Zero Emission Heavy Duty Drayage Truck Demonstration

Brian Choe South Coast Air Quality Management District May 16, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID# VSS115

Overview

Timeline

- Project Start Date: Oct. 2012
- Project End Date: Sept. 2015

Barriers

- Risk Aversion
- Cost
- Infrastructure

Budget

- Total Project Cost: \$9,251,003
- DOE Share: \$4,169,000
- Cost Share: \$5,082,003

Partners

- Project Lead South Coast Air Quality Management District
- Balqon
- TransPower
- U.S. Hybrid
- Vision Industries

VISION motor corp

 National Renewable Energy Laboratory (NREL)

Sbalqon

Objectives

- Develop and demonstrate zero emission drayage truck technologies in real world cargo container transport operations
- Measure and analyze the performance of demonstration vehicles



- Accelerate the deployment of zero emission technologies in port drayage operations
 - 90% of NOx emissions from mobile sources in the South Coast Air Basin
 - Approximately 10,000 drayage trucks operating in Ports of Los Angeles and Long Beach

Project Relevance

- Risk Aversion Promote market acceptance through demonstration in real world drayage service with partnering fleets
- Cost Assess total cost of ownership for drayage truck applications (O&M cost savings vs capital costs)
- Infrastructure Evaluate different charger technologies for more accommodating charging infrastructure and logistics

Project Milestones FY 12 and FY 13

Month/Year	Milestones	Status
October 2012	DOE award agreement	Complete
January 2013	Agreement amendment	Complete
March - April 2013	Contract executions	Pending
April – June 2013	Drive system design	Pending
June 2013	June 2013 Vehicle integration begins	
September 2013	First demonstration vehicle completed	Pending

Project Approach/Scope

- One year to develop four different types of heavy-duty zero emission drayage truck technologies
 - Three types of battery electric trucks
 - Balqon (3), TransPower (4), US Hybrid (2)
 - Fuel cell hybrid electric truck (extended range)
 - Vision Industries (4)
- Chassis dynamometer evaluation to validate and optimize the vehicle performance

- Two-year demonstration in real world drayage service with partnering fleets
- Collect and analyze performance and cost data

Project Approach Vehicle Development - Balqon

- Three Class 8 battery electric drayage trucks based on pre-commercial prototype model MX-30
- Specifications
 - 240 kW electric motor with automatic transmission
 - 380 kWh battery pack (Lithium Iron Phosphate)
 - 160 kW fast charger (3 hrs to charge)
 - 55-70 mph
 - 100-150 miles range
- Notable
 - 500 kWh energy storage unit with DC-DC fast charger
 - Rapid charge trucks in 1 hr
 - The energy storage unit to be charged during off-peak hours

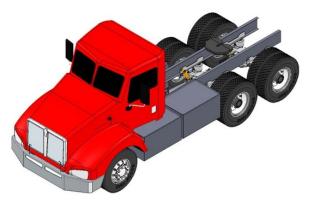
South Coast Air Quality Management District

MX-30

Project Approach Vehicle Development - TransPower

- Four Class 8 battery electric drayage trucks based on precommercial prototype model ElecTruck
- Specifications
 - 300 kW electric motor with Automated Manual Transmission
 - 269 kWh battery pack (Lithium Iron Phosphate)
 - 60 mph top speed (65,000 lbs)
 - 70 100 miles range
- Notable
 - Inverter-Charger Unit (ICU)
 - Combines the function of inverter and battery charger
 - Simpler and more economical
 - No need for off-board charger; requires routine wiring of cable and plug
 - Charging time: 4 hours

Air Quality Management District


South Coast

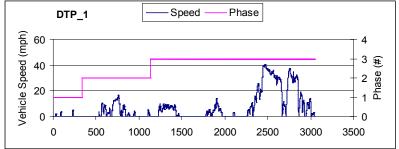
ElecTruck

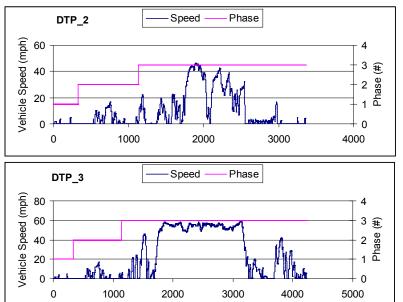
Project Approach Vehicle Development - US Hybrid

- Two Class 8 battery electric drayage trucks
- Specifications
 - 320 kW electric motor with automatic transmission
 - 300 kWh battery pack (Lithium Nickel Cobalt Aluminum Oxide)
 - 120 kW DC fast charger
 - 6.6 kW on-board level 2 charger
 - Emergency backup
- Performance
 - 60 mph top speed (65,000 lbs)
 - 100 miles range
 - Charging time: 3 hours (120 kW FC)

Project Approach Vehicle Development - Vision

- Four Class 8 fuel cell hybrid electric trucks based on precommercial model Tyrano
- Specifications
 - 320 kW electric motor
 - Direct drive w/ two-speed rear end
 - Parallel hybrid system with 33 kW PEM fuel cell
 - 130 kWh battery pack (Lithium Iron Phosphate)
 - 20kg hydrogen storage
 - Level 2 Charger (8 hrs)
- Performance
 - 60 mph top speed (65,000 lbs)
 - Extended range: 200 miles
 - Refuel time: 10-15 min. H₂ @ 6,250 psi


Zero Emission Trucks


What are the differences?

	Balqon	TransPower	US Hybrid	Vision
Transmission	Automatic (dual mode)	Automated Manual Transmission	Automatic	Direct Drive two-speed rear end
Battery Pack/ Fuel Storage	380 kWh LiFePO ₄	269 kWh LiFePO ₄	300 kWh Li-ion (NCA)	130 kWh LiFePO ₄ / 20 kg H ₂
Charger	160 kW FC; DC-DC FC with 500 kWh energy storage unit	Two 70 kW on-board Inverter-Charger Units (ICU)	120 kW FC; 6.6 kW on-board Level 2 charger (backup)	Level 2 charger
Recharge/ Refuel Time	3 hrs (160 kW) 1 hr (DC–DC FC)	4 hrs (70 kW ICU)	3 hrs (120 kW FC)	8 hrs (Level 2)/ 10-15 min H ₂
Range	100-150 miles	70-100 miles	100 miles	200 miles

Project Approach Chassis Dynamometer Evaluation

- Each manufacturer to test at least one demonstration vehicle on a chassis dynamometer to validate and optimize the vehicle performance
- Vehicles to be tested on the Drayage Truck Port Cycle
 - Simulate typical drayage truck operations
 - Consist of three modes:
 - Near dock (2-6 miles)
 - Local (6-20 miles)
 - Regional (20+ miles)
- University of California, Riverside or other approved institution to perform the testing UCRIVERSIDE CE-CERT

DTP Cycle: near dock (DTP_1), local (DTP_2), regional (DTP_3)

Project Approach Field Demonstration

- Two-year demonstration in real world drayage service with partnering fleets in the South Coast Air Basin
 - Total Transportation Services and California Cartage Company
- Evaluate the performance of demonstration vehicles for drayage duty cycle
 - Battery electric trucks
 - Fuel cell hybrid electric trucks (extended range)
- Assess total cost of ownership for drayage truck applications

- O&M cost savings to offset higher capital costs
- Evaluate different charger technologies for more accommodating charging infrastructure to support drayage operations
 - On-board charger (ICU)
 - DC–DC fast charger with 500 kWh energy storage unit

Project Approach Data Collection and Analysis National Renewable Energy Laboratory (NREL)

- Manufacturers to install on-board data loggers to collect and transmit required vehicle, charger and ambient data during the two-year demonstration
- Manufacturers or partnering fleets to provide maintenance and operational cost data on a monthly basis
- NREL to evaluate the in-use performance and O&M costs of demonstration vehicles and to provide quarterly and final reports CONTROL

Collaborations and Coordination

- Four EV manufacturers, as subrecipients, to develop and demonstrate four different types of electric drayage trucks
 - Balqon, TransPower, US Hybrid, Vision Industries
- NREL, as subrecipient, to analyze the in-use performance data for demonstration vehicles
- University of California, Riverside to perform chassis dynamometer testing to validate the performance of demonstration vehicles
- Fleet partners, Total Transportation Services and California Cartage Company, to deploy demonstration vehicles in real world drayage service

Future Work

- FY 13
 - Complete drive system designs by Q3
 - Vehicle integrations to begin in Q4
 - Coordinate with NREL and manufacturers for data collection arrangement
- FY 14
 - Chassis dynamometer testing for performance validation
 - Field demonstrations to begin in Q1
 - Complete vehicle integrations by Q3
 - NREL to provide performance analysis reports on quarterly basis

Summary

- Objective of this project is to develop and demonstrate zero emission drayage trucks in real world drayage service to promote market acceptance and demand
- One year to develop four different types of heavy-duty zero emission drayage truck technologies
 - Three types of battery electric trucks (Balqon, TransPower, US Hybrid)
 - Fuel cell hybrid electric truck (Vision Industries)
- Chassis dynamometer testing for vehicle performance validation and optimization
- Two-year demonstration with partnering fleets in port drayage operations in the South Coast Air Basin
- NREL to analyze the performance and cost data for demonstration vehicles