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Results Regarding Soot Nanostructure 

Soot Nanostructure: (Definition) 
* Soot Nanostructure refers to carbon lamella (layer plane) length, orientation, 
separation and tortuosity. 
* Nanostructure is variable, dependent upon temperature, residence time and 
fuel identity. 

Fringe Analysis Algorithm: (Quantification) 
* Lattice fringe analysis can be used to analyze HRTEM image data and 
quantify carbon nanostructure through statistical analysis. 

Oxidation Rates: (Implications) 
* Oxidation rates are dependent upon nanostructure - suggests using 
nanostructure to control (accelerate) oxidation. 
* Source apportionment via analysis of nanostructure? 
* Health consequences related to nanostructure? 
* Environmental impact dependent upon nanostructure? 
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Fringe Length Analysis
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Fringe Tortuosity Analysis 
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Smoke Meter (Engine Out)




Microscopic and Spectroscopic Analysis 

Techniques for Soot Characterization
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(high resolution transmission(high resolution transmission
electron microscopy)electron microscopy)
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Physical StructurePhysical Structure
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Chemical Composition 
(& bonding states) 



Outline - XPS 

1. Motivation & Background 
2. Introduction to XPS 
3. Analytical capabilities: 

A. Elemental Composition (Identification of source; wear, etc.) 

B. Carbon Oxidation State - Oxygen Functional Groups 
(Oxidation conditions) 

* Consistency of samples within the same class 
* Distinctness between different classes of samples 

C. Carbon (nano)structure 

4. Conclusions 



Introduction to X-Ray Photoelectron Spectroscopy 

(XPS)


* XPS provides information about elemental composition 
and 
oxidation state of the surface. 

* A monochromatic X-ray beam of known energy displaces an 
electron from a K-shell orbital. 

* The kinetic energy of the emitted electron is measured in an 
electron spectrometer. 

* The binding energy Eb = hv – Ek 
is characteristic of the atom and orbital from which the electron is 
emitted. 



Introduction to XPS (continued) 

* A low-resolution wide-scan (survey) spectrum serves as the basis 
for the determination of the elemental composition of samples. 

* At higher resolution, chemical shifts are observed depending upon 
oxidation state. 

Ek = hv - Eb 

X-ray 
e-

Eb 
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Low-Resolution Survey Scan - Jet Aircraft Emissions 



Low-Resolution Survey Scan - Diesel Engine Soot 
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Identify Oxygen Functional Groups
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Oil Fired Boiler versus Residential Oil Fired Furnace
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Comparison Between Biodiesel Soots
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Comparative Peak Intensities - Oxygen Functional Groups

Average C1s Peaks 
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Motivation for Alternative Analysis Techniques 

1. Lattice Fringe Analysis is time consuming 

2. Analysis can be difficult to apply (in some cases) 

Hmmm…. 



Identify Types of Carbon Nanostructure
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Identify Types of Carbon Nanostructure
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Comparative Peak Intensities - Carbon Nanostructure
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High Resolution Scan - C1s Region - HOPG Edge Planes
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High Resolution Scan - C1s Region - HOPG Layer Planes
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XPS Sensitivity to Carbon Nanostructure
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* Developing Correlations with Carbon Reactivity* 


Sample: 
Edge Sites Basal Plane 
Intensity Sum Intensity Sum 

Planar Graphite 
( ~ 284 eV, sp2) 

1749 
13% 

11265 
87% 

Edge Graphite 
( ~ 285 eV, sp3) 

4021 
37% 

6723 
63% 

Ratio (G/D) 0.35 1.38 

Edge site carbons can be nearly 10-fold more reactive than basal plane sites




Goal & Result 

HRTEM & Lattice Fringe Analysis 

XPS Carbon nanostructure Oxidative Reactivity 



Conclusions 

1. XPS analysis can identify & quantify trace elements. 
Utility: Can be used to identify source based on specific elements 

present and their distribution. 
* Track fuel and/or oil elements 
* Analysis of engine wear 

2. XPS can identify oxygen groups by bonding type; C-OH, C=O, and 
C-OOH. 	These reflect the soot oxidation history. 

Utility: Identify the occurrence and degree of oxidation, such as 
the soot cake within a DPF 

3. XPS can identify the types of carbon present, sp2, sp3 and fullerenic 
Therein it can provide a complimentary method to HRTEM and image 
analysis. 

Utility: Correlate nanostructure with soot reactivity, and changes 
new fuels, e.g. biodiesel 
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Application II: Source Specific Nanostructure

Wildfire Emissions Oil Fired Boiler 

Comparison between carbon lamella;

short, disconnected versus longer range structure and order 
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