DOE Office of Indian Energy Renewable Energy Project Development Training: Curriculum Overview

> National Congress of American Indians Annual Meeting: November 1, 2011

Tracey A. LeBeau, Director, DOE Office of Indian Energy Pilar Thomas, Deputy Director, DOE Office of Indian Energy Dan Beckley, Jeff Bedard, and Liz Doris, National Renewable Energy Laboratory Matt Ferguson and Joe Cruz, The Reznick Group

DOE Office of Indian Energy

Mission: Direct, foster, coordinate, and implement energy planning, education, management, and programs that assist tribes with energy development, capacity building, energy infrastructure, energy costs, and electrification of Indian lands and homes.

Why Are We Here?

Indian Country contains a significant portion of United States energy resources

- Tribes:
 - Energy development can provide foundation for increased economic development and support Tribal sovereignty
 - Attracts trade and investment
 - Indian Country capital markets interested in clean energy investment
- Traditional project finance/tax equity models can be challenging in Indian Country

The Situation

- Fewer than five renewable energy (RE) power plants in operation, with a combined capacity of less than 60 megawatts (MW)
- Lands in Indian Country have the resources to produce:

>1.3 million megawatt-hours (MWh) of wind (about 148,000 homes)

➤9.2 million of solar photovoltaics (PV)

➤4 million MWh of biomass

- Federal incentives reduce net capital cost for biomass, geothermal, wind, and solar projects by about 30%
- Interest expressed gaining access to DOE's unique expertise on how traditional renewable energy projects are financed - requested during Office of Indian Energy's National Tribal 2011 Tribal Roundtables and Energy Summit

Purpose of the Training Series

- Provide technical assistance directly to Tribes regarding the development of renewable energy projects on tribal lands
- Train tribal leaders and executives on the options for renewable energy development on tribal lands by:
 - > Outlining a framework for project development
 - Describing commercial renewable energy technologies and where they may best be developed
 - Describing and giving examples of *proven* financing structures

Office of Indian Energy Project Development Training Curriculum

- **100 Series:** Project Development Framework
- 200 Series: Market and Situation Analysis
- **300 Series:** Tribal Role and Associated Financing Options

Purpose of Today's Workshop

- Provide an overview of the training series
- Give an overview of the opportunity, framework, and ownership structures for project development
- Solicit feedback on training series usefulness and identify further tribal needs for assistance in project development

Timeline for Training Series

100 Level Training Series Project Development Framework: BEPTC[™] and SROPTTC[™]

Jeff Bedard National Renewable Energy Laboratory

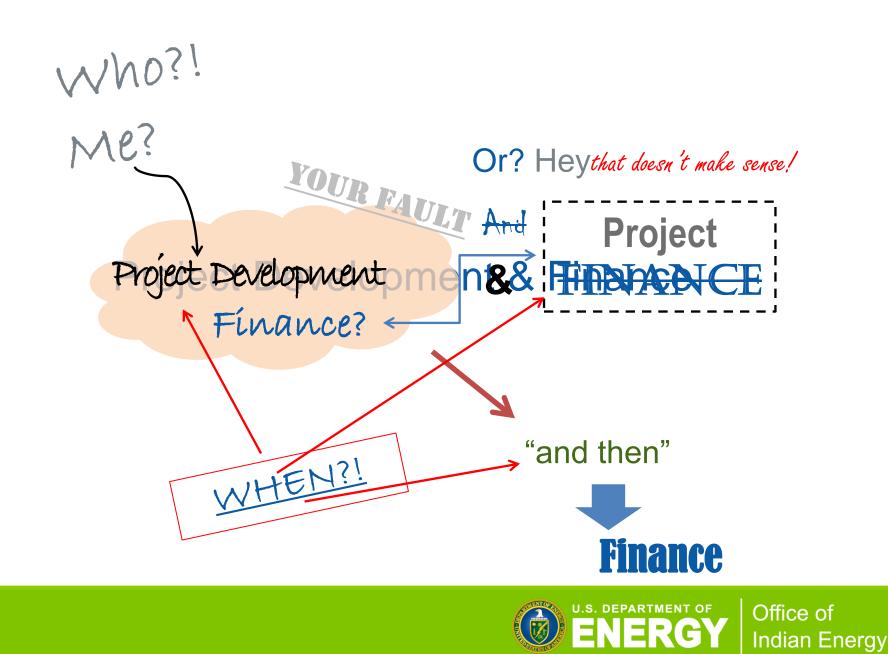
BEPTC[™] and SROPTTC[™] are trademarks of the Alliance for Sustainable Energy, LLC, the operator of the National Renewable Energy Laboratory.

U.S. DEPARTMENT OF Office

What You Know

- Opportunity exists for renewable energy development on tribal lands
- You have an existing electrical demand
- You would like to make money

What You Will Learn


- Project development process and common pitfalls
- What you need for success
- How to say NO!

Intent

This methodology serves the intent of <u>actually</u> building "the project" at the end of the day, and driving to that conclusion while managing risk.

Key Concept + Project Development

THERE ARE TWO CONCEPTS TO DEVELOP

- Market Context (BEPTC)
- Project Development Framework (SROPTTC)

Key Concept + Project Motivation

Project Motivation

- Developing project concepts into reality requires a strong foundation of drivers to overcome challenges, uncertainty, and maintain forward momentum.
- In a commercial application, this is first established in a market analysis; if a public entity is involved, it is not the same thing (or even appropriate), but the effect has to be achieved.

Project Motivation

If the opportunity is big and resilient enough, it will motivate the effort and investment needed to overcome the challenges, continue the investment, and mitigate the risk.

Project Motivation: Market Context

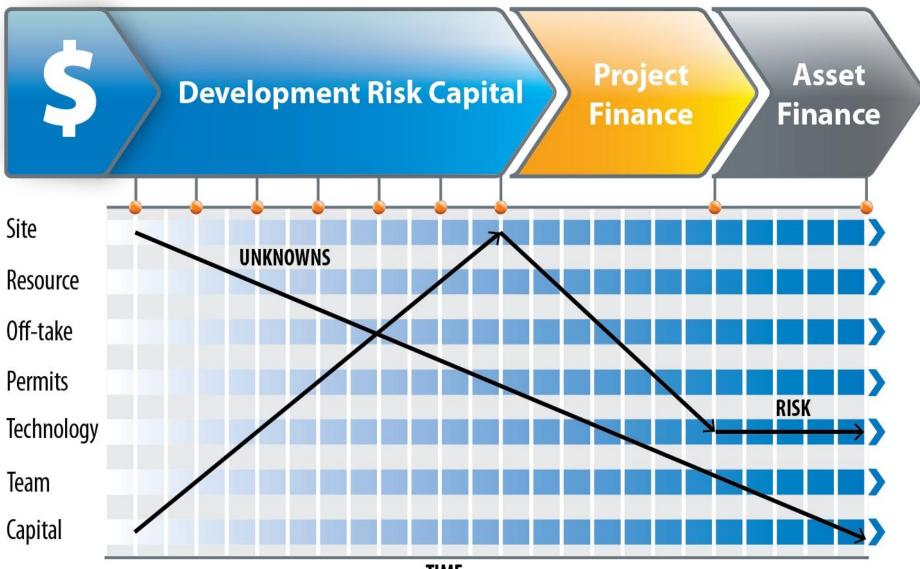
I'm motivated already! How do I do it?

- **B**aseline: existing energy "reality"
- Economics: fundamental driver(s)
- Policy: create conditions for success
- Technology: what, when, where, how many?
- Consensus: establish, advance, defend

Establish and maintain motivation within this framework **BEPTC**

BEPTC – Project Motivation Framework

Baseline	Economics	Policy	Technology	Consensus
Your Energy Reality	Fundamental Drivers	Conditions for Success	What, when, how many	Defend, defend, defend
 Define energy Unit and point of measure Source of fuel Vulnerabilities Impact to economy Industry structure Regulatory structure 	 Understanding costs AND benefits Dominant input to energy economics Relationship between inputs and results Ratepayer perspective Social cost/benefit 	 Market Policies Regulatory Policy Economic Development Jobs Energy Security Environmental Policy 	 What is real? What is experimental? Which one is right for my system/location? How much is here? How much can be used? Integration/reliability? 	 Communicate Create a forum Defend fundamentals Build consensus Raise the level of conversation Lather, rinse, repeat



Key Concept + Process Discipline

SROPTTC

Site Resource **O**ff-take **P**ermits **T**echnology Team Capital

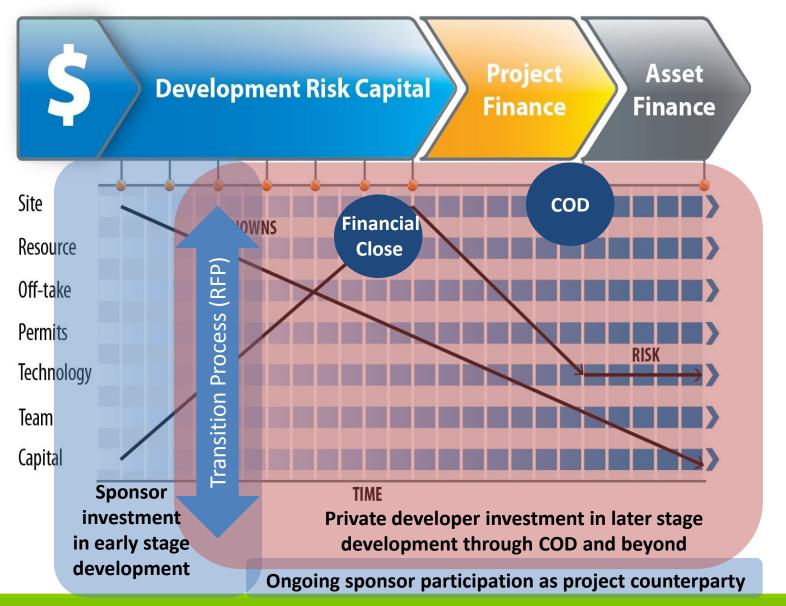
TIME

Process Discipline: SROPTTC

Using this framework to visualize the development process:

- <u>Best practice</u>: process is iterative; each iteration aims to find a fatal flaw and end project – <u>manage development risk.</u>
- <u>Best practice</u>: not making the GO/NO GO decision until the end; incremental decisions followed by incremental investments, managed investment risk.
- <u>Best practice</u>: focus on (invest in) pro forma inputs incrementally, maximizing yield on every dollar invested.

<u>Pitfalls:</u>


- (1) Mistaking each iteration for final "go/no go", vs. "go forward/stop"
- (2) Not getting out early enough on bad projects (even if investment would be lost)
- (3) Not investing for fear "it won't work"; BEPTC probably not fully developed, which may indicate that doing nothing is riskier than investing under uncertainty.

SROPTTC – Project Development Framework

Site	Resource	Off-Take	Permits	Technology	Team	Capital
No Site, No Project	Engineering Assessment	Off-take Contract – (Revenue)	Anything that can stop a project if not in place	Engineered System	Professional, Experienced, Diverse	Financing Structure
 Site control Size and shape Location to load and T&D Long-term control Financial control Clear title Lease terms Collateral concerns Environmental Access O&M access Upgradable 	 Volume/ Frequency Variability Characteristics (power/speed) 24-hour profile Monthly, seasonal and annual variability Weather dependence Data history Std. Deviation Technology suitability 	 Credit of counterparty Length of contract Terms and conditions Reps and warranties Assignment Curtailment Intercon Performance Enforcement Take or pay Pricing and terms 	 Permitting/ entitlements Land disturbance Environmental Cultural impacts Resource assessments Wildlife impacts Habitat NEPA, EIS Utility inter- connection Other utility or PUC approvals 	 Engineering design plans Construction plans Not generic solar panel and inverter Engineered resource/ conversion technology/ balance of system designs Specifications Bid set 	 Business management Technical expertise Legal expertise Financial expertise Utility interconnection expertise Construction/ contract management Operations Power marketing/ sales 	 Development equity Project equity Project debt Mezzanine or bridge facility Tax equity Grants, rebates, other incentives Environmental attribute sales contracts (RECs) Bond finance Non-recourse project finance

		Project Deb	t	Tax E	quity	Lease	DOE
	Bank	Private Bond	Term Loan	Levered	Unlevered	Equity	DOL
Investor Universe	Commercial Banks	Private or 144A Offering	Institutional investors w/energy focus	Financial investo corps. with tax a		Lease equity market, institutional	DOE supports 100% or 80%
Target Rating	"Investment Grade" no rating needed	BBB-/NAIC 2	B is doable; BB is preferred	NA (Investment	Grade Offtaker)	NA (Invest. Grade Offtake)	NA
Market Capacity	Up to \$1 Billion; up to 1.0XDSCR in Low Case	+\$1.0 Billion	\$750 Million	Sized to target I	RR	Sized to 20- 49% of Capital Stack	No Limit
Indicative Pricing	L+250-350 2007: 100- 150 +fees 1.5- 2.0%	7% Area; T + 5%-6% Fixed	L+250-500; 425 - 450 Libor floor;	11-13.5; IRR by Flip	9-10.5% IRR by Flip	9.0-12.5% after tax yield	T+75-100 bps
Tenor	5-7 years typical, up to 15	Term of PPA (20-25); Prepayment Penalty	Up to 7 years	Target IRR reach with PTC; 6-7 w		80% of Useful Life	Up to 30 years
Sizing Profile	DSCR Requirem 1.40X; lockbox; with credit supp Swaps; Reserve	PPA 'Tail'; EPC oort; LIBOR	1% amortization with cash sweep	Downside flip da downside; +6 ye downside	ates: +3 years in ears in severe	1.30-1.40 "RSCR" Like Project Debt	Driven by required Ratings

100 Series Summary

- Project development is iterative—it's about identifying and moving forward on the most likely successful projects
- Use BEPTC to verify feasibility, identify, and define motivation for a project
- Use SROPTTC to work through project development process

200 Level Training Series Situation and Option Analysis

Liz Doris

National Renewable Energy Laboratory

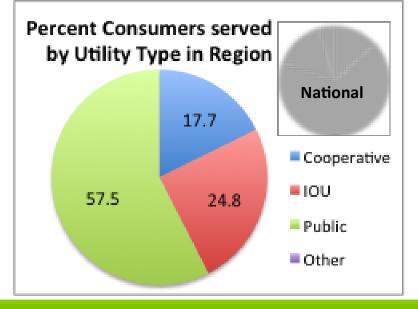
What You Know

- Opportunity exists for renewable energy development on tribal lands
- Project selection and development framework

What You Will Learn

- Overview energy baseline by region
- Overview of policy and regulatory environment by region
- Resources for energy information
- Renewable energy technology basics
- Tools for baseline development

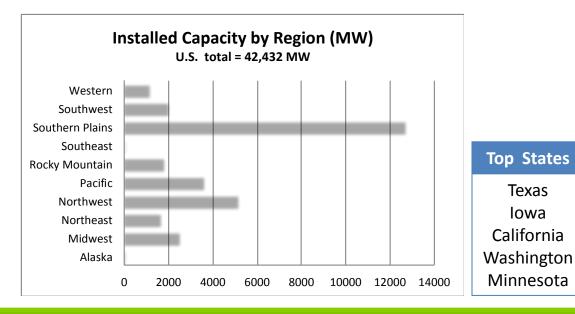
Tribal Regions		
Northwest Northwest Western Pacific Southwest	P	
		State(s)
Southeast	Alaska	AK
Subditedse	Eastern OK	OK
Southern	Great Plains	ND, NE, SD
Plains	Midwest	IA, IL, MI, MN, WI
Friday and a start of the start	Navajo Northeast	AZ, NM, UT
Alaska	Northwest	CT, MA, ME, NY, RI
& came 1	Pacific	ID, MT, OR, WA CA
	Rocky Mtn.	MT, WY
	Southeast	AL, FL, LA, MS, NC, SC
as attain	So. Plains	KS, OK, TX
	Southwest	CO, NM
	Western	AZ, NV, UT



U.S. DEPARTMENT OF Office of Indian Energy

Great Plains Region

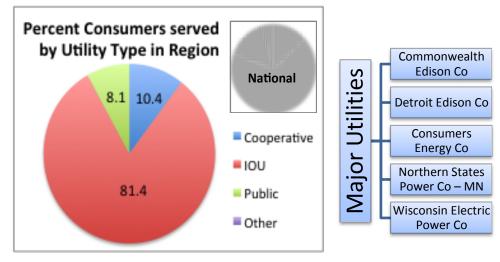
St.	RPS	Interconnect	Net Meter
ND	10% by 2015	No	100 kW
SD	10% by 2015	10 MW	No
NE	10% by 2015	25 kW	25 kW




Energy Prices	Region	U.S.
Electric (¢/kWh)	2.6-14.2 (Avg. 7.1)	0.01-123.2 (Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	2.11	2.39
Propane (\$/gal)	1.69	1.78
Natural Gas (\$/mcf)	8.98	12.14

Wind Energy

- Capture kinetic energy using propeller-like blades on a shaft
- When the wind makes the blades turn, the • shaft spins a generator to produce electricity
- Towers above 30 meters capture faster and less turbulent wind


Texas

lowa

Midwest Region

St.	RPS	Interconnect	Net Meter
IA	105 MW	10 MW	500kW
IL	25% by 2025	No limit	40kW
MI	10% by 2015	No limit	150 kW
MN	30% by 2020	10 MW	40 kW
WI	10% by 2015	15 MW	20 kW/100kW

Energy Prices	Region	U.S.
Electric (¢/kWh)	2.6-20.0 (Avg. 8.7)	0.01-123.2 (Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	2.12	2.39
Propane (\$/gal)	1.69	1.78
Natural Gas (\$/mcf)	9.77	12.14

Northeast Region

U.S.

0.01-123.2

(Avg. 9.8)

2.68

2.39

1.78

12.14

St.	RPS	Interconnect	Net Meter
СТ	27% by 2020	20 MW	2 MW
MA	15% by 2020	No Limit	10 MW
ME	40% by 2017	No Limit	660 kW/100 kW
NY	29% by 2015	2 MW	2 MW/1MW
RI	16% by 2019	No Limit	5 MW

Region

3.4-66.9

(Avg. 15.3)

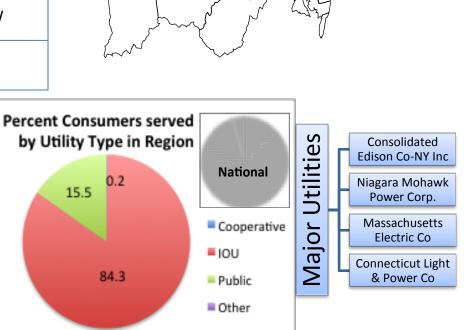
2.81

2.42

2.75

15.64

Energy Prices

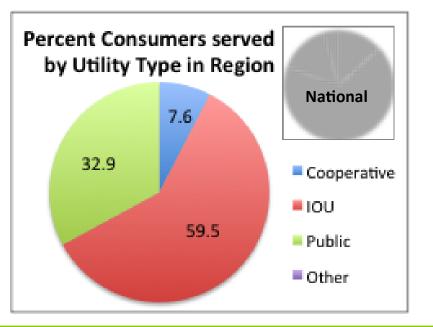

Electric (¢/kWh)

Kerosene (\$/gal)

Heating Oil (\$/gal)

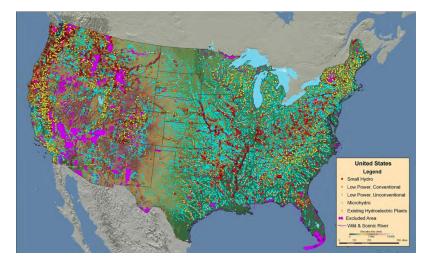
Propane (\$/gal)

Natural Gas (\$/mcf)



Northwest Region

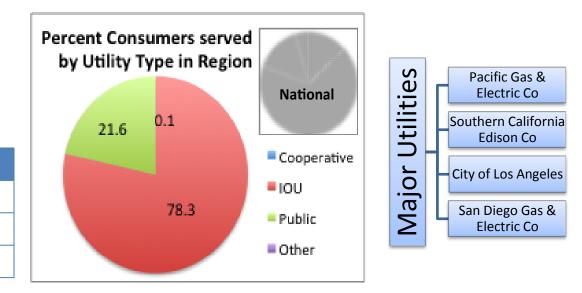
St.	RPS	Interconnect	Net Meter
ID	No	No	100 kW
OR	25% by 2025	20 MW+	2 MW (non-r)
WA	15% by 2020	20 MW	100 kW


Energy Prices	Region	U.S.
Electric (¢/kWh)	0.01-12.2	0.01-123.2
Electric (¢/kwili)	(Avg. 6.9)	(Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	2.22	2.39
Propane (\$/gal)	1.91	1.78
Natural Gas (\$/mcf)	13.00	12.14

Low Head Hydroelectricity

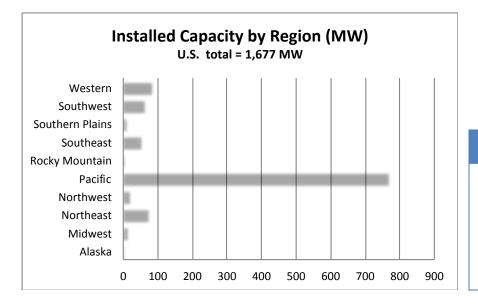
- The use of flowing water to produce electrical energy
- Water flow spins a turbine, activating a generator
- Low head characterized as being less than 30 feet; low power is anything less than 1 MW

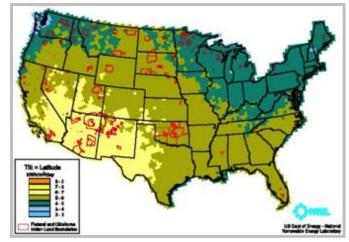
Energy Technology Costs				
Installed	\$1.24-3.23/Watt			
Levelized (LCOE)	4-13¢/kWh			



Policy	Limit/Goal
RPS	33% by 2020
Interconnection	No Limit
Net Metering	1 MW

Pacific Region


Energy Prices	Region	U.S.
Electric (¢/kWh)	3.2-21.1 (Avg. 13.2)	0.01-123.2 (Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	2.33	2.39
Propane (\$/gal)	1.97	1.78
Natural Gas (\$/mcf)	9.43	12.14



Solar Photovoltaic (PV) Energy

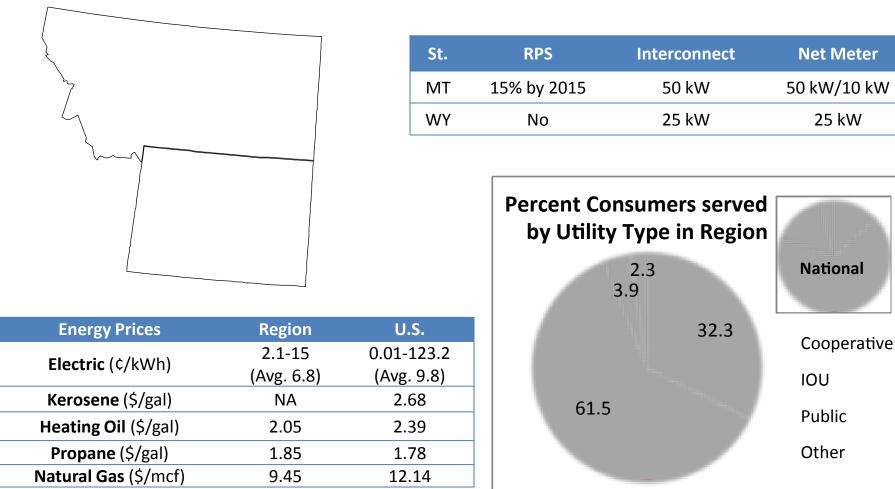
- Solar cells convert sunlight into electricity
- Technology Options:
 - 1. Traditional: efficient, flat-plate
 - 2. Thin-film: flexible, micro-thin layers
 - 3. Solar inks, dyes, and conductive plastics: expensive, but efficient

Energy Technology Costs

Levelized (LCOE)

18-43¢/kWh

Solar PV Installed Cost Breakdown

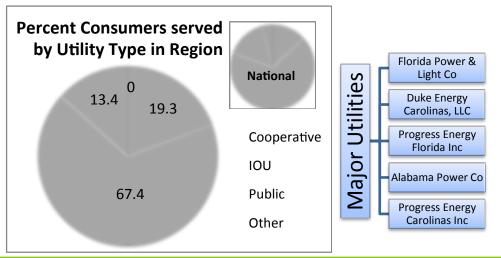


U.S. DEPARTMENT OF

Office of

Indian Energy

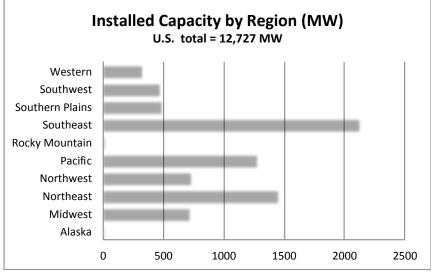
Rocky Mountain Region



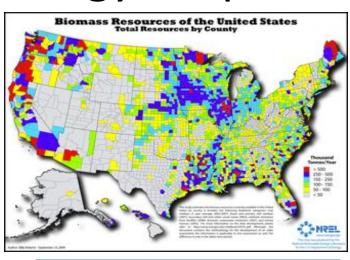
Southeast Region

St.	RPS	Interconnect	Net Meter
AL	No	No	No
FL	7.5% by 2015*	2 MW	2 MW
LA	No	300 kW	300 kW
MS	No	No	No
NC	12.5 by 2021*	No Limit	1 MW
SC	No	100 kW	100 kW

	- 0	
Energy Prices	Region	U.S.
Electric (¢/kWh)	2.5-18.3	0.01-123.2
	(Avg. 8.9)	(Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	2.07	2.39
Propane (\$/gal)	1.65	1.78
Natural Gas (\$/mcf)	15.31	12.14

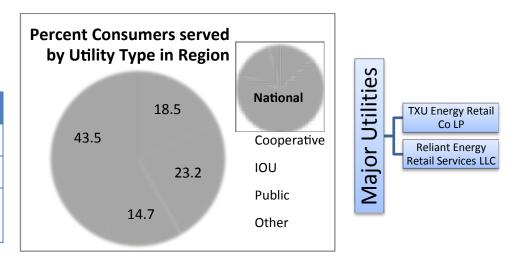

Office of

Indian Energy



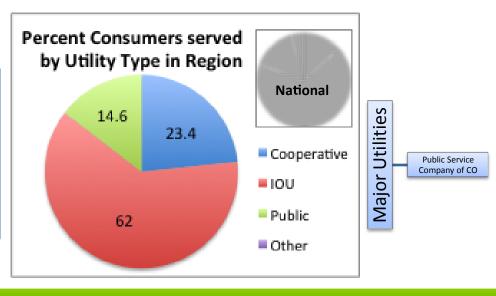
Biomass: Residues & Energy Crops

- Organic material derived from plants or animals
- Stored chemical energy is released as heat when burned
- Includes agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic "energy crops"



Southern Plains Region

Energy Prices	Region	U.S.
Electric (¢/kWh)	2.9-20.5	0.01-123.2
	(Avg. 8.3)	(Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	2.00	2.39
Propane (\$/gal)	1.51	1.78
Natural Gas (\$/mcf)	11.23	12.14

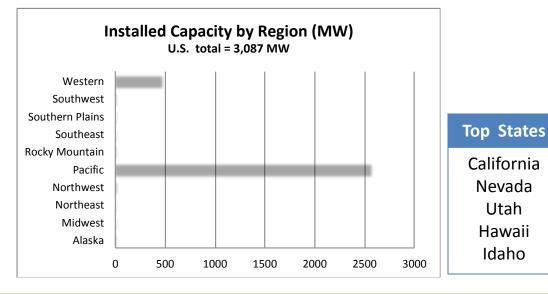


St.	RPS	Interconnect	Net Meter
KS	20% by 2020	200 kW	200 kW
ОК	15% by 2015	No	100kW*
тх	10,000 MW by 2025	10 MW	10-25 kW

Southwest Region

St.	RPS	Interconnect	Net Meter
СО	30% by 2020*	10 MW	120% average annual consumption
NM	20% by 2020*	80 MW	80 MW

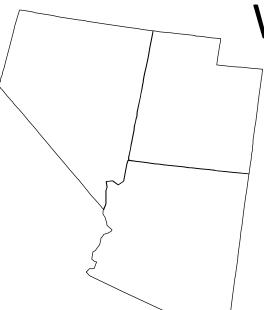
Energy Prices	Region	U.S.
Electric (¢/kWh)	2.6-19.7	0.01-123.2
	(Avg. 8.2)	(Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	1.97	2.39
Propane (\$/gal)	1.59	1.78
Natural Gas (\$/mcf)	9.17	12.14


U.S. DEPARTMENT OF

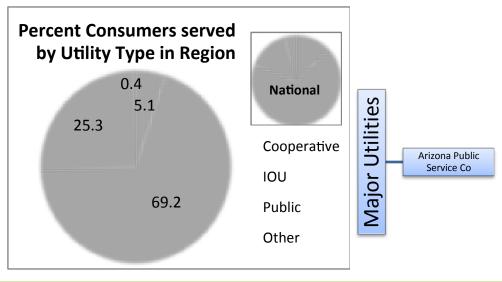

Office of

Indian Energy

Geothermal Energy

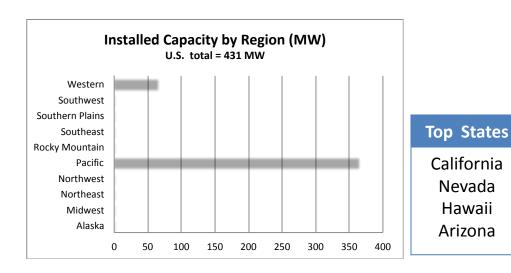

- Residual heat from deep in the Earth in the form of hot water or steam
- Deep wells drilled into underground reservoirs tap the heat source for various applications:
 - Direct use
 - Electricity production
 - Heat pumps

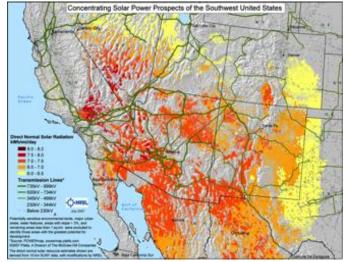
Installed \$1.66-3.90/Watt Levelized (LCOE) 6-13¢/kWh



Western Region

St.	RPS	Interconnect	Net Meter
AZ	15% by 2025	No	No Limit
NV	25% by 2025	20 MW	1 MW*
UT	20% by 2025	20 MW	2 MW


Energy Prices	Region	U.S.
Electric (¢/kWh)	0.9-16.6	0.01-123.2
	(Avg. 8.9)	(Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	2.19	2.39
Propane (\$/gal)	1.91	1.78
Natural Gas (\$/mcf)	13.26	12.14



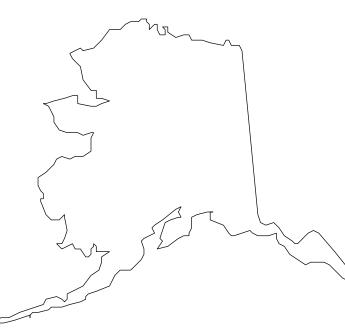
Concentrating Solar Power

- Reflective surfaces concentrate sunlight 80 to
 3,000 times normal, producing high temperatures
- Receiver transfers heat to a device that converts the heat into electricity
- CSP Types:
 - 1. Linear Concentrator
 - 2. Dish/Engine
 - 3. Power Tower

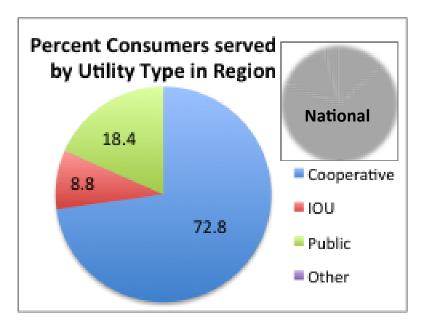
Energy Technology Costs

Installed

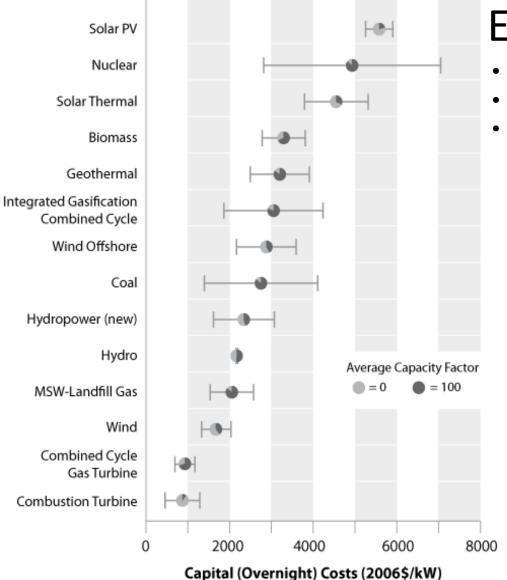
Levelized (LCOE)


>\$4.00/Watt

19-35¢/kWh



Alaska



Energy Prices	Region	U.S.
Electric (¢/kWh)	9.4-123.2	0.01-123.2
	(Avg. 15.1)	(Avg. 9.8)
Kerosene (\$/gal)	NA	2.68
Heating Oil (\$/gal)	2.50	2.39
Propane (\$/gal)	4.21	1.78
Natural Gas (\$/mcf)	10.23	12.14

Policy	Limit/Goal
RPS	No
Interconnection	25 kW
Net Metering	25 kW

Estimated Capital Costs

- Summary capital costs as of July 2010
- Based on a wide range of data sources
- More information: http://www.nrel.gov/analysis/tech_costs.html

Federal Renewable Incentive Programs

Renewable Electricity Production Tax Credit (PTC)				
Resource Type In-Service Deadline Credit Amount				
Wind	December 31, 2012	2.2¢/kWh		
Closed-Loop Biomass	December 31, 2013	2.2¢/kWh		
Open-Loop Biomass	December 31, 2013	1.1¢/kWh		
Geothermal Energy December 31, 2013 2.2¢/kWh				
Hydroelectric	December 31, 2013	1.1¢/kWh		

Business Energy Investment Tax Credit (ITC)				
Resource Type In-Service Deadline Credit Amt. Max Ince				
Solar	December 31, 2016	30%	No limit	
Biomass	December 31, 2013	30%	No limit	
Geothermal	No stated expiration	10%	No limit	
Microturbines	December 31, 2016	10%	\$200/kWh	

Dept. of Treasury - 1603 Program (closes December 2011):
Payments for Specified Energy Property in Lieu of Tax Credits

Resource Type	In-Service Deadline	Credit Amt.	Max Incentive
Solar	January 1, 2017	30%	No limit
Biomass	January 1, 2014	30%	No limit
Geothermal	January 1, 2017	10%	No limit
Microturbines	January 1, 2017	10%	\$200/kWh
Hydroelectric	January 1, 2014	30%	No limit

Modified Accelerated Cost-Recovery System (MACRS) + Bonus Depreciation

Resource Type	In-Service Deadline (100% Deduction)	In-Service Deadline (50% deduction)	MACRS Property Class Life (years)
Solar	December 31, 2011	December 31, 2012	5
Wind	December 31, 2011	December 31, 2012	5
Geothermal	December 31, 2011	December 31, 2012	5
Biomass	December 31, 2011	December 31, 2012	7

200 Level Series Summary

- From 100 Series: Understanding context and energy environment is critical to effective project selection
- There is extensive information already compiled
- There are tools and information available to be tailored to your exact needs

300 Training Series Renewable Energy Project Finance in Indian Country

Matt Ferguson & Joe Cruz Reznick Group

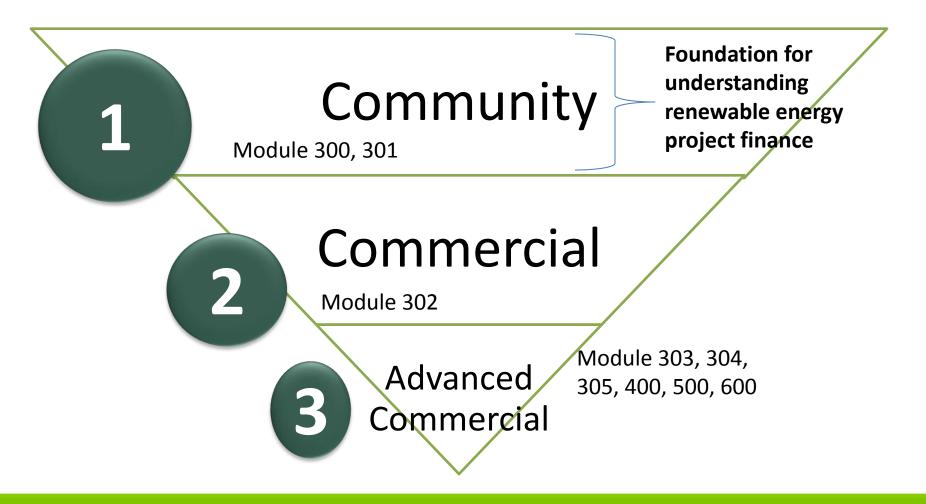
A survey of modules 300, 301, 302, 310 & 410

Objective

- For tribal nations with natural resource wealth to:
 - Learn about existing sources of renewable energy project capital
 - Learn proven renewable energy project finance structures so that decision makers and advisors are informed about the financial and economic implications of transaction structures

- You Know
 - How to identify economically viable renewable energy projects
 - That renewable energy project development can be an economic development tool
 - That there are a range of roles that tribal nations can play in a renewable energy opportunity

- You Will Learn
 - About common renewable energy project organization models and financing structures
 - How to assess varying tribe roles within organization models, general risks, and returns in renewable energy opportunities
 - About general economic drivers of renewable energy project finance structures



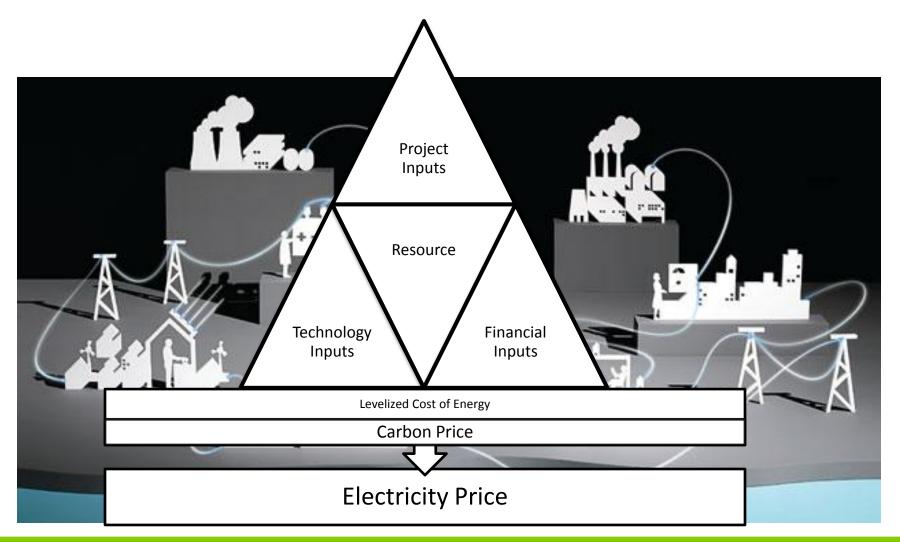
Training Series

Module	Description	Case Study
300	Finance Series – Introduction to public, private partnership of renewable energy project finance	Overview of Community & Commercial finance structures
301	Detail for lawyer, manager, finance responsible party	Community Project
302	Detail for lawyer, manager, finance responsible party	Commercial Project - Partnership Flip
303	Detail for lawyer, manager, finance responsible party	Commercial Project - Inverted Lease
304	Detail for lawyer, manager, finance responsible party	Commercial Project - Sale/Leaseback
305	Detail for lawyer, manager, finance responsible party	Public/Private Structure Analysis & Strategy

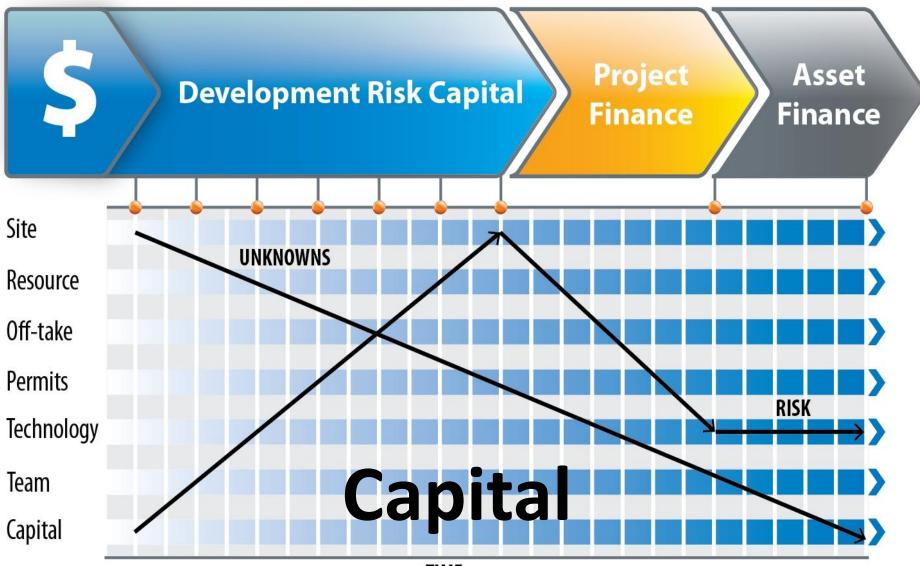
Building Blocks of Curriculum

Agenda

- Quick Overview
 - Recap relevant principles Series 100 & 200
- Case Studies
 - One: Community (Solar)
 - Two: Fundamental Commercial (Solar)
- Financial Structures & Models
- Case Study Three: Advanced Commercial (Wind)
- Conclusion


Value of Energy

- What is the demand for energy?
- Selling electricity = revenue
- Electricity basics
 - Power markets
 - Retail price, wholesale vs. cost of production
 - Renewable Energy Credits
 - Independent system operators, etc.
 - Transmission \rightarrow "gotta get to buyer"
 - Closed vs. open (regulated vs. unregulated)
 - California vs. North Dakota
- Levelized Cost of Energy (LCOE)
- Tax Credits and other subsidies


LCOE/Cost of Energy Controls EVERYTHING

Economic Inputs: Is the Project Feasible?

TIME

EXISTING ACTIVITY IN INDIAN COUNTRY

Discussion

Agenda

✓ Quick Overview -

Case Studies

- One: Solar Community

- Two: Fundamental Commercial
- Financial Structures & Models
- Case Study Three: Wind Commercial
- Summary

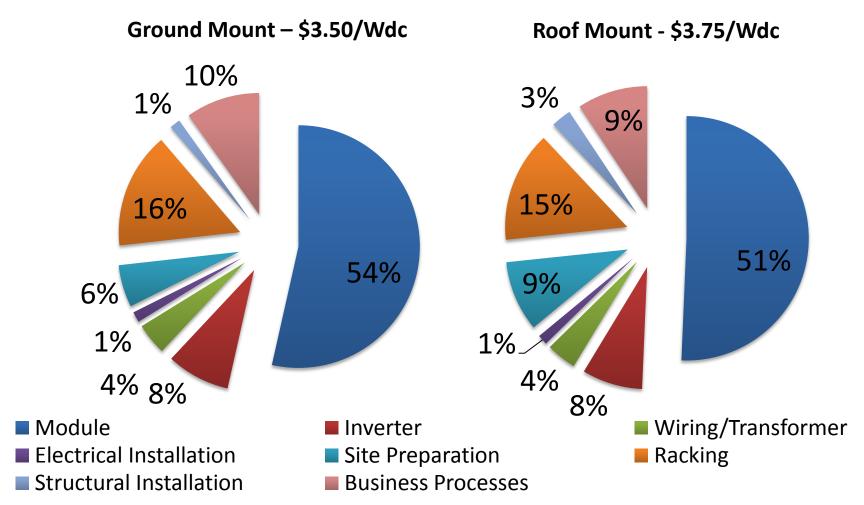
Two Paths

Cost Avoidance	Business Venture
Community project	Commercial project
Case study one	Case studies two and three
<u>Value proposition</u> • Save money, reduce electricity costs • Energy independence <u>Success Measurement</u> • Cost avoidance <u>Market Indicator</u> • Retail electricity price Decision Discipline	<u>Value proposition</u> • Selling electricity to make money <u>Success Measurement</u> • Levelized cost of energy (LCOE) <u>Market Indicator</u> • Wholesale electricity prices, Demand <u>Decision Discipline</u> • Investment /Business decision
 Capital budgeting 	

Two Paths

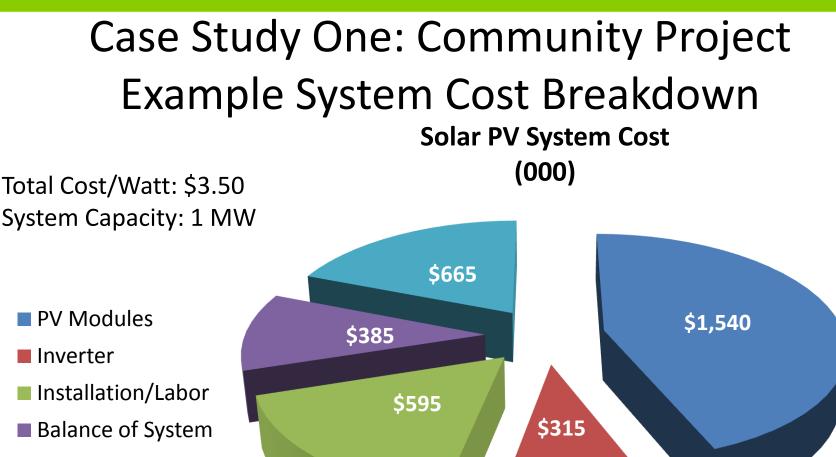
- Community
 - Install solar equipment for electricity cost management
 - Government center, casino, hotel, school

- Commercial
 - Install utility scale solar or wind for revenue generation
 - Contracted sale with a utility
 - Contracted sale with a large electricity user


Case Study One: Community Project

- **Solar Solar Community** • Self Use • Capital
 - Capital Budgeting Decision

- Solar PV
- 1 MW
- \$3,500/kW or \$3,500,000/MW installed cost
- Inspiration
 - 1 MW PV system that provides power for HVAC system for tribal casino hotel
 - 1 MW PV system powers a significant portion of the total energy needs for tribe's business operations
- Quick application
 - Begin feasibility for existing use government, enterprise or residences
 - Solar tax credit expires 2016

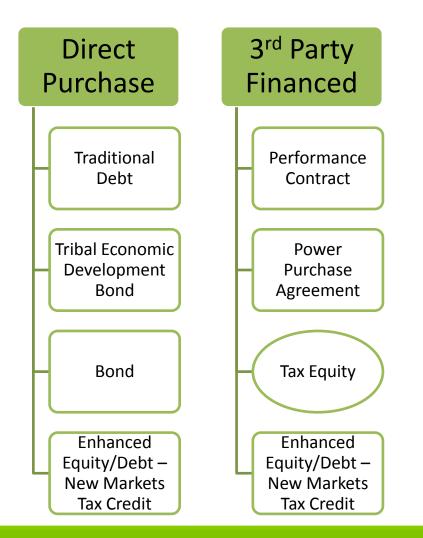


Solar Installed Cost Breakdown

Data Source: RMI 2010: http://www.rmi.org/Content/Files/BOSReport.pdf

Soft Costs

Case Study One: Community Project


- Electricity access and connection
 - Yes Replacement, substitution, or complement
 - No Originating necessary resource
- Source of fuel has broad implications
 - Coal
 - Hydroelectric
 - Natural Gas
- Existing electricity price
- Forecasted electricity and energy prices

Solar Community

- Self Use
- Capital Budgeting Decision

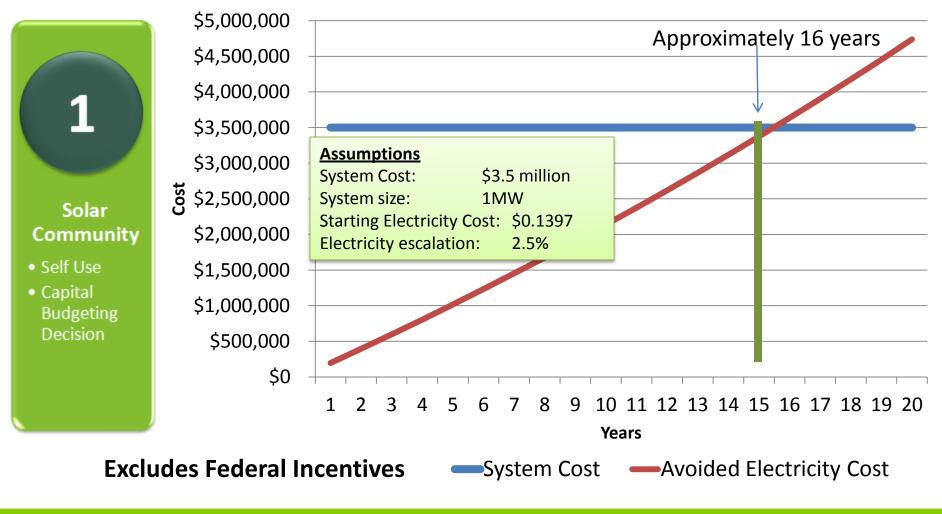
Capital for tribal community project

Case Study One: Community Project

- Sources & Use of Project Capital
 - Sources of payment
 - Grants, Tribal Nation's money, debt
 - Use of capital for project equipment/development
 - Engineering, Procurement & Construction (EPC) Agreement
- Project economics & financial model
- Operating costs
 - Operations & Maintenance Agreement
- Financial details
 - Payback
 - Retail rates

Solar Community

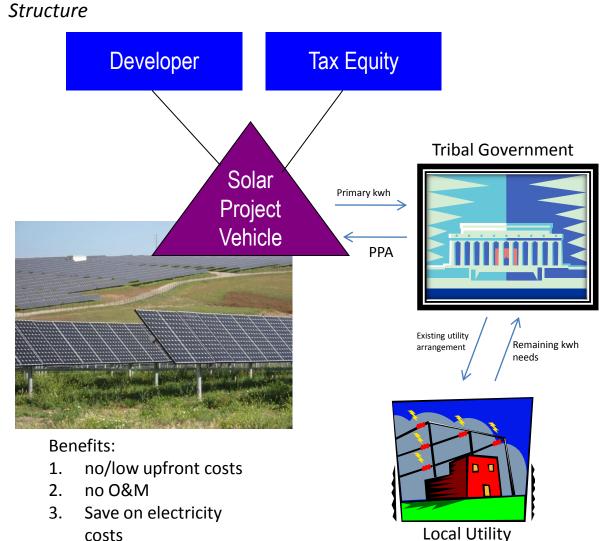
- Self Use
- Capital Budgeting Decision


Case Study One: Community Project Range of Cost for Solar PV System

1	 40 - 55% 6 - 10% 12 - 25% 	Solar panels Inverter Installation/labor • includes racking hardware	
Solar Community • Self Use • Capital Budgeting	• 5-10%	 Balance-of-system wiring, electrical hardware, interconnection, kiosks, etc. 	
Decision	• 15 – 25%	 Soft costs permitting, accounting, legal, developer fee, etc. 	

Indian Energy

Case Study One: Community Project Solar Project Payback



Office of

Indian Energy

Tribal PPA Solution

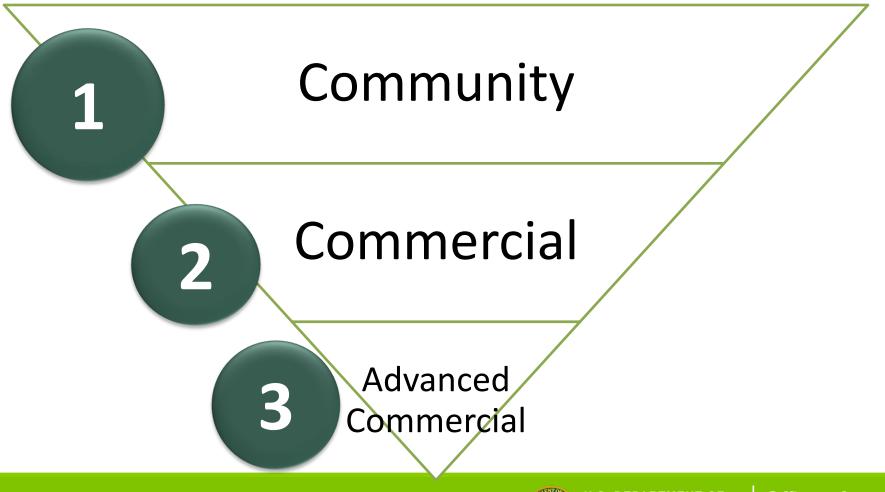
Accelerate Payback Strategy

Tribe Sponsored &

Preferred Commercial

costs

Step 1 – Instead of purchasing system, tribe hosts system and buys electricity from SPV via a power purchase agreement (PPA) Step 2 – Upon flip or expiration of risk period tribe exercises option and purchases preowned system



Discussion

OWNERSHIP

Building Blocks of Case Studies

Agenda

✓ Background

✓ Case Studies

✓ One: Solar Community

- Two: Fundamental Commercial

- Financial Models
- Case Study Three: Wind Commercial
- Summary

Two Paths

Cost Avoidance	Business Venture
Community project	Commercial project
Case study one	Case studies two and three
Value proposition	Value proposition
Save money	 Sell electricity for money
 Reduce electricity costs 	Success Measurement
 Energy independence 	 Levelized cost of energy
Success Measurement	Market Indicator
 Cost avoidance 	 Wholesale electricity prices,
Market Indicator	Demand
 Retail electricity price 	Decision Discipline
Decision Discipline	 Investment /Business decision
 Capital budgeting 	

Case Study Two: Solar Commercial Project

Fundamental Industrial

- For Sale
- Business
 Decision

- Federal Tax Credits reduce the capital cost of renewable energy projects for taxable entities only
- Tribes are tax exempt; therefore, financing the is renewable energy project with a non-tribal entity (i.e., tax equity investor) is compelling
- Tax Equity Investors = passive investors, limited partners that own the renewable energy project and primarily get their investment return through federal and state income tax benefits (tax deductions and tax credits).

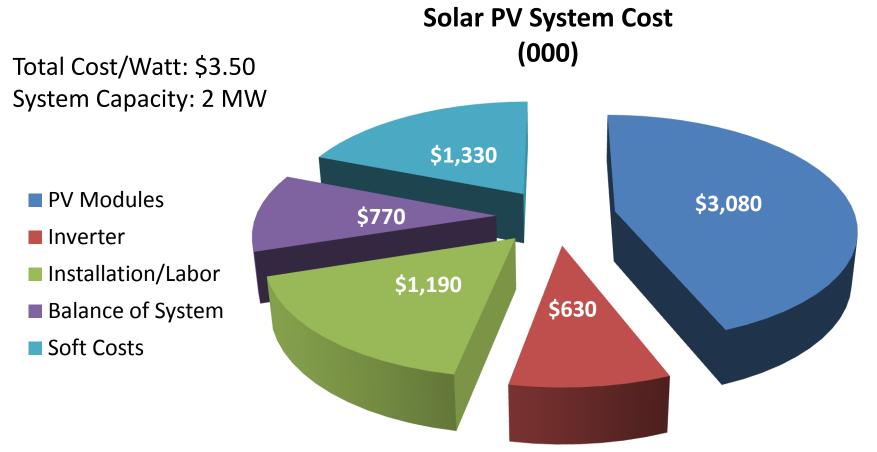
Module 302

Case Study Two: Solar Commercial Project

Ground mounted Solar PV power plant

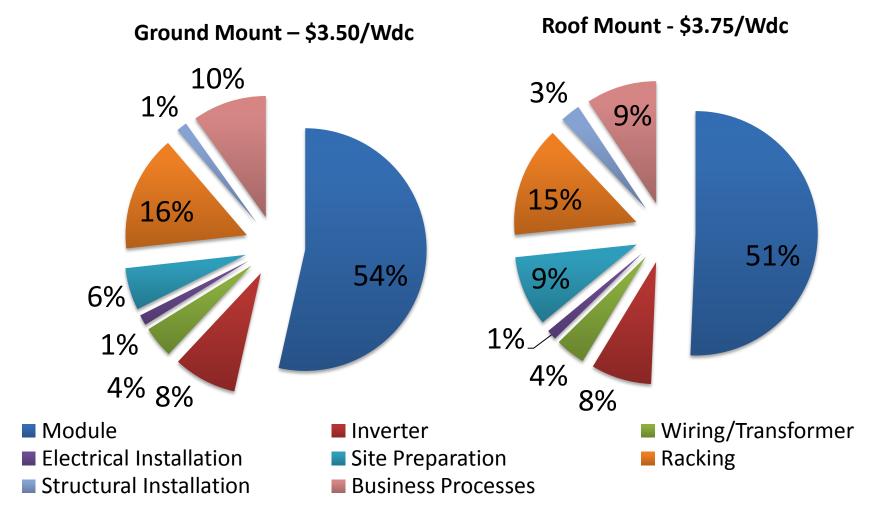
• 2 MW

Fundamental Industrial


For Sale

 Business Decision

- \$3,500/kW or \$3,500,000/MW
- 20 Year Project IRR: 10%
- Wholesale, commercial or retail rates
- Inspiration:
 - 4 MW Solar PV project with power sales to a utility


Example System Cost Breakdown

Total system cost \$7 million

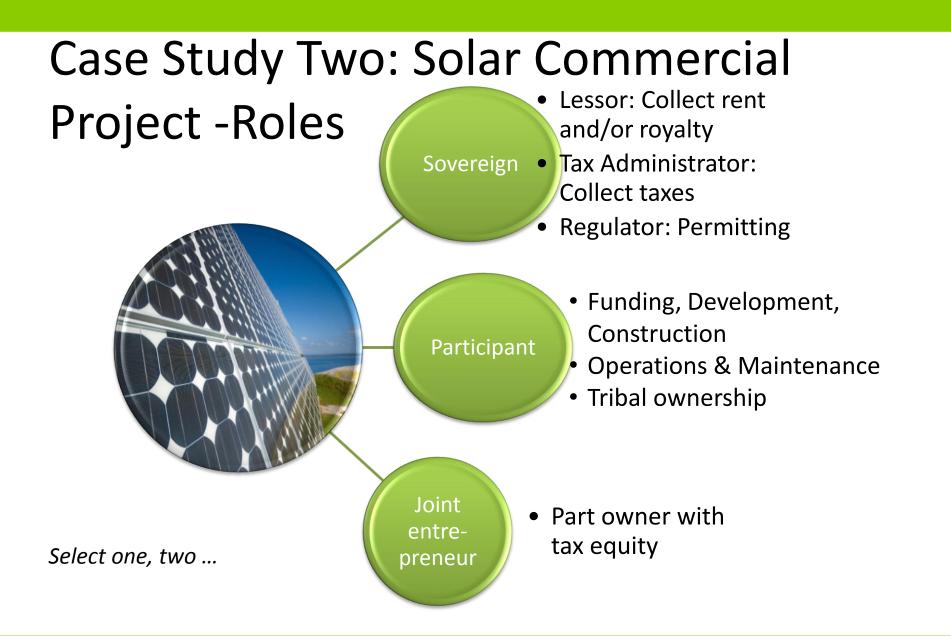
Solar Installed Cost Breakdown

Data Source: RMI 2010: http://www.rmi.org/Content/Files/BOSReport.pdf

Case Study Two: Solar Commercial Project

Fundamental Industrial

- For Sale
- Business
 Decision


- Cost of electricity varies across the country
 - California/Connecticut vs. North
 Dakota/Arizona
- Interconnection & transmission access
- Fair price for electricity (PPA)

Primary focus: how much you can sell electricity for? Who can you sell it to? Power market review

Office of

Indian Enerov

Case Study Two: Solar Commercial Project—Capital Expenses

- Capital cost/expense for equipment
 - EPC agreement
- Operating costs

Fundamental Industrial

For Sale

Business

Decision

- Project economics
- Sources of funding
 - Grants, Tribal Nation's money, investors, or debt
- Financial details
 - Project, investor, Tribal IRR

Range of Cost for Solar PV System

- 40 55% Solar panels
- 6–10% Inverter
- 12 25% Installation/labor
 - » includes racking hardware
 - 5 10% Balance-of-system
 - » wiring, electrical hardware, interconnection, kiosks, etc.
 - 15 25% Soft costs
 - » permitting, accounting,legal, developer fee, etc.

- Fundamental Industrial
- For Sale
- Business
 Decision

2 Fundamental Industrial

- For Sale
- Business Decision

Operations

- Operations and maintenance includes
 - Equipment maintenance and upkeep
 - Inverter replacement
 - Insurance
 - Labor and staffing
 - Extended warranty agreements

2 Eundamental Industrial

- For Sale
 Business
- Decision

Project Economics

 Analysis of capital budgeting decision (community) vs. new business venture or investment (Commercial)

Agenda

✓ Overview

✓ Case Studies

- ✓ One: Solar Community
- ✓ Two: Fundamental Commercial

Financial Structures & Models

- Case Study Three: Wind Commercial
- Summary

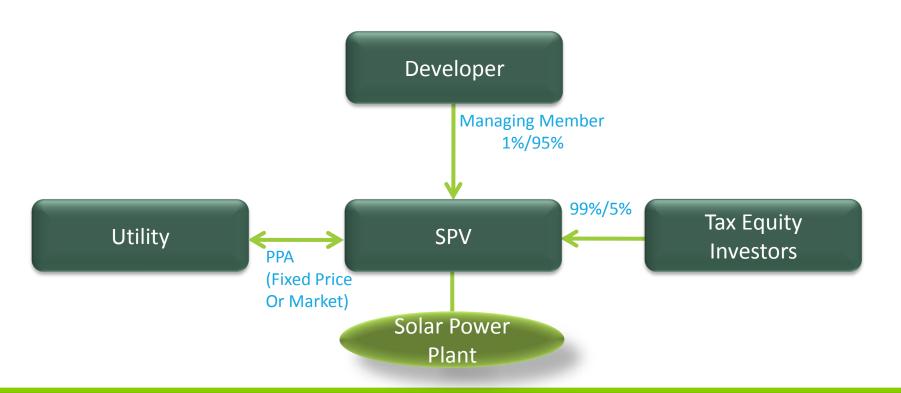
Considerations

- Partners
 - -Tribes are tax exempt: need a partner that can use tax credits
 - Use of Federal subsidies creates a "marketable/bankable" project
- Motivational Factors
 - Develop a low cost project with a competitive LCOE
 - A competitive LCOE translates into the ability to sell power and make a profit
 - -- Be MORE than a landlord
 - -- Extract more value/money out of the project than when pursuing it independently, or alone isn't lucrative

Legal Entity Refresher

- Renewable energy assets/projects generally held in special purpose vehicle (SPV)
- Pass-through entity
 - Partnership
 - Limited Liability Company
 - IRS considers all "partnerships"
 - Excluding single member LLC with election
- Partnership tax law applies

Capital Structure: Sources and Use


	Sources	Roles of Parties
Flip	General Partner (GP) Limited Partner (LP)	GP – Project Developer LP – Tax Equity Investor (Tax credit, Depreciation)
Inverted Lease	Developer Equity Investor	Developer – Lessor (Depreciation) Equity Investor – Purchaser, Lessee (Tax Credit
Sale Leaseback	Developer Equity Investor	Developer – Seller, Lessee Equity Investor – Purchaser, Lessor (Tax credit, depreciation)

Use: Construction and Equipment Costs

Partnership Flip Structure

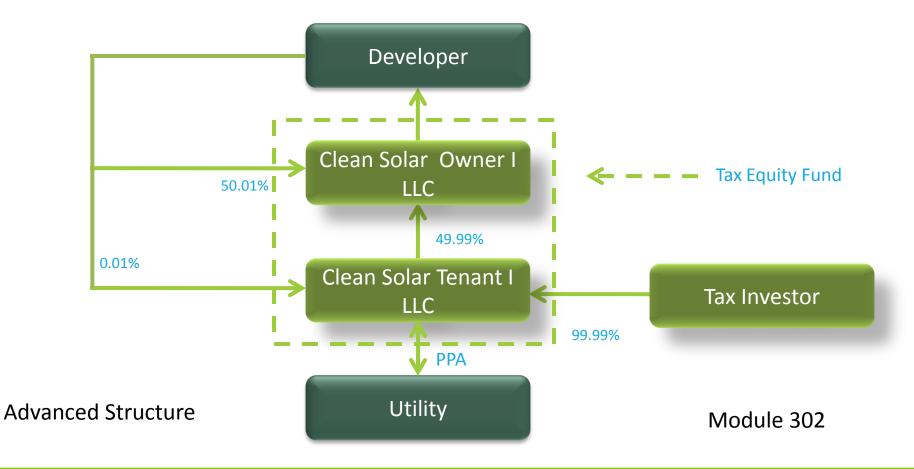
Module 302

U.S. DEPARTMENT OF ENERG

Partnership Flip Structure Demonstration

Native American Solar PV Company Solar PV Project B 2 MW Solar PV Power Plant Economics Annual Project Pro Forma (\$000)

	1	6	7	20
Year:	2013	2018	2019	2032
REVENUE	\$589	\$574	\$572	\$536
INVESTMENT TAX CREDIT	\$2,100			
O&M EXPENDITURES	(\$55)	(\$55)	(\$55)	(\$57)
OPERATING CASH FLOWS (EBITDA)	\$534	\$520	\$517	\$479
NET INCOME	(\$656)	\$177	\$517	\$479
Taxes Benefit/(Payable) @ 35%	\$229	(\$62)	(\$181)	(\$168)
PROJECT BENEFITS				
Energy tax Credit	\$2,100			
Cash Flow	\$534	\$520	\$517	\$479
Tax Benefit/(Payable) @ 35%	\$229	(\$62)	(\$181)	(\$168)
Total Benefits	\$2,864	\$458	\$336	\$311
Capital Cost	(\$7,000)			
Total Project Benefits (Cash & Tax)	(\$4,136)	\$458	\$336	\$311
INVESTOR BENEFITS	(\$1,403)	\$198	\$17	\$16
DEVELOPER BENEFITS	(\$2,733)	\$260	\$491	\$455

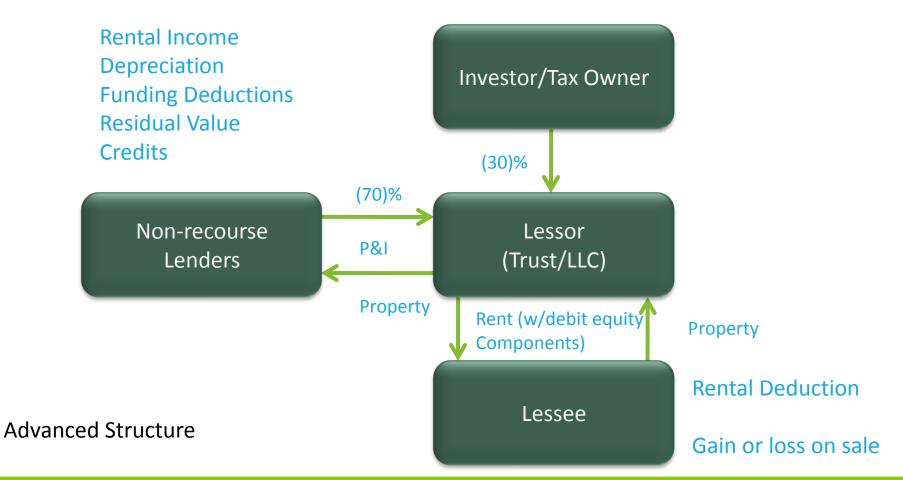


Tribal Ownership

- Total tribal ownership is feasible post flip
- Investor owns a small interest post flip (e.g., 5%)
 Efficient for tribe to buy out investor
- Legal and beneficial ownership cash flow
 - Tribe is paying self:
 - Rent/royalty
 - Tribal taxes
 - If project was subject to non-tribal taxes full tribal ownership reduces likelihood of taxability.

Inverted Lease Structure

Inverted Lease Structure


Advanced Structure

- Developer owns project, contributes it to a lessor entity, and leases to tax equity Investor
 - Investor/lessee sells power
 - Pays rent to developer/lessor
 - Lessor elects to pass through tax credit to lessee
- Lessor claims depreciation as owner to shield its income
 - Lessee shares in depreciation through interest in lessor entity
 - Developer deducts rent that may mirror depreciation it would have received as owner
- Tax credit based on market value of project vs. cost
 - Lessor does not have to reduce depreciable basis by half the credit
 - Note: investor must report half the credit as income over five years

Sale Leaseback Structure

Module 303

Sale Leaseback Structure

- Developer sells project to tax equity investor and then leases it back
 - Sale is the market value of the project
 - Investor receives tax credit and depreciation
- Lease cannot be longer than 80% of expected life and value
- Tax credits only claimed on new equipment
 - Equipment status preserved as new if it's sold and leased back within three months
- Allows developer to indirectly share in tax subsidies through reduced rent for use of equipment

Advanced Structure

	Project Debt			Tax E	quity	Lease							
	Bank	Private Bond			Unlevered	Equity	DOE						
Investor Universe	Commercial Banks	Private or 144A Offering	Institutional investors w/energy focus	Financial investors and some corps. with tax appetite.								Lease equity market, institutional	DOE supports 100% or 80%
Target Rating	"Investment Grade" no rating needed	BBB-/NAIC 2	B is doable; BB is preferred	NA (Investment Grade Offtaker)		NA (Invest. Grade Offtake)	NA						
Market Capacity	Up to \$1 Billion; up to 1.0XDSCR in Low Case	+\$1.0 Billion	\$750 Million	Sized to target IRR		Sized to target IRR		Sized to 20- 49% of Capital Stack	No Limit				
Indicative Pricing	L+250-350 2007: 100-150 +fees 1.5-2.0%	7% Area; T + 5%-6% Fixed	L+250-500; 425 - 450 Libor floor;	11-13.5; IRR by Flip	9-10.5% IRR by Flip	9.0-12.5% after tax yield	T+75-100 bps						
Tenor	5-7 years typical, up to 15	Term of PPA (20-25); Prepayment Penalty	Up to 7 years	Target IRR reached by year 10 with PTC; 6-7 with ITC						80% of Useful Life	Up to 30 years		
Sizing Profile	DSCR Requirements 1.30-1.40X;1%lockbox; PPA 'Tail'; EPC with credit support; LIBOR Swaps; Reservesamortization with cash sweep		Downside flip dates: +3 years in downside; +6 years in severe downside		1.30-1.40 "RSCR" Like Project Debt	Driven by required Ratings							

Office of Indian Energy

Discussion

FOUNDATION CONCLUSION

Agenda

- ✓ Overview
- ✓ Case Studies
 - ✓ One: Solar Community
 - ✓ Two: Fundamental Commercial
- ✓ Financial Models

✓ Case Study Three: Advanced Commercial

✓ Summary

Commercial Wind Project

• 100 MW

Module 310

- \$2,000/kW or \$2,000,000/MW
- \$100/MW PPA
- 30% capacity factor
- 20 Year project IRR: 10%
- Inspiration: 20 to 200 Mw projects that are in varying degrees of development

Energy

Revenue

- Cost of electricity varies across the country
 California/Connecticut vs. North Dakota/Arizona
- Interconnection & transmission access
- Fair price for electricity (PPA)

Primary focus: how much you can sell electricity for?

Who can you sell it to? Power market review

Capital Expenses

- Project Expenses
 - Pre-development
 - Permitting
 - Biological Studies
 - Met towers
 - Foundations
 - Towers
 - Turbines and blades
 - Electric grid
- Total installed cost \$2,000/kw

Operations

Operations and maintenance includes

- Equipment maintenance and upkeep
- Spare parts (including blades)
- Monitoring and curtailment
- Insurance
- Labor and staffing
- Extended warranty agreements

Project Economics

Native American Wind Company Wind Project A 100 MW Wind Farm Economics Annual Project Pro Forma (\$000)

3

Wind

Industrial

• For Sale

 Business Decision

	1	10	11	20	
Year:	2013	2022	2023	2032	
REVENUE	\$24,528	\$24,528	\$24,528	\$24,528	
PRODUCTION TAX CREDIT (PTC)	\$5,396	\$6,739	\$0	\$0	
OPERATING EXPENDITURES	(\$6,416)	(\$8,365)	(\$8,628)	(\$9,429)	
OPERATING CASH FLOWS (EBITD	\$18,112	\$16,163	\$15,900	\$15,099	
NET INCOME	(\$21,423)	\$15,931	\$15,667	\$15,099	
Tax Benefit/(Payable) @ 35%	\$7,498	(\$5,576)	(\$5,484)	(\$5,285)	
PROJECT BENEFITS					
PTC	\$5,396	\$6,739	\$0	\$0	
Cash Flow	\$18,112	\$16,163	\$15,900	\$15,099	
Tax Benefit/(Payable)	\$7,498	(\$5,576)	(\$5,484)	(\$5,285)	
Total Benefits	\$31,006	\$17,327	\$10,416	\$9,814	
Capital Cost	\$200,000				
Total Project Benefits (Cash & Tax)	(\$168,994)	\$17,327	\$10,416	\$9,814	
INVESTOR BENEFITS	(\$62,106)	\$17,327	\$521	\$491	Pr
DEVELOPER BENEFITS	(\$106,888)	\$0	\$15,105	\$14,344	20

Project IRR @ 20 Years = 10%

Agenda

✓ Background

✓ Case Studies

- ✓ One: Solar Community
- ✓ Two: Fundamental Commercial
- ✓ Financial Models
- ✓ Case Study Three: Wind Commercial

✓ Summary

Renewable Energy Project Development Takeaways

- Who: Tribal Nations with Natural Resources
- What: Develop Renewable Energy projects or go into Renewable Energy business

U.S. DEPARTMENT OF

Office of

Indian Energy

- Community: Use the energy/power for tribe
- Commercial: Sell to power company or others
- Where: Indian Country or controlled lands
- Why: Value proposition
 - Economic development
 - Risk mitigation
 - Portfolio diversification
 - Jobs
 - Assert sovereignty
- How: Informed financial structuring
 - Flip
 - Sale leaseback
 - Inverted lease

Series 300 Summary

- Renewable Energy projects can be an economic development tool for Tribal Nations
- Tribal Nations can participate in Renewable Energy projects for commercial or community benefit
- Renewable Energy projects are financed and structured to transfer risk and allocate capital effectively
 - Flip
 - Simple structure
 - Investor utilizes tax credits in exchange for capital
 - Inverted lease
 - Tax credit based on Fair Market Value
 - Tax credits pass through to Lessee
 - Sale leaseback
 - Lessor purchases project at Fair Market Value
 - Lessor utilizes tax credits and depreciation

