You are here

Marine and Hydrokinetic Technology Development and Testing

The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. In order to meet its generation goals, the program supports the design, development, testing, and demonstration of technologies that can capture energy from waves, tides, and currents. Additionally, the program funds the creation of instrumentation, modeling, and simulation tools to enable real-condition testing of technologies. Learn more about the following topics in marine and hydrokinetic technology development and testing:

Technology Advancement and Demonstration

The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. The program also funds component design and testing. By investing time and effort into each component, manufacturers can improve the overall reliability and performance of complete devices and arrays.

Testing Infrastructure and Instrumentation

In order to perform rigorous device testingPhoto of the HINMREC Kaneohe Bay site.   Shows a hilly peninsula jutting out into the ocean. to validate and optimize prototypes, developers require comprehensive test facilities. The program has provided funding to identify 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. These facilities are compiled in the Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations in dry-dock and closed-water testing facilities. Likewise, instrumentation development is supported to enhance the testing capacities of these facilities. Additionally, the program has partnered with four universities to create three testing sites to incubate advanced marine and hydrokinetic technologies. The Northwest National Marine Renewable Energy Center (NNMREC), operated jointly by Oregon State University and the University of Washington, focuses on wave and tidal energy conversion devices through test berth design and permitting, community outreach and education, characterization of testing sites, and acoustic monitoring and deterrence capabilities. The Hawaii National Marine Renewable Energy Center (HINMREC), operated by the University of Hawaii, emphasizes wave energy and ocean thermal energy conversion and boasts a collaborative wave energy test site with the U.S. Navy. The Southeast National Marine Renewable Energy Center (SNMREC), operated by Florida Atlantic University, focuses on ocean currents and ocean thermal energy conversion and specializes in environmental baseline observation systems.

Modeling and Simulation

The program actively pursues research and development efforts in modeling and simulation to provide tools to optimize device and component design decisions, inform prioritization efforts for device development, and inform strategic planning for the program and its partners. Modeling tools and access to laboratory expertise enable developers to reduce their overall costs, reduce their design iterations, and gather information on optimal configurations and locations for devices. Modeling tools can provide baseline information on operation and installation costs and environmental impacts. These tools increase user and investor confidence by providing an opportunity to simulate full deployment scenarios, estimate costs, and optimize reliability and overall performance.

Technology Characterization and Evaluation

The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

Technology Development and Testing Accomplishments

The Water Power Program has had numerous accomplishments in marine and hydrokinetic technology development and testing. The projects described below highlight some of the program's successes in advancement and demonstration, testing infrastructure and instrumentation, and modeling and simulation.

Photo of the NNMREC OceanSentinel, showing a the floating, metal test unit floating in the ocean.

Northwest National Marine Renewable Energy Center: Advanced Assessment and Device Testing

NNMREC is designing, installing, and demonstrating a mobile marine test unit—the OceanSentinel—that monitors efficiency and impacts of marine energy conversion devices. The OceanSentinel is also responsible for regularly gathering baseline environmental data. One of the first devices linked to the OceanSentinel was Northwest Energy Innovations' WET-NZ device, a multi-mode conversion device that uses a variety of wave motions to generate electricity.

Photo of the the ORPC Tid Gen device set up on dry land, made up of several interconnected tidal units.

Ocean Renewable Power Company: Commercialization of Tidal Devices

Ocean Renewable Power Company (ORPC) is building, installing, operating, and monitoring a commercial-scale array of grid-connected tidal devices. ORPC has constructed components of this array, which will contain several 150 kilowatt TidGen units. The expansion into a commercial array marks a major success of their original prototype BetaGen testing project, also supported by the program.

The OPT Power Buoy set up on the shore.  The device has a buoy on one side and a turbine on the other.

Ocean Power Technologies: Testing Wave Conversion Devices

Ocean Power Technologies (OPT) is designing, building, and installing a 150 kilowatt-capacity floating point absorber device. The device, known as the PowerBuoy, will use the rise and fall of waves in a vertical motion to generate electricity, which can then be transmitted to a site onshore with an underwater power cable.