should be addressed to the Technical Measurements Center.


June 1994 A-3

Map to Grand Junction Calibration Site


Map not to scale.

Layout of Grand Junction Calibration and Test Site

Not to scale.

Walker Field Large-Area Calibration Pads: Grand Junction

Section (typical)

Table A-1. Assigned Parameters

Pad Designation	Co	oncentration (pCi/g	Dry Bulk Density	Partial Density	
	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b
W1	0.82 ± 1.02	0.67 ± 0.10	12.67 ± 0.72	1.91	0.256
W2	1.92 ± 1.54	0.87 ± 0.12	45.58 ± 1.82	1.99	0.260
W3	1.70 ± 1.38	4.92 ± 0.26	17.07 ± 0.82	1.92	0.208
W4	12.07 ± 5.64	1.04 ± 0.12	17.56 ± 0.98	1.91	0.247
W5	8.36 ± 3.52	1.91 ± 0.16	34.68 ± 1.46	1.97	0.244

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985).

^bUncertainties for these values have not been determined.

Grand Junction H Pads

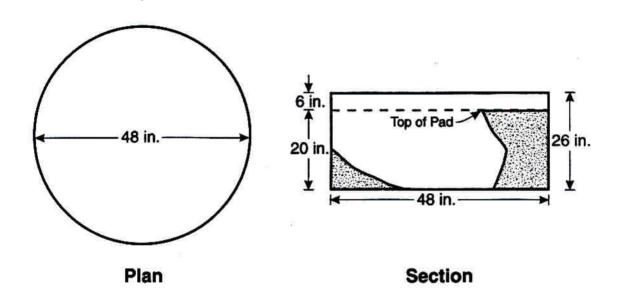


Table A-2. Assigned Parameters

Pad Designation	c	oncentration (pCi/g	Dry Bulk	Partial	
	Ra-226	Th-232	K-40	Density (g/cm ³) ^b	Density H ₂ O (g/cm ³) ^b
H1	0.84 ± 0.90	0.67 ± 0.10	10.95 ± 0.62	1.86	0.185
H2	0.67 ± 0.90	0.08 ± 0.06	54.00 ± 1.56	1.87	0.142
НЗ	161.83 ± 20.40	0.66 ± 0.08	11.31 ± 0.86	1.89	0.181
H4	11.03 ± 4.00	67.90 ± 1.24	10.76 ± 1.48	1.92	0.099
H5	102.59 ± 17.42	19.57 ± 0.54	37.75 ± 1.60	1.93	0.143

^aUncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985). bUncertainties for these values have not been determined.

Grand Junction P Pads

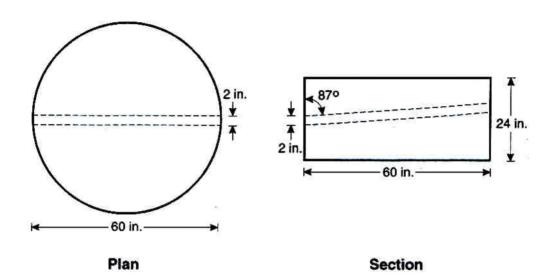


Table A-3. Assigned Parameters

Pad Designation	C	oncentration (pCi/	Dry Bulk	Partial	
	Ra-226	Th-232	K-40	Density (g/cm ³) ^b	Density H ₂ O (g/cm ³) ^b
PK	1.16 ± 0.78	0.04 ± 0.06	50.96 ± 1.50	1.94	0.145
PL	85.71 ± 14.16	0.64 ± 0.10	15.78 ± 1.02	1.90	0.180
PH	374.36 ± 47.06	0.60 ± 0.10	15.80 ± 1.58	1.92	0.180
PT	6.63 ± 3.06	31.28 ± 0.86	14.92 ± 1.08	1.90	0.162
PB ^c	0.0 ± 0.3	0.0 ± 0.3	0.0 ± 0.1	d	d

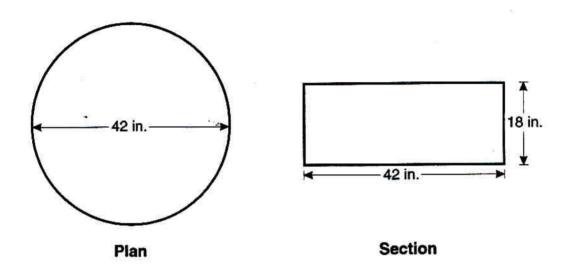
^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985).

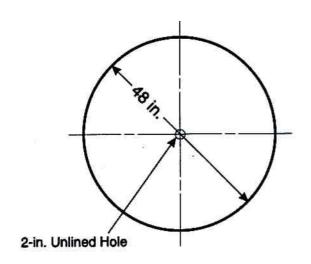
dValue not assigned.

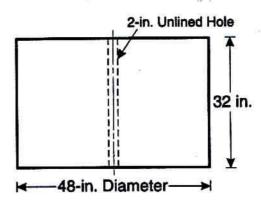
bUncertainties for these values have not been determined.

^cPad PB does not have a hole as shown above.

Grand Junction E Pads




Table A-4. Assigned Parameters


Pad	Co	oncentration (pCi/	g)*	Dry Bulk Density	Partial Density H ₂ O (g/cm ³) ^b
Designation	Ra-226	Th-232	K-40	(g/cm ³) ^b	
E1	25.21 ± 6.68	0.67 ± 0.10	13.30 ± 0.72	1.89	0.116
E2	80.34 ± 14.12	0.79 ± 0.10	13.83 ± 0.98	1.84	0.123
E4	395.84 ± 46.92	0.66 ± 0.12	11.43 ± 1.48	1.84	0.143
E5	871.45 ± 97.72	0.75 ± 0.12	14.27 ± 2.18	1.94	0.114

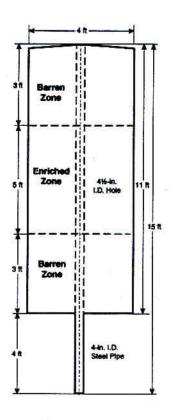
^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985).

bUncertainties for these values have not been determined.

Grand Junction L Pads

Plan

Section


Table A-5. Assigned Parameters

Model Designation		Concentration (pCI/	Dry Bulk Density	Partial Density	
	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b
L1	86.3 ± 2.5°	0.73 ± 0.15	15.0 ± 3.0	2.22	0.184 ^c
L2	224.7 ± 6.5°	1.04 ± 0.35	18.2 ± 4.2	2.17	0.200 ^c
L3	455.8 ± 3.3°	0.73 ± 0.33	15.5 ± 2.2	2.18	0.195 ^c

^{*}These models were constructed from the same material as borehole models A1, A2, and A3 and are assumed to have the same parameters. Uncertainties are 95 percent confidence level. Assigned values taken from Koizumi (1979), except as noted. bUncertainties for these values have not been determined.

^cAssigned values taken from George and others (1983).

Grand Junction K, U, and T Models

Typical Section

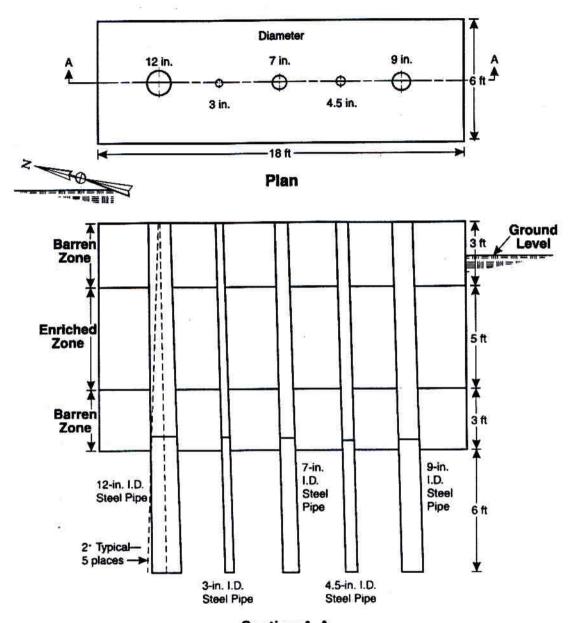
Table A-6.1. Assigned Parameters for Calibration of Spectral Gamma-Ray Logging Systems

Model Designation	Zone	Cor	ncentration (pCi	Dry Bulk	Partial	
	Zone	Ra-226	Th-232	K-40	Density (g/cm ³) ^b	Density H ₂ O (g/cm ³) ^b
к	Enriched	0.92 ± 0.09	0.28 ± 0.03	52.24 ± 1.67	1.86	0.269
U	Enriched	162.9 ± 5.34	0.73 ± 0.06	10.21 ± 0.84	1.89	0.274
T	Enriched	8.47 ± 0.47	53.03 ± 1.49	10.38 ± 1.17	1.88	0.275

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from Heistand and Novak (1984).

Table A-6.2. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems

Model Zone Designation		Ra-226 Concentration (pCi/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm ³) ^c	Partial Density H ₂ O (g/cm ³) ^c	
U	Enriched	158 ± 6.0	4.98 ± 0.00	1.89	0.274	


^{*}Uncertainties are 95 percent confidence level. Assigned value taken from George and others (1983).

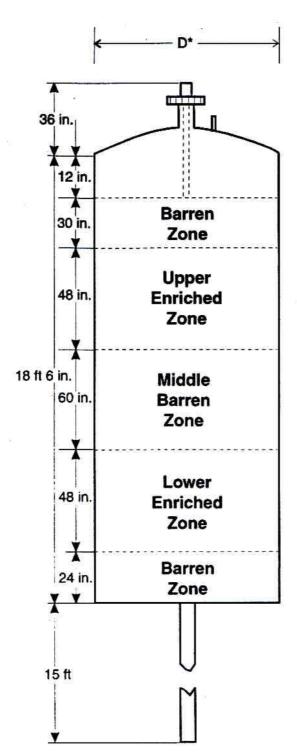
^{*}Uncertainties for these values have not been determined.

^{*}Uncertainty reported as 0.00 is not zero, but is less than 0.01 ft.

^cUncertainties for these values have not been determined.

Grand Junction KW Model

Section A-A


Table A-7. Assigned Parameters for Calibration of Spectral Gamma-Ray Logging Systems

Model Designation	Zone	Cor	ncentration (pCi	/g) ^a	Dry Bulk Density	Partial Density
	Zone	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b
KW	Enriched	120.55 ± 4.00	26.71 ± 0.79	38.43 ± 1.67	1.86	0.264

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from Heistand and Novak (1984).

bUncertainties for these values have not been determined.

Grand Junction BL/BH, BT/BK, BU/BM, and BA/BB Models

Model	Diameter (in.)
BL/BH	48
BT/BK	48
BU/BM	48
BA/BB	60

Table A-8.1. Assigned Parameters for Calibration of Total-Count Gamma-Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³) ^c	Partial Density H ₂ O (g/cm ³) ^c
BU	Upper	188 ± 6	4.01 ± 0.02	1.91	0.243
BL	Upper	334 ± 9	3.97 ± 0.00	2.23	0.188
вн	Lower	3136 ± 181	4.00 ± 0.02	2.22	0.196
BA	Upper	62.4 ± 1.8	3.99 ± 0.00	2.22	0.187
ВВ	Lower	913 ± 27	3.97 ± 0.00	2.21	0.188

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

^cUncertainties for these values have not been determined.

Table A-8.2. Assigned Parameters for Calibration of Spectral Gamma-Ray Logging Systems

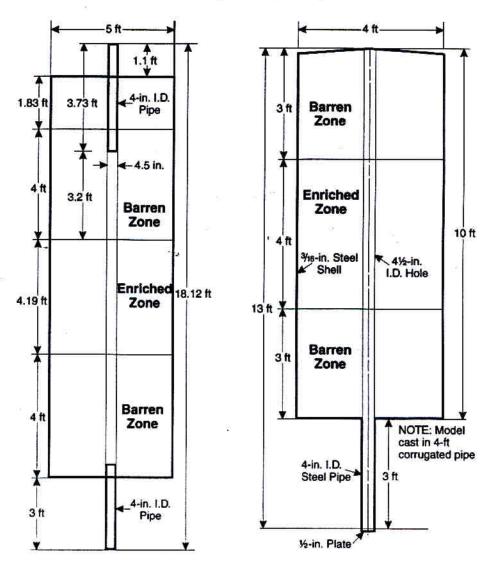
Model Designation	Zone	Concentration (pCi/g) ^a			Dry Bulk Density	Partial Density
	Zone	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b
вт	Upper	10.46 ± 0.51	58.78 ± 1.53	10.13 ± 1.34	1.91	0.244
вк	Lower	1.03 ± 1.67	0.10 ± 0.02	54.00 ± 1.67	1.81	0.250
BU	Upper	194.59 ± 5.94	0.65 ± 0.06	10.63 ± 1.00	1.91	0.243
вм	Lower	131.16 ± 4.07	40.12 ± 1.09	42.86 ± 2.01	1.88	0.251

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from Heistand and Novak (1984).

Table A-8.3. Assigned Parameters for Calibration of Fission-Neutron Logging Systems

Model Designation	del Zone Conc		a-226 Thickness centration (ft) ^b		Partial Density H ₂ O (g/cm ³) ^c
BA	Upper	62.4 ± 1.8	3.99 ± 0.00	2.22	0.187
BB	Lower	913 ± 27	3.97 ± 0.00	2.21	0.188

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).


bUncertainties reported as 0.00 are not zero, but are less than 0.01 ft.

^bUncertainties for these values have not been determined.

Uncertainties reported as 0.00 are not zero, but are less than 0.01 ft.

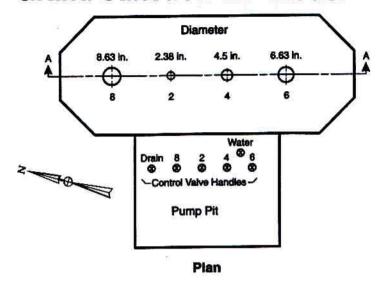
^{*}Uncertainties for these values have not been determined.

Grand Junction N3, U1, U2, and U3 Models

Section N3 Model **Typical Section**

U1, U2, and U3 Models

Table A-9. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems


Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm ³) ^c	Partial Density H ₂ O (g/cm ³) ^c	
N3	Enriched	654 ± 23	4.19 ± 0.00	1.83	0.281	
U1	Enriched	7460 ± 465	4.06 ± 0.02	2.07	0.255	
U2	Enriched	3478 ± 218	4.01 ± 0.00	1.70	0.295	
UЗ	Enriched	1278 ± 51	4.01 ± 0.00	1.67	0.304	

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

^bUncertainties reported as 0.00 are not zero, but are less than 0.005 ft.

^cUncertainties for these values have not been determined.

Grand Junction WF Model

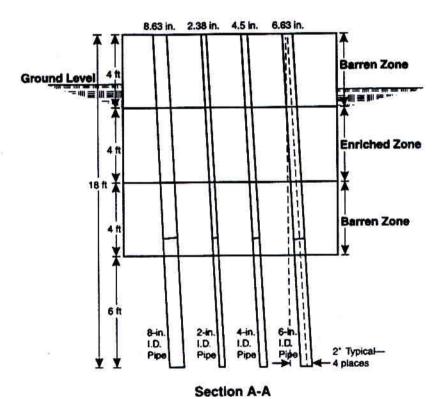
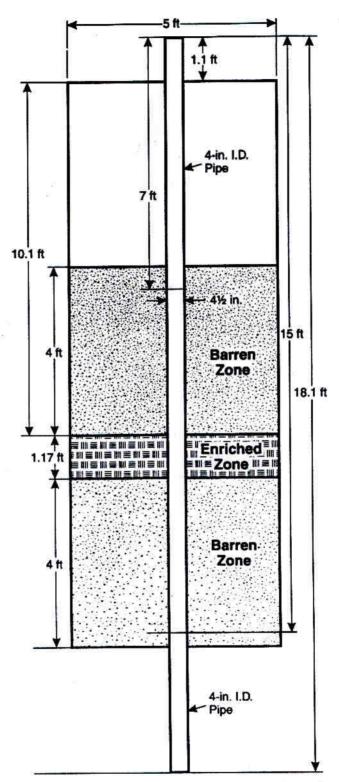
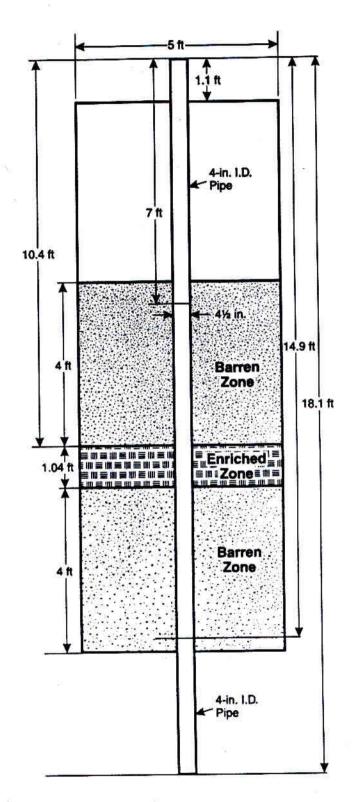


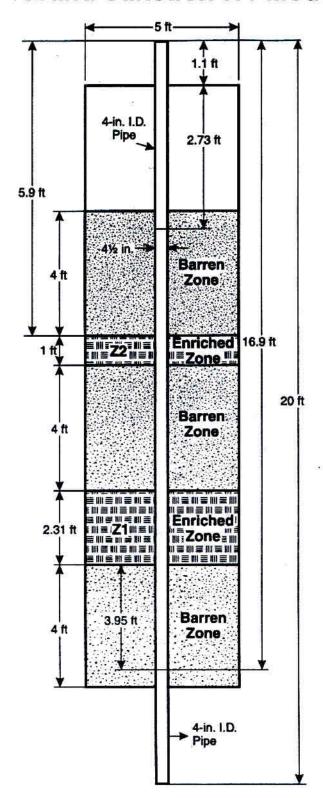
Table A-10. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems


Model Designation	Zone	Ra-226 Concentration (pCi/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm ³) ^c	Partial Density H₂O (g/cm³) ^c	
WF	Enriched	850 ± 30	4.02 ± 0.00	1.86	0.282	

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).


^bUncertainties reported as 0.00 are not zero, but are less than 0.005 ft.

^cUncertainties for these values have not been determined.


Grand Junction N1 Model

Grand Junction N2 Model

Grand Junction N4 Model

Grand Junction N5 Model

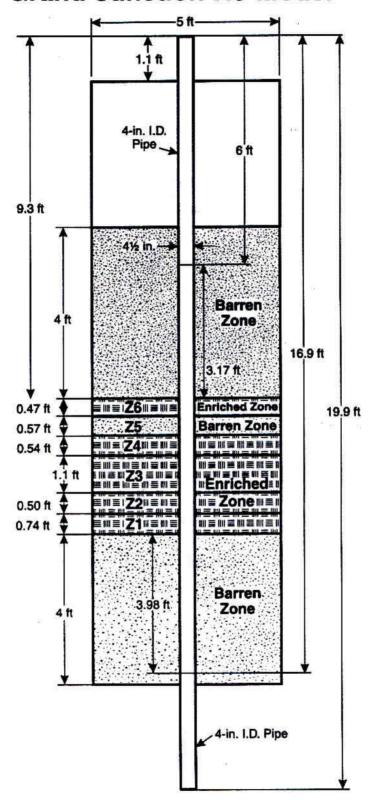
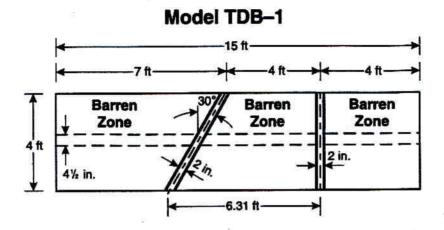


Table A-11. Assigned Parameters^a

Model Designation	Zone	Ra-226 Concentration (pCi/g) ^{b,c}	Uranium Concentration (U ppm) ^{b,c}	Thickness (in.) ^c
N1	Enriched	702	1,642	14.0
N2	Enriched	1,216	3,218	12.5
N3	Enriched	654	1,573	50.3
N4	Z1 Enriched	696	1,628	27.8
N4	Z2 Enriched	2,599	7,527	12.0
N5	Z1 Enriched	708	1,662	8.9 ^d
N5	Z2 Enriched	291	712	6.0 ^d
N5	Z3 Enriched	2,678	7,714	13.2
N5	Z4 Enriched	620	1,454	6.5
N5	Z5 Barren ^d	_		6.8
N5	Z6 Enriched ^d	4,852	13,830	5.6


Values for dry bulk density have not been determined.

^cUncertainties of the values have not been determined.

^bAssigned values, except for N3 Ra-226 concentration and thickness taken from George and others (1983), are calculated using conversion factors in Appendix D and values taken from an internal report Matthews (1975). The values reported were determined by "gamma-only" and chemical analyses on samples taken from the model during its construction.

^dData for four zones in N5 are based on analysis of logging data published by Bristow and others (1984), data which was subsequently substantiated by researchers at the GJPO.

Grand Junction Thin Dipping Bed Models

Model TDB-2

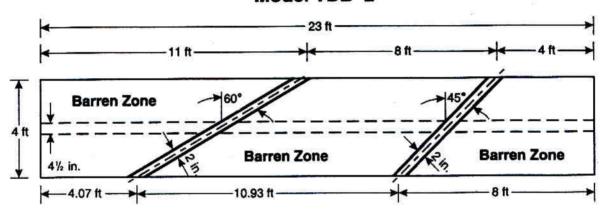


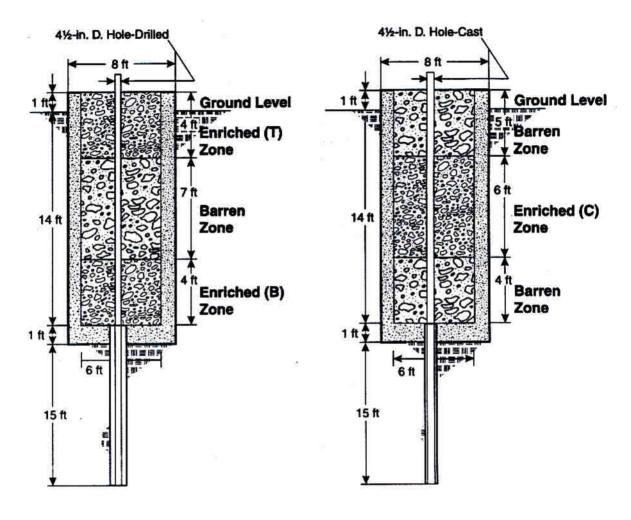
Table A-12.1. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (in.) ^b	Dry Bulk Density (g/cm ³)	Partial Density H₂O (g/cm³) ^c	
TDB	Enriched	710.6 ± 6.8	2.0	1.90 ± 0.05	======================================	

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from Koizumi (1980), Value determined by NaI(TI) based total gamma-ray method.

Table A-12.2. Assigned Parameters for Calibration of Spectral Gamma-Ray Logging Systems

Model Designation	7	Co	ncentration (pCi	/g) ^a	Dry Bulk Density	Partial Density
	Zone	Ra-226	Th-232	K-40	(g/cm ³)	H ₂ O (g/cm ³) ^b
TDB	Enriched	694.7 ± 6.8	0.94 ± 0.54	17.64 ± 8.7	1.90 ± 0.05	*1 s <u>-</u> v


^{*}Uncertainties are 95 percent confidence level. Assigned values taken from Koizumi (1980). Values determined by Ge(Li) based spectral gamma-ray method.

Duncertainties for these values have not been determined.

^cValue has not been determined.

Value has not been determined.

Grand Junction A Models

A5 and A6 Models

A1, A2, A3, and A4 Models

Table A-13. Assigned Parameters for Calibration of Fission-Neutron Logging Systems^a

Model		Zone	Characteristic ^c	Concentration (pCVg)			Dry Bulk	Partial	Grain	Porosity	Magnetic	
Designation 20	Zone	Thickness (ft) ^b		Ra-22	26	Th-232	K-40	Density (g/cm ³) ^d	Density H₂O (g/cm³) ^d	Density (g/cm ³) ^d	(%) ^d	Susceptibility (10 ⁻⁴ cgs) ^d
A1	С	6.01 ± 0.00°	20	86.3 ±	2.5	0.73 ± 0.15	15.0 ± 3.0	2.22	0.184 ^e	2	18 ^f	841
A2	C	5.94 ± 0.00°	<u>=</u> 2	224.7 ±	6.5°	1.04 ± 0.35	18.2 ± 4.2	2.17	0.200°		18	804
A3	С	5.95 ± 0.00°	些年	455.8 ±	13.3	0.73 ± 0.33	15.5 ± 2.2	2.18	0.195°	=	18	822
A4	С	6	-0	600.5 ± 2	270.1	0.92 ± 0.37	17.8 ± 8.4	2.22		1. 1.1.1	18 ^f	844
A5	T	4	High Σ	204.6 ±	20.8	1.16 ± 0.31	20.1 ± 8.4	2.17	-	2.64	17.8	741
A 5	В	4	High p	208.6 ±	6.5	0.86 ± 0.22	19.6 ± 4.2	2.40	; = ;	2.92	17.8	596
A6	Ť	4	High ø	206.6 ±	7.5	0.78 ± 0.13	13.9 ± 3.5	1.85		2.60	28.8	348
A6	С	4	Low ø	201.8 ±	60.0	0.98 ± 0.15	18.8 ± 3.7	2.21	225	2.64	16.3	1055

^aUncertainties are 95 percent confidence level. Assigned values taken from Koizumi (1979), except as noted.
^bUncertainties reported as 0.00 are not zero, but are less than 0.005 ft.

^cΣ = macroscopic neutron cross section; ρ = density; ø = porosity.

^dUncertainties for these values have not been determined.

^aAssigned values taken from George and others (1983).

Estimated.

Grand Junction D Model

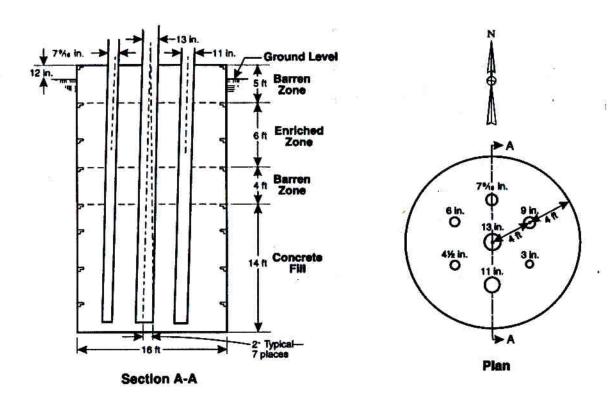
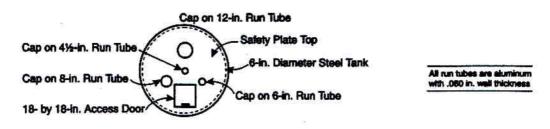



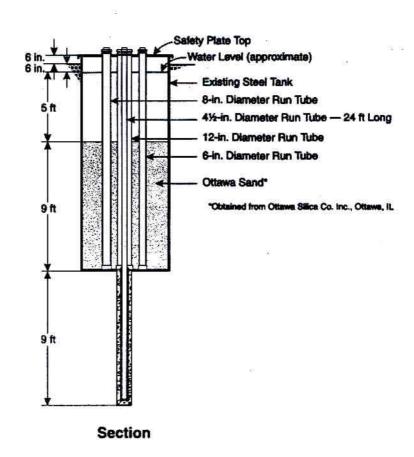
Table A-14. Assigned Parameters for Calibration of Fission-Neutron Logging Systems⁸

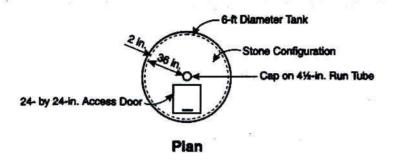
Model Zone Designation		Zone	Co	ncentration (p0	CVg)	Dry Bulk Density	Partial Density	Grain Density	Porosity	Magnetic Susceptibility
	Zone	one Thickness (ft) ^b	Ra-226 ^b	Th-232	K-40	(g/cm ³)	H ₂ O (g/cm ³) ^b	(g/cm ³)	(%)	(10 ⁻⁶ cgs)
D	Enriched	5.80 ± 0.00°	218 ± 7	0.84 ± 0.37	14.9 ± 4.4	2.12 ± 0.06	0.216	2.72 ± 0.14	22.1 ± 0.2	826 ± 94

⁶Uncertainties are 95 percent confidence level. Assigned values taken from Koizumi (1979), except as noted. ⁶Assigned value taken from George and others (1983). ⁶Uncertainties reported as 0.00 are not zero, but are less than 0.005 ft.

Grand Junction SW Model

Plan




Table A-15. Assigned Parameters⁸

Zone Designation	Zone Description	Porosity (vol %) ^b	Dry Bulk Density (g/cm³) ^b	Wet Bulk Density (g/cm³) ^b	Grain Density (g/cm³) ^b	Moisture Fraction (wt %) ^b
w	Water	0	1 171	1.0	-	100
ws	Ottawa Sand	36.0	1.60	1.96	2.50	18.4

^{*}Assigned values taken from George (1986) and George (in preparation).

Uncertainties for these values have not been determined.

Grand Junction SS/SB Model

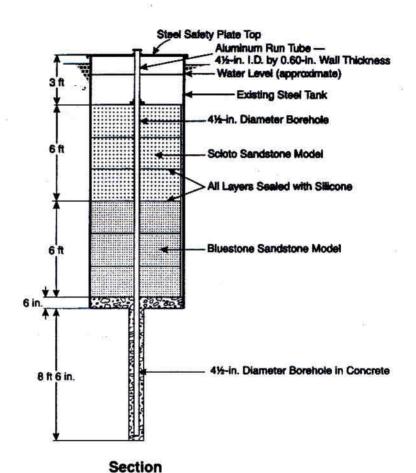
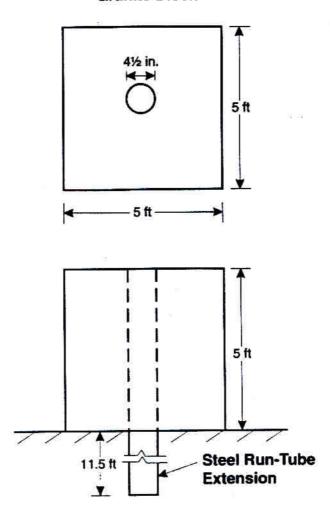


Table A-16. Assigned Parameters®


Zone Designation	Zone Description	Porosity (vol %) ^b	Dry Bulk Density (g/cm³) ^b	Wet Bulk Density (g/cm³) ^b	Grain Density (g/cm³) ^b	Moisture Fraction (wt %) ^{b, c}
SS	Scioto Sandstone	18.3	2.20	2.38	2.69	7.7
SB	Bluestone Sandstone	5.1	2.60	2.65	2.74	1.9

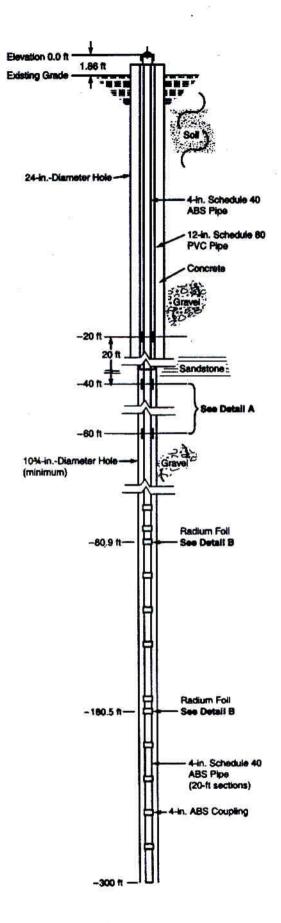
^{*}Assigned values taken from George (1986) and George (in preparation). **Uncertainties for these values have not been determined.

c100 percent saturation is assumed.

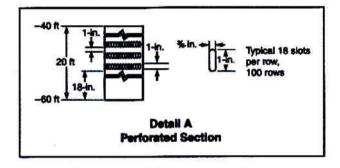
Grand Junction Granite Block Model

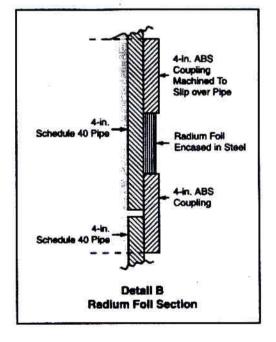
Granite Block

Borehole in the granite block is uncased.


Table A-17. Assigned Parameters

Model Designation	Magnetic Susceptibility (μCGS) ^a	Dry Bulk Density (g/cm³) ^b	Partial Density H₂O (g/cm³) ^c
Granite Block	385 ± 30	2.63	


^{*}Uncertainties are 95 pecent confidence level. Assigned values taken from Emilia and others (1981).

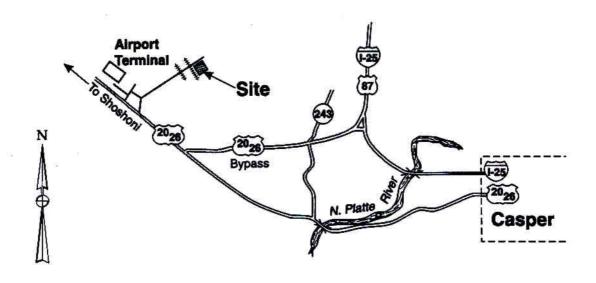

bUncertainties for these values have not been determined.

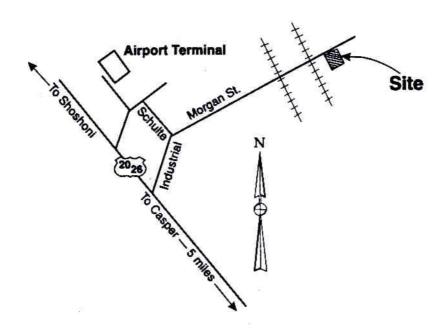
Value has not been determined.

Grand Junction 300-Foot Test Hole

Drawing not to scale.

Appendix B Secondary Field Calibration Facilities

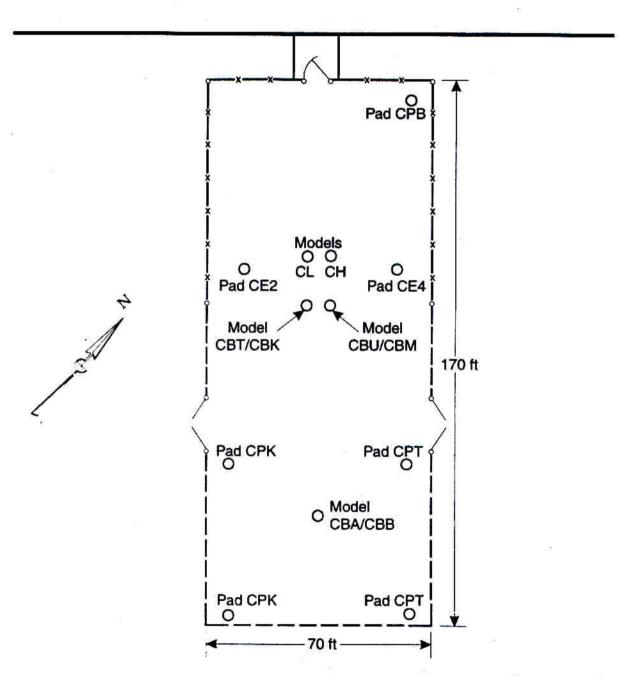

Secondary Field Calibration Facilities


This appendix presents detailed information concerning location, layout, pad and model descriptions, and radioelement concentrations for the secondary field calibration facilities. These facilities are administered by the U.S. Department of Energy Grand Junction Projects Office.

Questions concerning the use of the facilities should be addressed to the Technical Measurements Center.

B-3

Map to Casper Calibration Site



Map not to scale.

Layout of Casper Calibration Site

Morgan Street

Map not to scale.

Casper P Pads

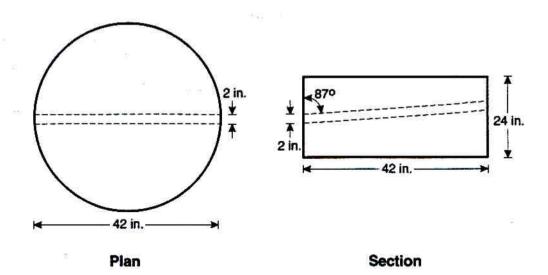


Table B-1. Assigned Parameters

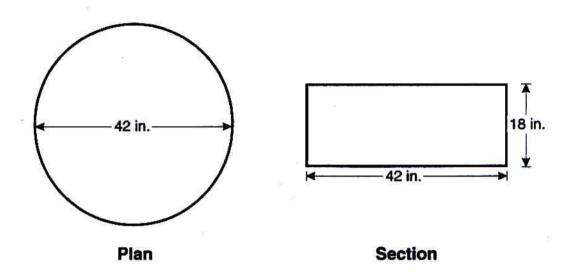
Pad	Co	ncentration (pCl/g	Dry Bulk Density	Partial Density		
Designation	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b	
СРК	0.76 ± 0.90	0.04 ± 0.06	51.36 ± 1.46	1.94	0.130	
CPL	91.77 ± 15.20	0.54 ± 0.10	15.44 ± 1.02	1.89	0.148	
СРН	360.65 ± 43.82	0.55 ± 0.10	14.99 ± 1.58	1.91	0.153	
CPT	6.07 ± 2.92	30.18 ± 0.78	14.13 ± 1.02	1.89	0.157	
CPB ^c	0.0 ± 0.3	0.0 ± 0.3	0.0 ± 0.1	d	d	

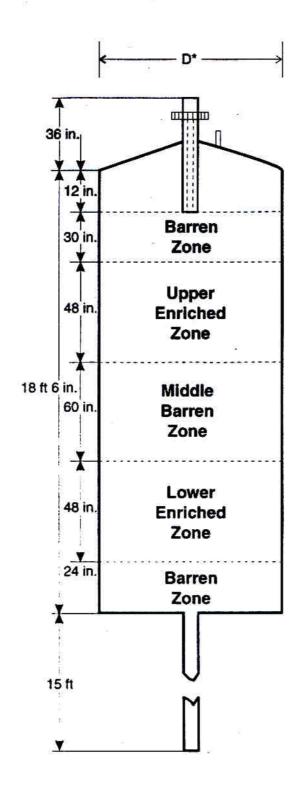
⁶Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985). ^bUncertainties for these values have not been determined.

^cPad does not have a hole as shown above.

Value not assigned.

Casper E Pads




Table B-2. Assigned Parameters

Pad	Co	ncentration (pCl/g	Dry Bulk	Partial Density	
Designation	Ra-226	Th-232	K-40	Density (g/cm³) ^b	H ₂ O (g/cm ³) ^b
CE2	81.45 ± 14.42	0.79 ± 0.12	13.63 ± 0.98	1.85	0.135
CE4	409.93 ± 50.90	0.66 ± 0.10	12.29 ± 1.58	1.84	0.162

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985).

^bUncertainties for these values have not been determined.

Casper CBT/CBK, CBU/CBM, and CBA/CBB Models

*D						
Model	Diameter (in.)					
CBT/CBK	48					
CBU/CBM	48					
CBA/CBB	60					

Table B-3.1. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³)°	Partial Density H ₂ O (g/cm ³) ^c
CBU	Upper	169 ± 6	3.99 ± 0.02	1.91	0.244
CBA	Upper	64.8 ± 1.9	4.00 ± 0.00	2.23	0.189
CBB	Lower	862 ± 26	4.02 ± 0.02	2.21	0.201

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

Table B-3.2. Assigned Parameters for Calibration of Spectral Gamma-Ray Logging Systems

Model	Zone	Co	ncentration (pCi	Dry Bulk Density	Partial Density	
Designation	LUIR	Ra-226	Th-232	K-40	(g/cm ³)b	H ₂ O (g/cm ³) ^b
СВТ	Upper	11.43 ± 0.56	68.46 ± 1.81	10.55 ± 2.01	1.91	0.238
CBK	Lower	1.16 ± 0.10	0.11 ± 0.02	51.21 ± 1.67	1.81	0.255
CBU	Upper	175.94 ± 5.61	0.69 ± 0.06	11.55 ± 0.84	1.91	0.239
СВМ	Lower	128.13 ± 4.07	47.73 ± 1.29	41.27 ± 1.84	1.88	0.252

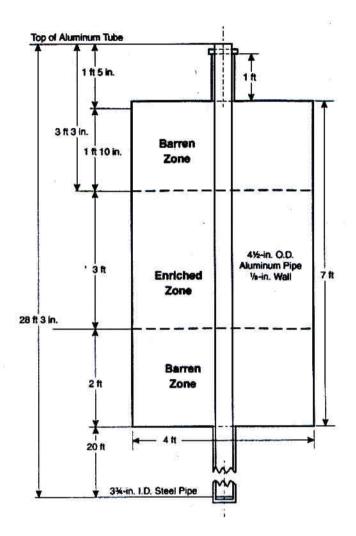
^{*}Uncertainties are 95 percent confidence level. Assigned values taken from Heistand and Novak (1984).

Table B-3.3. Assigned Parameters for Calibration of Fission-Neutron Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCi/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³) ^c	Partial Density H ₂ O (g/cm ³) ^c
CBA	Upper	64.8 ± 1.9	4.00 ± 0.00	2.23	0.189
СВВ	Lower	862 ± 26	4.02 ± 0.02	2.21	0.201

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

^bUncertainties reported as 0.00 are not zero, but are less than 0.005 ft.


^cUncertainties for these values have not been determined.

buncertainties for these values have not been determined.

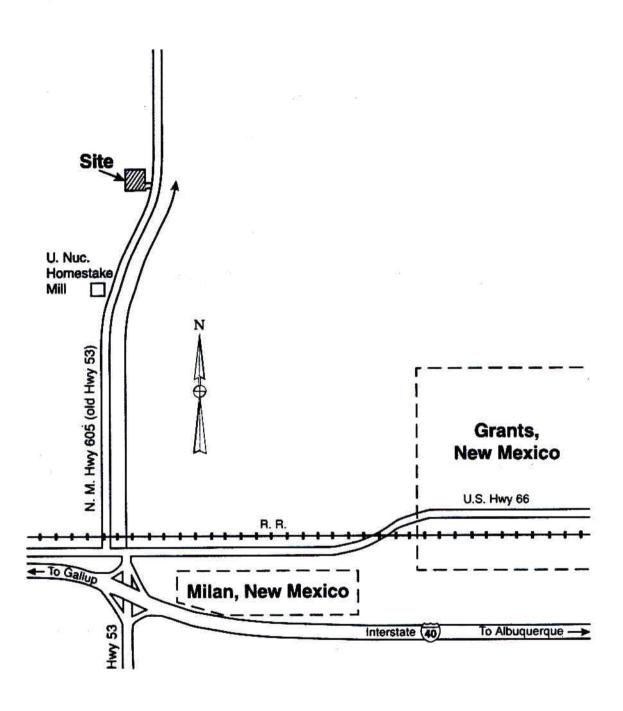
bUncertainties reported as 0.00 are not zero, but are less than 0.005 ft.

^cUncertainties for these values have not been determined.

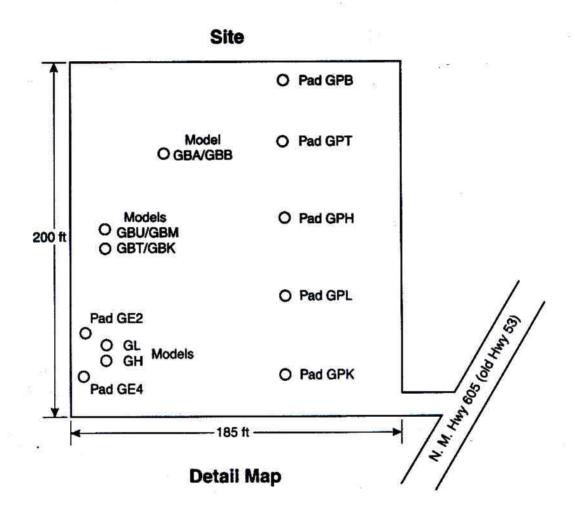
Casper CH and CL Models

Typical Section Each Model

Table B-4. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems


Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³) ^c	Partial Density H ₂ O (g/cm ³) ^c
СН	Enriched	6635 ± 388	2.89 ± 0.00	2.21	0.235
CL	Enriched	852 ± 26	2.97 ± 0.00	2.27	0.217

*Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).


Uncertainties reported as 0.00 are not zero, but are less than 0.005 ft.

^cUncertainties for these values have not been determined.

Map to Grants Calibration Site

Layout of Grants Calibration Site

Grants P Pads

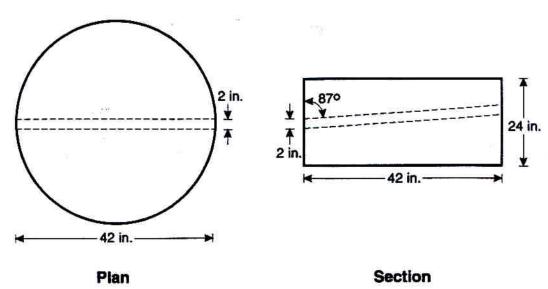


Table B-5. Assigned Parameters

Pad Designation	Co	encentration (pCl/g	Dry Bulk Density	Partial Density	
	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^l
GPK	0.58 ± 0.82	0.01 ± 0.06	51.53 ± 1.46	1.96	0.127
GPL	87.78 ± 14.32	0.50 ± 0.10	15.58 ± 1.02	1.90	0.165
GPH	375.74 ± 45.14	0.61 ± 0.10	15.93 ± 1.62	1.91	0.142
GPT	6.57 ± 3.14	30.23 ± 0.80	14.94 ± 1.02	1.89	0.146
GPB ^c	0.0 ± 0.3	0.0 ± 0.3	0.0 ± 0.1	d	d

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985). b*Uncertainties for these values have not been determined.

Value not assigned.

^cPad does not have a hole as shown above.

Grants E Pads

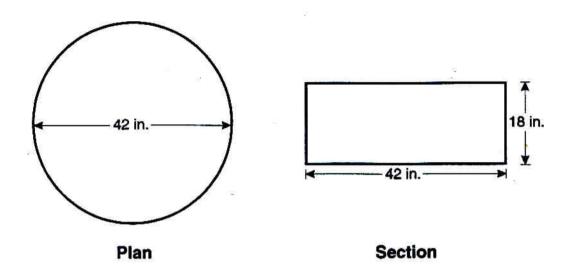
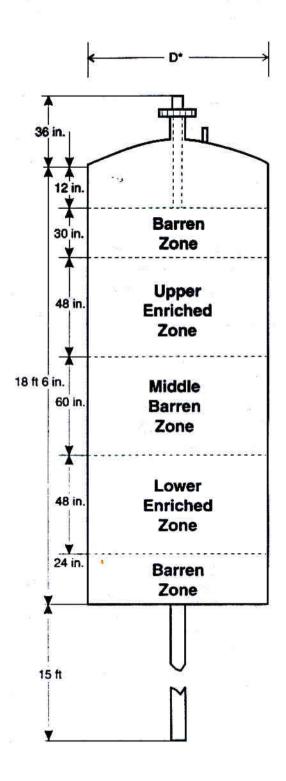



Table B-6. Assigned Parameters

Pad	Co	ncentration (pCi/g	Dry Bulk Density	Partial Density	
Designation	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b
GE2	83.13 ± 15.42	0.70 ± 0.10	12.93 ± 1.02	1.85	0.237
GE4	396.66 ± 49.70	0.80 ± 0.12	12.20 ± 1.48	1.84	0.148

[®]Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985). [®]Uncertainties for these values have not been determined.

Grants GBT/GBK, GBU/GBM, and GBA/GBB Models

Model Diameter (in.)
GBT/GBK 48

48

60

*D

GBU/GBM

GBA/GBB

B-15

Table B-7.1. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³) ^c	Partial Density H ₂ O (g/cm ³) ^c
GBU	Upper	167 ± 5	3.98 ± 0.00	1.88	0.247
GBA	Upper	64.8 ± 1.9	3.97 ± 0.02	2.21	0.189
GBB	Lower	881 ± 27	3.99 ± 0.00	2.22	0.199

^aUncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

Table B-7.2. Assigned Parameters for Calibration of Spectral Gamma-Ray Logging Systems

Model Zone Designation		Co	Concentration (pCl/g)*			Partial Density
	Zone	Ra-226	Th-232	K-40	Density (g/cm ³) ^b	H ₂ O (g/cm ³) ^b
GBT	Upper	11.34 ± 0.58	68.06 ± 1.83	9.71 ± 1.51	1.93	0.248
GBK	Lower	1.08 ± 0.10	0.10 ± 0.02	52.16 ± 1.84	1.81	0.263
GBU	Upper	178.18 ± 5.47	0.71 ± 0.06	11.80 ± 0.84	1.88	0.244
GBM	Lower	129.09 ± 4.14	48.22 ± 1.35	41.84 ± 2.01	1.87	0.257

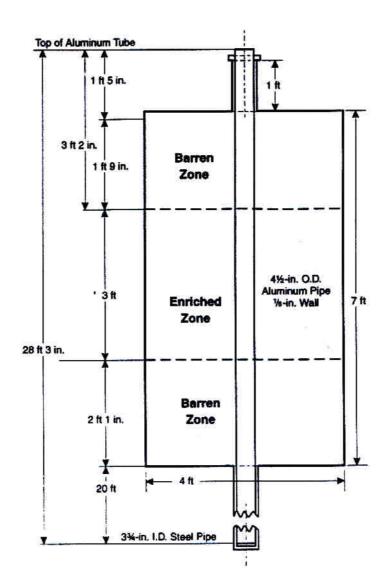
^aUncertainties are 95 percent confidence level. Assigned values taken from Heistand and Novak (1984).

Table B-7.3. Assigned Parameters for Calibration of Fission-Neutron Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm ³) ^c	Partial Density H ₂ O (g/cm ³) ⁽
GBA	Upper	64.8 ± 1.9	3.97 ± 0.02	2.21	0.189
GBB	Lower	881 ± 27	3.99 ± 0.00	2.22	0.199

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

bUncertainties reported as 0.00 are not zero, but are less than 0.01 ft.


^cUncertainties for these values have not been determined.

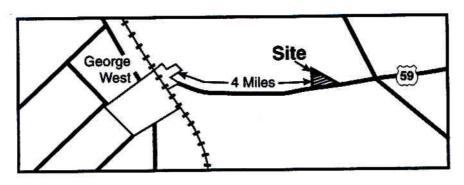
^bUncertainties for these values have not been determined.

^bUncertainties reported as 0.00 are not zero, but are less than 0.01 ft.

^cUncertainties for these values have not been determined.

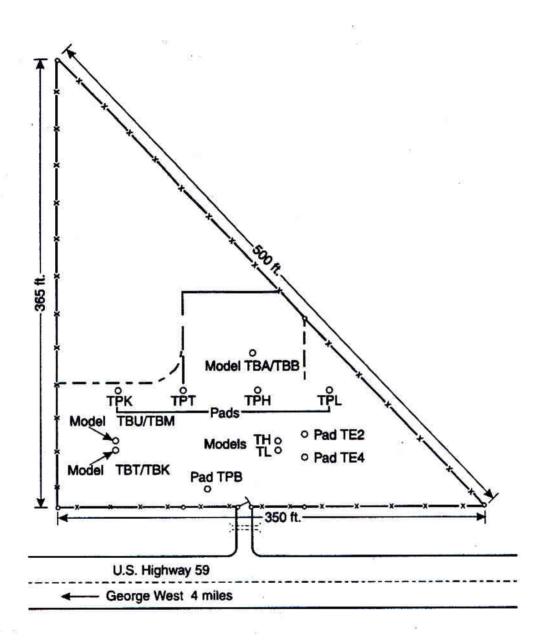
Grants GH and GL Models

Typical Section Each Model


Table 8-8. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCi/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³) ^c	Partial Density H ₂ O (g/cm ³) ^c
GH	Enriched	5645 ± 344	2.89 ± 0.02	2.22	0.247
GL	Enriched	777 ± 24	2.99 ± 0.00	2.22	0.236

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).
*Uncertainties reported as 0.00 are not zero, but are less than 0.005 ft.


^{*}Uncertainties for these values have not been determined.

Map to George West Calibration Site

Vicinity Map
No Scale

Layout of George West Calibration Site

George West P Pads

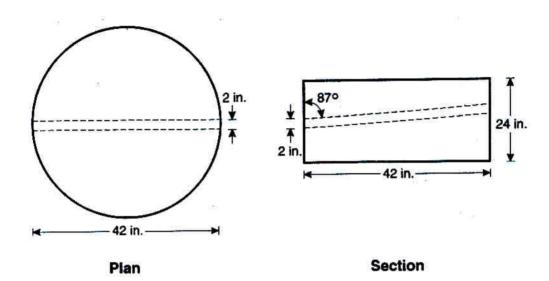


Table B-9. Assigned Parameters

Pad Designation	Co	ncentration (pCl/g	Dry Bulk Density	Partial Density	
	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b
TPK	0.69 ± 0.86	0.00 ± 0.06	52.81 ± 1.46	1.95	0.131
TPL	87.02 ± 14.68	0.57 ± 0.10	15.49 ± 1.02	1.88	0.157
TPH	385.36 ± 47.52	0.45 ± 0.10	14.85 ± 1.42	1.90	0.158
TPT	5.96 ± 2.96	31.21 ± 0.82	15.03 ± 1.08	1.90	0.155
TPB ^c	0.0 ± 0.3	0.0 ± 0.3	0.0 ± 0.1	d	d.

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985).

bUncertainties for these values have not been determined.

^cPad does not have a hole as shown above.

dValue not assigned.

George West E Pads

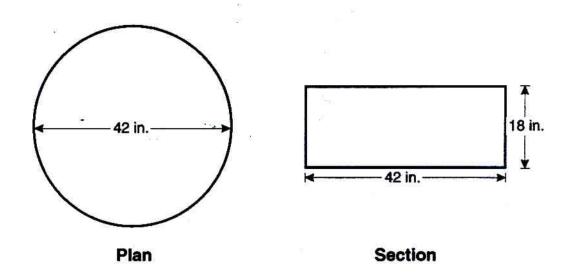
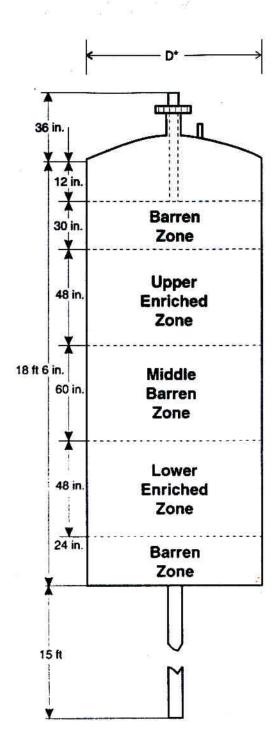



Table B-10. Assigned Parameters

Pad	Co	ncentration (pCi/g	Dry Bulk	Partial	
Designation	Ra-226	Th-232	K-40	Density (g/cm ³) ^b	Density H ₂ O (g/cm ³) ^b
TE2	83.53 ± 15.10	0.66 ± 0.10	13.17 ± 0.98	1.83	0.177
TE4	398.74 ± 50.36	0.51 ± 0.10	11.44 ± 1.58	1.86	0.223

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985). **Uncertainties for these values have not been determined.

George West TBT/TBK, TBU/TBM, and TBA/TBB Models

Model	Diameter (in.)
ТВТ/ТВК	48
TBU/TBM	48
TBA/TBB	60

Table B-11.1. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³) ^c	Partial Density H ₂ O (g/cm ³) ^c
TBU	Upper	168 ± 6	3.98 ± 0.00	1.87	0.247
TBA	Upper	61.8 ± 1.7	3.95 ± 0.02	2.20	0.184
твв .	Lower	840 ± 25	3.96 ± 0.00	2.21	0.187

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

Table 8-11.2. Assigned Parameters for Calibration of Spectral Gamma-Ray Logging Systems

Model Zone Designation	7	Cor	ncentration (pCl/	Dry Bulk Density	Partial Density	
	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b	
твт	Upper	11.30 ± 0.55	67.66 ± 1.88	9.71 ± 1.67	1.94	0.243
TBK	Lower	1.13 ± 0.10	0.09 ± 0.02	53.58 ± 1.84	1.81	0.264
TBU	Upper	177.01 ± 5.54	0.69 ± 0.06	11.39 ± 1.00	1.87	0.247
твм .	Lower	128.63 ± 4.14	48.62 ± 1.40	42.03 ± 2.01	1.85	0.257

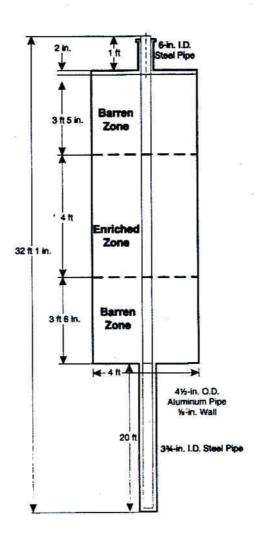
^{*}Uncertainties are 95 percent confidence level. Assigned values taken from Heistand and Novak (1984).

Table B-11.3. Assigned Parameters for Calibration of Fission-Neutron Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCi/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³) ^c	Partial Density H ₂ O (g/cm ³) ^c
TBA	Upper	61.8 ± 1.7	3.95 ± 0.02	2.20	0.184
TBB	Lower	840 ± 25	3.96 ± 0.00	2.21	0.187

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

bUncertainties reported as 0.00 are not zero, but are less than 0.01 ft.


^cUncertainties for these values have not been determined.

^bUncertainties for these values have not been determined.

^{*}Uncertainties reported as 0.00 are not zero, but are less than 0.01 ft.

^{*}Uncertainties for these values have not been determined.

George West TH and TL Models

Typical Section

Table B-12. Assigned Parameters for Calibration of Total-Count Gamma-Ray Logging Systems

Model Designation	Zone	Ra-226 Concentration (pCl/g) ^a	Thickness (ft) ^b	Dry Bulk Density (g/cm³) ^c	Partial Density H ₂ O (g/cm ³) ^c
TH	Enriched	5770 ± 368	3.94 ± 0.00	1.86	0.302
TL	Enriched	680 ± 23	3.99 ± 0.00	2.07	0.272

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George and others (1983).

Uncertainties reported as 0.00 are not zero, but are less than 0.005 ft.

^cUncertainties for these values have not been determined.

Appendix C Relocatable Field Calibration Pads

Relocatable Field Calibration Pads

This appendix presents detailed information concerning pad descriptions and radioelement concentrations for the relocatable field calibration pads. These pads are administered by the U.S. Department of Energy Grand Junction Projects Office.

Questions concerning present location, use, and/or calibration should be addressed to the Technical Measurements Center.

June 1994 C-3

NP Pads

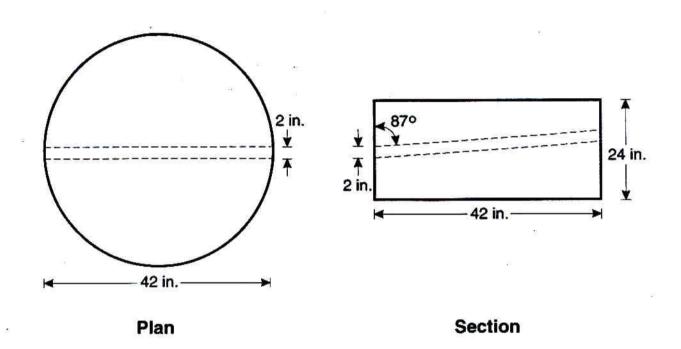


Table C-1. Assigned Parameters

Pad	Concentration (pCi/g) ^a			Dry Bulk	Partial
Designation	Ra-226	Th-232	K-40	Density (g/cm ³) ^b	Density H₂O (g/cm ³) ^b
NPL	15.83 ± 5.32	0.64 ± 0.10	10.92 ± 0.72	1.94	0.176
NPH	44.20 ± 9.72	0.73 ± 0.10	11.13 ± 0.82	1.95	0.191

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985). bUncertainties for these values have not been determined.

NOTE: Contact the Technical Measurements Center for the present location of these pads.

PP Pads

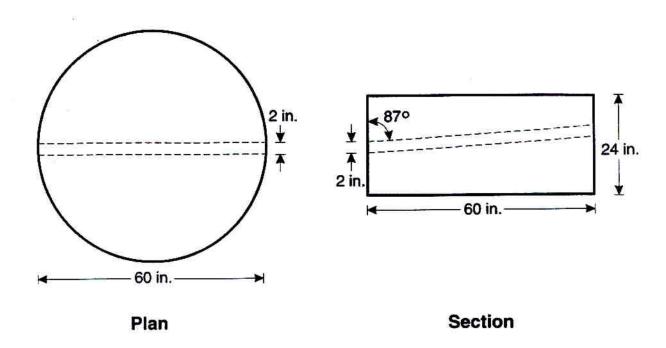


Table C-2. Assigned Parameters

Pad	Concentration (pCl/g) ^a			Dry Bulk Density	Partial Density
Designation	Ra-226	Th-232	K-40	(g/cm ³) ^b	H ₂ O (g/cm ³) ^b
PPL	15.08 ± 5.54	0.62 ± 0.10	10.84 ± 0.66	1.95	0.176
PPH	49.34 ± 10.78	0.63 ± 0.10	10.97 ± 0.86	1.95	0.199

^{*}Uncertainties are 95 percent confidence level. Assigned values taken from George, Novak, and Price (1985).

NOTE: Contact the Technical Measurements Center for the present location of these pads.

^bUncertainties for these values have not been determined.

T Pads

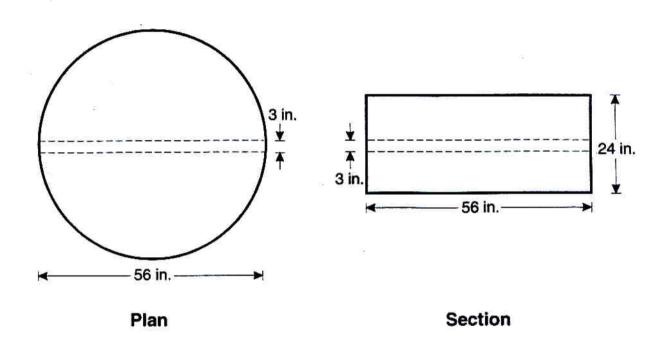


Table C-3. Assigned Parameters

0-4	Diameter	Assigned Concentration (pCl/g) ^a			Dry Bulk	Partial Density
Pad	(in.)	Ra-226	Th-232	K-40	Density (g/cm³)	H ₂ O (g/cm ³)
TL1	56	<1	10.18 ± 0.43	2.07 ± 0.16	1.89	0.209
TL2	56	<1	10.56 ± 0.45	2.80 ± 0.16	1.92	0.225
TL3	57	<1	10.28 ± 0.43	2.28 ± 0.16	1.84	0.206
TL4	60	<1	11.36 ± 0.45	2.18 ± 0.16	1.85	0.191
TH1	56	<1	41.48 ± 1.30	<3	1.89	0.206
TH2	56	<1	42.00 ± 1.27	<3	1.94	0.192
тнз	60	<1	42.48 ± 1.33	<3	1.88	0.200
TH4	60	<1	45.31 ± 1.27	<3	1.90	0.168

^{*}Uncertainties are two sigma (95 percent confidence interval).

Appendix D Conversion Factors

Conversion Factors

This appendix presents conversion factors used to determine radioelement concentrations for the calibration facilities. An example of conversion-factor derivation is presented in Appendix E. The nuclear data referenced in this appendix are taken from the *Table of Isotopes* (Lederer and Shirley, 1978). Half-life (T), isotopic-abundance (P), and gram atomic weight (A) data agree (within quoted significant figures) with those listed in the *Chart of the Nuclides* (Walker and others, 1977).

Conversion factors for a sample containing uranium in secular equilibrium with its daughters are

The conversion factor for radium is

$$n_{Ra-226}$$
 = specific activity of Ra-226
= $N_0 \lambda_{Ra-226}/A_{Ra-226}$
= 0.9885 Ci/g

Conversion factors computed for a sample containing thorium are

1 pCi (Th-232)/g =
$$9.159$$
 wt-ppm (eTh)
1 wt-ppm (eTh) = 0.1092 pCi (Th-232)/g

Conversion factors computed for a sample containing naturally occurring potassium are

Numerical values used for computing the conversion factors are

$$A_{U-238} = 238.9597 \text{ g/mole}$$

 $A_{U-235} = 235.0439 \text{ g/mole}$
 $A_{U-234} = 234.0409 \text{ g/mole}$
 $A_{Ra-226} = 226.0254 \text{ g/mole}$
 $A_{Th-232} = 232.0380 \text{ g/mole}$
 $A_{K-41} = 40.9618 \text{ g/mole}$
 $A_{K-40} = 39.9640 \text{ g/mole}$
 $A_{K-39} = 38.9637 \text{ g/mole}$
 $A_{U-238} = 99.275\%$
 $A_{U-235} = 0.720\%$
 $A_{U-234} = 0.0054\%$

 $P_{Th-232} = 100\%$

 $P_{K-41} = 6.73\%$

 $P_{K-40} = 0.0117\%$

 $P_{K-39} = 93.26\%$

 $T_{U-238} = 4.468 \times 10^9 \text{ years} = 1.410 \times 10^{17} \text{ sec}$

 $T_{Ra-226} = 1600 \text{ years} = 5.049 \times 10^{10} \text{ sec}$

 $T_{Th-232} = 1.411 \times 10^{10} \text{ years} = 4.453 \times 10^{17} \text{ sec}$

 $T_{K-40} = 1.278 \times 10^9 \text{ years} = 4.033 \times 10^{16} \text{ sec}$

 $N_o = 6.022045 \times 10^{23} \text{ atoms/mole}$

 $1 \text{ Ci} = 3.7 \times 10^{10} \text{ disintegrations/sec}$

Appendix E Example Conversion Factor Derivation

Example Conversion Factor Derivation

The calibration of gamma-ray counting instruments at Grand Junction has been traditionally performed using equivalent uranium (eU) as the reporting unit for spectral instruments and equivalent uranium oxide (eU₃O₈) as the reporting unit for gross-count or total-count instruments. The word equivalent (e) has been traditionally taken to mean radiometric equivalent or gamma-ray equivalent, because concentrations assigned to the calibration models are based on gamma-ray measurements. The purpose of this derivation is to establish the factors needed to convert from currently assigned uranium concentrations in parts per million on a weight basis for eU [wt-ppm(eU)] and in weight-percentage for eU₃O₈ [wt-% (eU₃O₈)] to radium concentrations [pCi (Ra-226)/g].

For the conversion derived, it is necessary to assume secular equilibrium between uranium and radium-226 in the uranium decay series. This assumption has always been made in the past when assigning equivalent-uranium concentrations to the models and pads. Because previous assignments are based on gamma-ray counting measurements, and because those measurements are responsive primarily to radium-226 daughters, the assumption is appropriate here.

For a given sample of mass M, containing uranium and its daughters in secular equilibrium, the decay rates of U-238 and Ra-226 are equal by definition. That is,

Decay rate
$$(-dN/dt) = N_{Ra-226}\lambda_{Ra-226} = N_{U-238}\lambda_{U-238}$$
 (1)

where N = number of atoms of the isotope indicated by the subscript,

λ = decay constant of the isotope indicated by the subscript,

= 1n(2)/T

T = half-life of the isotope indicated by the subscript.

If both sides of Equation (1) are divided by the mass of the sample, M, and if mass-normalized decay rate is r,

$$r_{Ra-226} = r_{U-238} = \frac{N_{Ra-226}\lambda_{Ra-226}}{M} = \frac{N_{U-238}\lambda_{U-238}}{M}$$
 (2)

Computing the number of atoms of U-238 from the mass of U-238 in the sample, M_{U-238},

$$r_{Ra-226} = N_{U-238}\lambda_{U-238}/M = (M_{U-238}/M)(N_o/A_{U-238})\lambda_{U-238}$$
 (3)

where No = Avogadro's number, and

A = gram atomic weight of the isotope indicated by the subscript.

Noting that M_{U-238}/M is the weight fraction of U-238 in the sample,

$$c_{U-238} = M_{U-238}/M \tag{4}$$

Equation (3) produces the result

$$r_{Ra-226} = c_{U-238}(N_0 \lambda_{U-238} / A_{U-238})$$
 (5)

The desired units are picocuries of Ra-226 per gram of sample [pCi(Ra-226)/g], and parts per million on a weight basis for U-238 (wt-ppm). Performing the computation indicated in Equation (5) and converting units produces

$$r_{Ra-226} = c_{U-238}/2.975 (6)$$

where r_{Ra-226} is the mass-normalized decay rate of Ra-226 in picocuries per gram and c_{U-238} is the weight concentration of U-238 in parts per million.

Numerical values and conversion factors used for the computations are presented in Appendix B.

The result in Equation (6) must be adjusted to account for the isotopic abundance of U-238 within naturally occurring uranium (U). The isotopic abundance of U-238 must first be computed on a weight basis because the isotopic abundance values in the *Table of Isotopes* (Lederer and Shirley, 1978) are given on an atom-percent basis.

$$P'_{U-238} = \frac{P_{U-238}A_{U-238}}{P_{U-238}A_{U-238} + P_{U-235}A_{U-235} + P_{U-234}A_{U-234}}$$
(7)

= 0.9928
$$\frac{g(U-238)}{g(U)}$$

where P' is the isotopic abundance on a weight basis for the isotope indicated by the subscript, and P is the isotopic abundance on an atom-percent basis for the isotope indicated by the subscript.

From this result, $c_{U-238} = 0.9928c_U$, which is then substituted into Equation (6) to produce the final and desired result

$$r_{Ra-226} = c_U/2.997 \tag{8}$$

where c_U is the weight concentration of naturally occurring uranium in parts per million (ppm) and r_{Ra-226} is the mass-normalized decay rate of Ra-226 in picocuries per gram.

Publications Issued by the Technical Measurements Center

June 1994

Operated by RUST Geotech Inc.

for

U.S. Department of Energy
Office of Environmental Management
Albuquerque Operations Office
Grand Junction Projects Office

Title (Authors)

GJ/TMC-01* 3rd Edition	Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium. (R. Leino, D. C. George, B. N. Key, L. Knight, and W. D. Steele)
GJ/TMC-02	Review of Selected DOE Remedial Action Field Measurement Procedures for the Summer of 1982. (TMC Staff)
GJ/TMC-03*	Abbreviated Total-Count Logging Procedures for Use in Remedial Action. (D. C. George and R. K. Price)
GJ/TMC-04*	Evaluation of Methods for the Estimation of Indoor Radon Daughter Concentrations for Remedial Action Programs. (G. H. Langner, Jr., J. C. Pacer, V. G. Johnson, and M. A. Gillings)
GJ/TMC-05*	Feasibility Study of the Prompt Pb-214, Bi-214 Gamma Method for Determining Radon Migration Through Tailings. (L. R. Stieff, The Stieff Research and Development Co., Inc., Kensington, Maryland)
GJ/TMC-06*	Surface Gamma-Ray Measurement Protocol. (S. J. Marutzky, W. D. Steele, and B. N. Key)
GJ/TMC-07*	Procedures for Field Chemical Analyses of Water Samples. (N. Korte and D. Ealey)
GJ/TMC-08* 2nd Edition	Procedures for the Collection and Preservation of Groundwater and Surface Water Samples and for the Installation of Monitoring Wells. (N. Korte and P. Kearl)
GJ/TMC-09* 2nd Edition	Protocol for the Estimation of Average Indoor Radon-Daughter Concentrations. (G. H. Langner, Jr. and J. C. Pacer)
GJ/TMC-10*	Development of Solid Radium-226 Reference Materials. (R. B. Chessmore and P. R. Engelder)
Letter Report (unnumbered)	Supplemental Measurements for Polonium-210 and Lead-210 in TMC Radium Reference Material (insert to GJ/TMC-10). (S. Donivan)
GJ/TMC-11*	Procedure Manual for the Estimation of Average Indoor Radon-Daughter Concentrations Using the Radon Grab-Sampling Method. (J. L. George)
GJ/TMC-12*	Procedure Manual for the Estimation of Average Indoor Radon-Daughter Concentrations Using the Radon Progeny Integrating Sampling Unit (RPISU) Method. (G. H. Langner, Jr.)
GJ/TMC-13*	Procedures for Sampling Radium-Contaminated Soils. (H. L. Fleischhauer)

^{*}Available from National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4600.

GJ/TMC-14*	Procedures for Reconnaissance Stream-Sediment Sampling. (H. L. Fleischhauer and P. R. Engelder)
GJ/TMC-15*	A Feasibility Study of the Use of Nuclear-Emulsion Techniques in the Study of Drill Core and Water Samples from the Monticello Mill, Monticello, Utah. (L. R. Stieff, The Stieff Research and Development Co., Inc., Kensington, Maryland)
GJ/TMC-16*	Test and Evaluation of Selected Instruments for Surface Gamma-Ray Measurements. (B. N. Key)
GJ/TMC-17*	Calibration-Pad Parameter Assignments for In-Situ Gamma-Ray Measurements of Radium, Thorium, and Potassium. (D. C. George, E. F. Novak, and R. K. Price)
GJ/TMC-18*	Operating Manual for the Radon-Daughter Chamber. (G. H. Langner, Jr., and T. Nelson)
GJ/TMC-19*	Laboratory Intercomparison of Analytical Results on Samples Contaminated by Uranium Mill Tailings. (N. Korte, M. Hollenbach, and S. Donivan)
GJ/TMC-20	Radon-Daughter Chamber Instrumentation System Reference Manual. (L. Johnson and R. Showalter)
GJ/TMC-22*	Development of Solid Thorium-232 Reference Materials. (P. R. Engelder, S. Donivan, and R. B. Chessmore)
Letter Report (unnumbered)	Supplemental Measurements for Radium-226 and Potassium-40 in TMC Thorium Reference Material (insert to GJ/TMC-22). (S. Donivan)
GJ/TMC-23	Gamma-Ray Instrument Calibration Comparison Workshop. (W. D. Steele, D. C. George, and J. L. Burnham)
GJ/TMC-24*	Comparison of In-Situ and Laboratory Measurement Methods for Radium-226 in Soils. (S. J. Marutsky, H. L. Fleischhauer, and P. R. Engelder)
GJ/TMC-25*	Interlaboratory Radon-Daughter Measurement Comparison Workshop: 9-12 September 1985. (M. Pearson)
GJ. TMC-26°	Field Study of Indoor Average Radon-Daughter Estimation Methods. (J. L. George and G. H. Langner, Jr.)
GJ/TMC-27*	Assessment of Mobile Gamma-Scanning Van Activities in Edgemont, South Dakota. (U.S. Department of Energy Task Force)

[&]quot;Available from National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4600

GJ/TMC-28*	Interim Results of the Prompt Alpha-Track Radon Detector Study. (J. L. George and G. H. Langner, Jr.)
UNC/GJ—29(TMC)*	Comparison of Radon and Radon-Daughter Grab Samples Obtained During the Winter and Summer. (K. E. Karp)
UNC/GJ—31(TMC)*	Investigation of the Hammer-Gamma Measurement Technique: A Feasibility Study. (R. Showalter)
UNC/GJ—32(TMC)*	Construction and Characterization of the TL/TH Thorium Calibration Pads. (W. Douglass Steele)
UNC/GJ—33(TMC)*	Validation of the Prompt Alpha-Track Method. (J. L. George and G. H. Langner, Jr.)
UNC/GJ—34(TMC)*	Validation of the Abbreviated Radon Progeny Integrating Sampling Unit (RPISU) Method for Mesa County, Colorado. (G. H. Langner, Jr.)
UNC/GJ—35(TMC)*	Construction and Testing of a Blower-Door Assembly for Regulation of Air Pressure Within Structures. (W. Douglass Steele)
UNC/GJ-36 (TMC)*	Uranium Reference Materials. (S. Donivan and R. B. Chessmore)
UNC/GJ-TMC-1	Determination of Radon Sources at Four Vicinity Properties in Edgemont, South Dakota. (K. E. Karp)
UNC/GJ-TMC-2	Radon-Daughter Grab-Sampling Technical Exchange Meeting 14-17 April 1986. (M. D. Pearson)
UNC/GJ—37(TMC)*	Soil-Based Uranium Disequilibrium and Mixed Uranium-Thorium Series Radionuclide Reference Materials. (S. Donivan and R. B. Chessmore)
UNC/GJ—38 (TMC)*	The Use of Atomic Absorption Spectroscopy to Measure Arsenic, Selenium, Molybdenum, and Vanadium in Water and Soil Samples From Uranium Mill Tailings Sites. (M. H. Hollenbach)
UNC/GJ—39(TMC)*	Procedure Manual for the Estimation of Average Indoor Radon-Daughter Concentrations Using the Electronic Radon Progeny Integrating Sampling Unit (ERPISU) Method. (M. D. Pearson)
UNC/GJ—40(TMC)*	Procedure Manual for the Estimation of Average Indoor Radon-Daughter Concentrations Using the Filtered Alpha-Track Method. (J. L. George)
UNC/GJ—41(TMC)*	Detecting Buried Radium Contamination Using Soil-Gas and Surface-Flux Radon Measurements. (K. E. Karp)
UNC/GJ—42(TMC)*	Exposure-Rate Calibration Using Large-Area Calibration Pads. (E.F. Novak)

^{*}Available from National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4600.

UNC/GJ—43(TMC)*	Year-Long Comparison of Two Techniques to Monitor Outdoor Radon Concentrations at Shiprock, New Mexico. (E. F. Novak)
UNC/GJ-TMC-3*	Procedures, Analysis, and Comparison of Groundwater Velocity Measurement Methods for Unconfined Aquifers. (P. M. Kearl, J. J. Dexter, and J. E. Price)
UNC/GJ-TMC-4*	Supplement to Procedures, Analysis, and Comparison of Groundwater Velocity Measurement Methods for Unconfined Aquifers. (R. J. Zinkl and P. M. Kearl)
UNC/GJ—44(TMC)*	Evaluation of the Performance Characteristics of Radon and Radon-Daughter Concentration Measurement Devices Under Controlled Environmental Conditions. (M. D. Pearson)
UNC/GJ—45(TMC)*	Construction and Characterization of the RH/RL Radium Calibration Pads. (W. D. Steele, S. J. Marutzky, and J. W. Dickerson)
UNC/GJ—46(TMC)*	Performance of Diffusion-Barrier Scintillation Cells Under a Variety of Controlled Environmental Conditions. (R. R. Spangler and G. H. Langner, Jr.)
UNC/GJ—47(TMC)*	Validation of the Diffusion-Barrier Charcoal Canister Method. (D. E. Martz, J. L. George, S. T. Mamich, and G. H. Langner, Jr.)
UNC/GJ—48(TMC)*	Field Method for Determining Thorium-230 in Soils. (G. Dechant)
UNC/GJ-TMC-5*	Development of Electret Technology to Measure Indoor Radon-Daughter Concentrations (Stieff Research and Development Co., Inc., Kensington, Maryland)
UNC/GJ-TMC-6*	Radon-Daughter Grab-Sampling Technical Exchange Meeting April 10-14, 1989. (M. D. Pearson)
UNC/GJ-49(TMC)*	Gamma and Beta Logging of Underground Sewer and Process Lines. (M. J. Rangel, D. E. Martz, and G. H. Langner, Jr.)
UNC/GJ-50(TMC)*	Variation in the Annual Average Radon Concentration Measured in Homes in Mesa County, Colorado. (A. S. Rood, J. C. George, and G. H. Langner, Jr.)
UNC/GJ-51(TMC)*	Calibration of the Alpha-Track Monitors for Measurement of Thoron. (M. D. Pearson)
GJPO-53(TMC)*	Evaluation of Thoron-Daughter Instruments. (J. L. George)

^{*}Available from National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4600.