
WBG Inverter Packaging

Zhenxian Liang

Oak Ridge National Laboratory

2013 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit **Review and Peer Evaluation Meeting**

May 14, 2013

Project ID: APE049

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start FY13
- Finish FY15
- 22% complete

Budget

- Total project funding – DOE share – 100%
- Funding for FY13: \$700K

Barriers

- Automotive inverters designs with silicon (Si) will likely not meet the DOE APEEM 2020 targets: <u>Cost</u>, <u>Efficiency</u> and <u>Density</u> to be met.
- State-of-the-Art module packaging technologies have limitations in <u>electrical</u>, <u>thermal</u>, and <u>thermo-</u><u>mechanical</u> performance, as well as <u>manufacturability</u>.

Targets Addressed

 40% cost reduction and 60% power density increase of the power module, to meet the DOE power electronics 2020 targets

Partners

- ORNL Team Members: Puqi Ning, Andy Wereszczak, Laura Marlino
- The University of Tennessee: Fred Wang

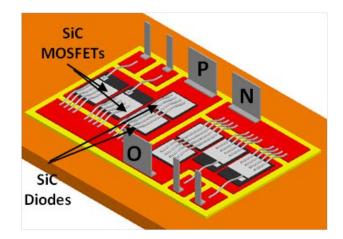
Project Objective

Overall Objective

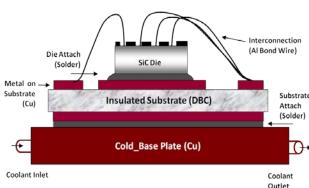
- Develop advanced power electronics packaging technologies for wide bandgap (WBG) inverter: Advancing automotive power modules and power inverters and converters in electrical performance, cooling capability, thermo-mechanical performance, and manufacturability, resulting in comprehensive improvement in cost-effectiveness, efficiency, reliability and power density of electric drive systems.
- Provide packaging support for other VT APEEM projects for systemic research: Fabrication of customer-specific power modules.

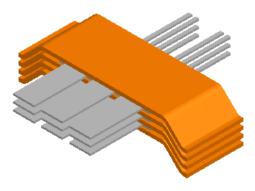
FY13 Specific Objective

- Develop a set of packaging technologies and manufacture an all-silicon carbide (SiC) power module (phase leg, 100A/1200V rated) with lower thermal resistance, small electric parameters, enabling exploitation of WBG superior attributes.
- Deliver WBG power modules to ORNL APEEM team for improvements in cost, efficiency and density


Milestones

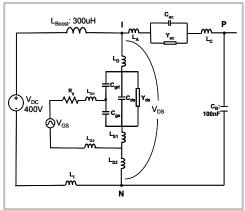
Date	Milestones and Go/No-Go Decisions	Status
Sept-2013	Milestone: -Test SiC modules to validate improvements in electrical and thermal performance. -Provide prototype modules for APEEM Projects.	On track -50A/1200V SiC modules fabricated and tested; -100A modules are underway; -50A/1200V modules delivered
Sept-2013	Go/No-Go decision: -Determine if WBG modules can meet the targets on cost and reliability.	-On Track




Approach/Strategy

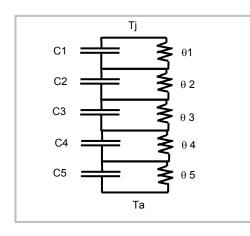
- Replace Si devices with their SiC and GaN counterparts to promote their accelerated adoption in traction drive systems
- Develop innovative power module packaging to exploit the superior attributes of WBG power semiconductors
 - High power density
 - High frequency
 - High temperature

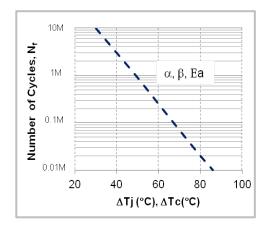
All-SiC100A/1200V SiC Phase Leg Power Module with Integrated Cooling



Advanced WBG Power Module

Approach/Strategy

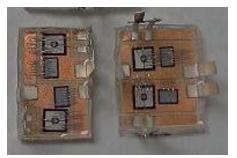

Packaging Performance Technical Parameters


$\frac{\$}{kW} \propto \frac{S_{DieArea}}{P} = \frac{(1-\eta) \cdot \theta_{ja,sp}}{(T_j - T_a)}$ $N_f = \alpha \cdot (\frac{1}{Tj - Ta})^{\beta} \cdot \exp(E_a / kT_m)$ $eff = \eta \propto 1 - (Pcon + Psw + Plp + \Pr p) / P$

Criteria vs Technical Parameters

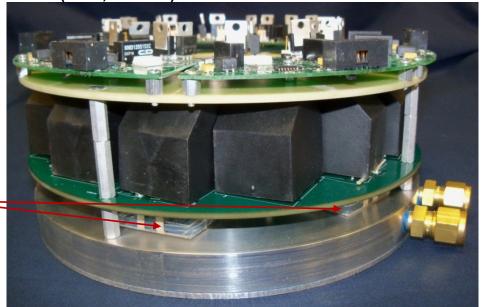
Packaging Electrical Parameters

Packaging Thermal Parameters

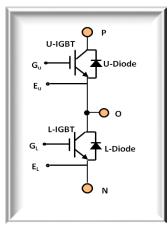

Thermo-mechanical Parameters

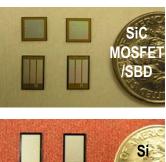
 Develop technical parameter basis and methodology to improve cost, power density, efficiency and reliability

Approach/Strategy

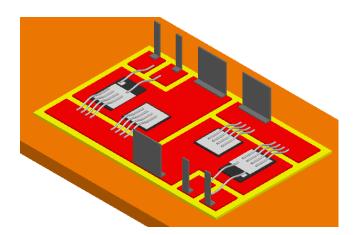

- Prototype application specific modules to support system development efficiently > Designed power rating;
 - Unique architecture;
 - Optimal devices;
 - Functionality integration
 - ➤Alternative form factor, etc.

Optimized layout modules (FY11, APE024)

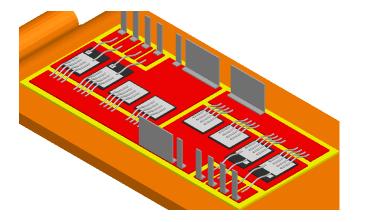

SiC diode package (FY12, APE003)

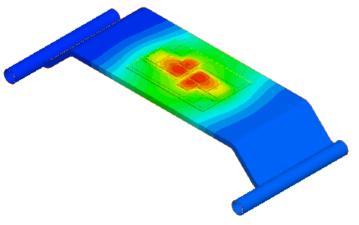


Technical Accomplishments and Progress Completed Module Packaging Design

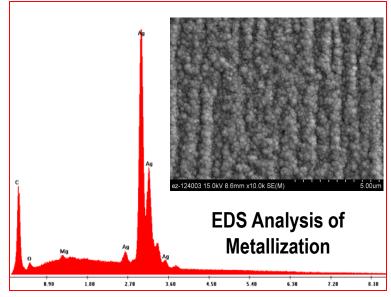


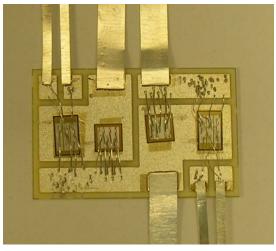
Electric Schematics of a phase-leg module



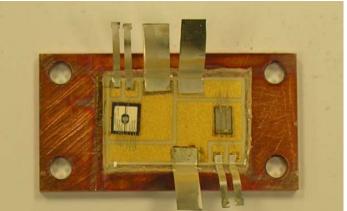

Power switch dies rated at 50A/1200V

Interconnection of power device dies in a 50A/1200V SiC power module

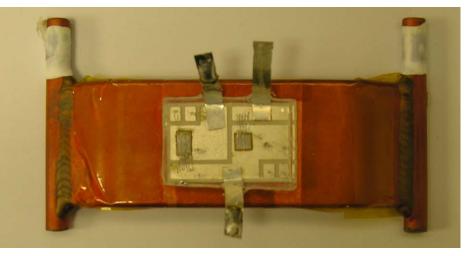

Interconnection of power device dies in a 100A/1200V SiC power module



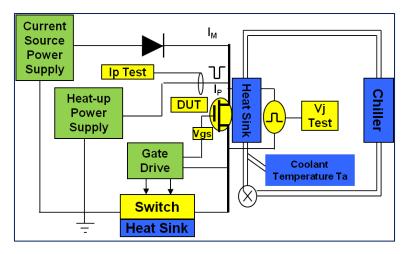
Temperature distribution in an Integrated SiC power module

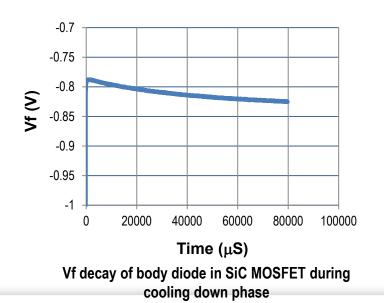

CAK RIDGE NATIONAL LABORATORY

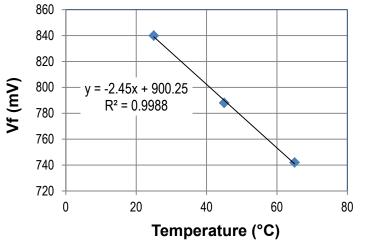
Technical Accomplishments and Progress Developed Packaging Process and Test Samples



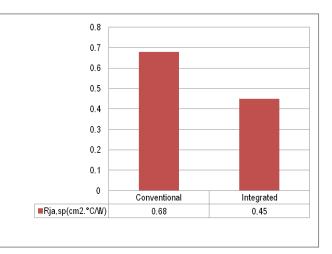
Process Test_Bed


Co-package of Si_IGBT and SiC MOSFET

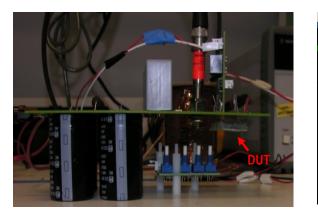

SiC MOSFET and Diode on Cold-Base Plate

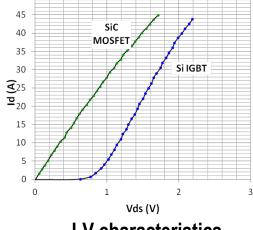


Technical Accomplishments and Progress Performed Thermal Characterization

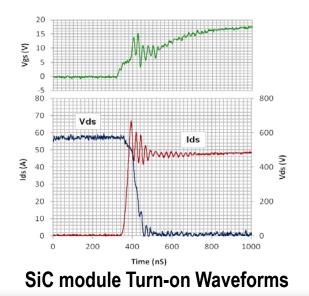


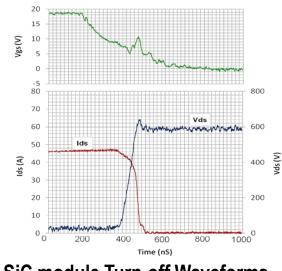
Schematics of thermal test setup


Vf-T calibration curve of body diode in SiC MOSFET

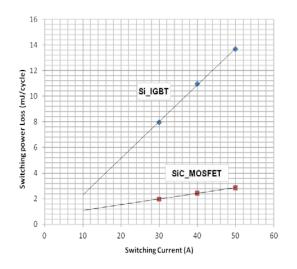

Thermal Resistance Comparison

Technical Accomplishments and Progress Performed Electrical Characterization

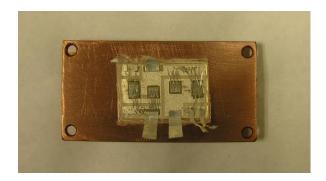


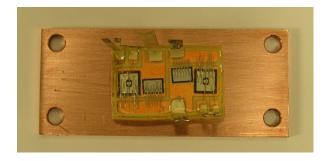


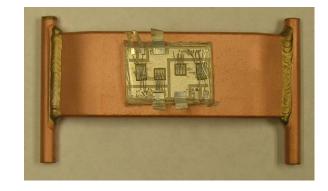
50

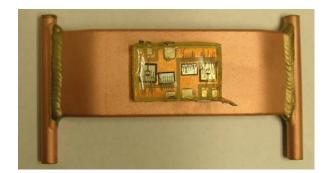

SiC module under electrical testing SiC module Switching Waveforms

I-V characteristics

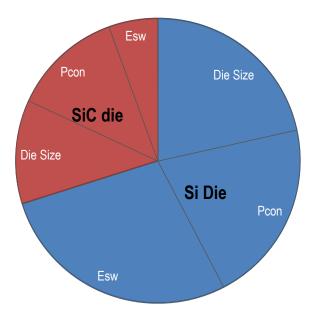

SiC module Turn-off Waveforms


SiC module Switching Power Loss

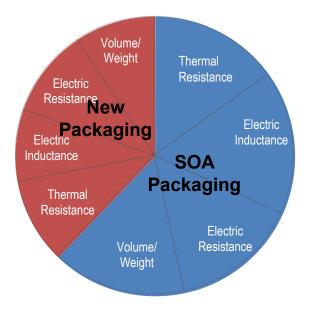

Technical Accomplishments and Progress Fabricated Module Prototypes


50A SiC Phase-leg/Conventional Cooling

50A Si Phase-leg/Conventional Cooling


50A SiC Phase-leg/Integrated Cooling

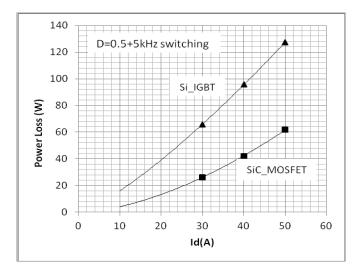
50A Si Phase-leg/Integrated Cooling

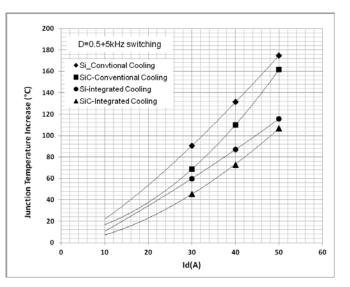


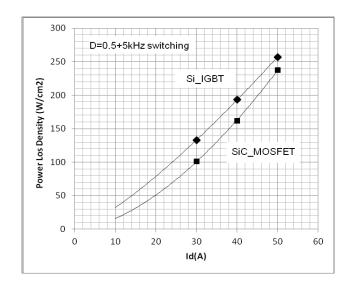
Technical Accomplishments and Progress Validated Module Packaging Advancement

Comparison of SiC and Si Power Device

- SiC power device compared to Si one
 - > 55% die size
 - ➢ 60% conduction power loss
 - > 20% switching power loss




Comparison of new packaging (NP) to conventional (SOA) one


- New packaging compared to conventional (SOA)
 - > 35% thermal resistance reduction
 - Decreased inductance by 50%
 - Decreased resistance by 30%
 - > 30% overall volume and weight reduction

Technical Accomplishments and Progress Evaluated Module Performance

Current density allowed for different power semiconductor and cooling combinations at Δ Tj=100°C for a typical operation (D=0.5, *f*=5kHz)

ltem	Si_Con.	SiC_Con.	Si_Integ.	SiC_Integ.
	Cooling	Cooling	Cooling	Cooling
Current Density J _d (A/cm²)	65.35	144.97	97.57	184.98

Collaboration and Coordination

Organization	Type of Collaboration/Coordination		
CREE	Source of SiC MOSFET and diode dies		
Infineon	Source of Si semiconductor dies		
International Rectifier	Source of Si semiconductor dies		
Rogers/Curamik	Source of manufactured packaging component		
University of Tennessee at Knoxville	Packaging component fabrication assistance		
Virginia Tech University	Power electronics module packaging processes assistant		
ORNL Materials Science and Technology Division/DOE VT Propulsion Materials Program	Packaging materials characterization		

IRInternational Rectifier

Uirginia Tech

IENNESSEE

EXAMPLE 1 EXAMPLE 1 EXAMP

KNOXVILLE

Proposed Future Work Remainder of FY13

Complete prototyping of all-SiC 100A/1200V power modules

- Complete dual die paralleling study
- Perform characterization of prototypes
- Fabricate and deliver customer specific modules to APEEM team

Develop high temperature packaging technology

- Optimize high temperature die attach techniques
- Develop high temperature multiple chips interconnection techniques
- Conduct high temperature performance characterization of Si, SiC devices
- Characterize high temperature packaging structures

Proposed Future Work FY14 and Beyond

Complete packaging of high temperature WBG power modules

- Incorporate ORNL advanced bonding material/processing, encapsulate, thermal materials;
- Perform thermo-mechanical design and simulation of advanced module packages;
- Implement cost-effective materials and structures into WBG power modules;
- Conduct simulations and preliminary reliability tests of packages.

Complete packaging integration of intelligent WBG power modules

- Incorporate ORNL advanced high temperature gate drive circuitry
- Implement high temperature multi-chip module cooling technologies
- Optimize interconnection layout between control/drive and WBG power stage

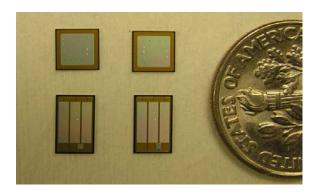
Provide packaging support for other APEEM projects

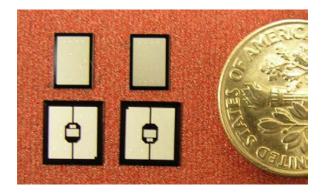
 Deliver customer-specific prototypes to APEEM team for WBG power electronics systems development

- **Relevance:** Focused on achieving 40% cost reduction and 60% power density increase to facilitate DOE APEEM 2020 power electronics targets: \$3.3/kW, 14.1kW/kg, 13.4kW/L.
- **Approach:** The approach being employed is to leap frog barriers of existing industrial baseline and bring innovative, systemic development to advance technologies.
- Collaborations: Latest industrial products and universities' advanced research have been incorporated in the project. The achievements of this work are efficiently transferred to the industry through collaborations.

Technical Accomplishments:

Developed packaging technologies for advanced SiC automotive power modules, resulting in:

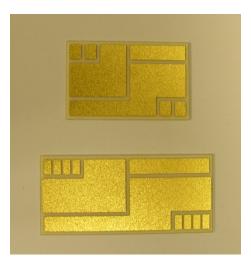

- > Compared power devices (SiC vs Si): 55% die size, 60% conduction power loss, 20% switching power loss
- New packaging (relative to industrial SOA): 35% thermal resistance reduction, Decreased inductance by 50%, decreased resistance by 30%, reduced overall volume and weight by 30%
- > High temperature packaging techniques are undergoing fabricated application specific WBG modules:
- > All-SiC 50A/1200V phase-leg modules delivered for system evaluation
- > All-SiC 100A/1200V prototypes and customer specific modules are on track
- Future Work: Well planned, the components and materials have been prepared in advance. The more significant impacts can be achieved by following systemic research through prototypes delivery and transfer to industry.


Technical Back-Up Slides

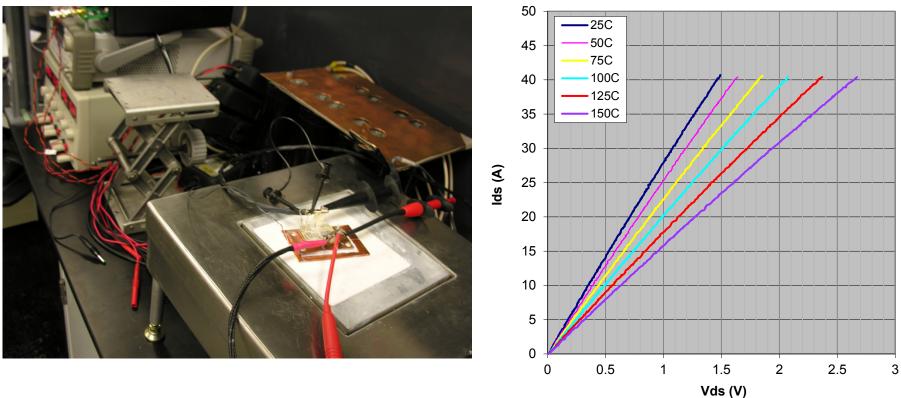
Technical Accomplishments and Progress Prepared Packaging Components

50A/1200V SiC MOSFET and SBD Diode Dies

50A/1200V Si IGBT and PiN Diode Dies

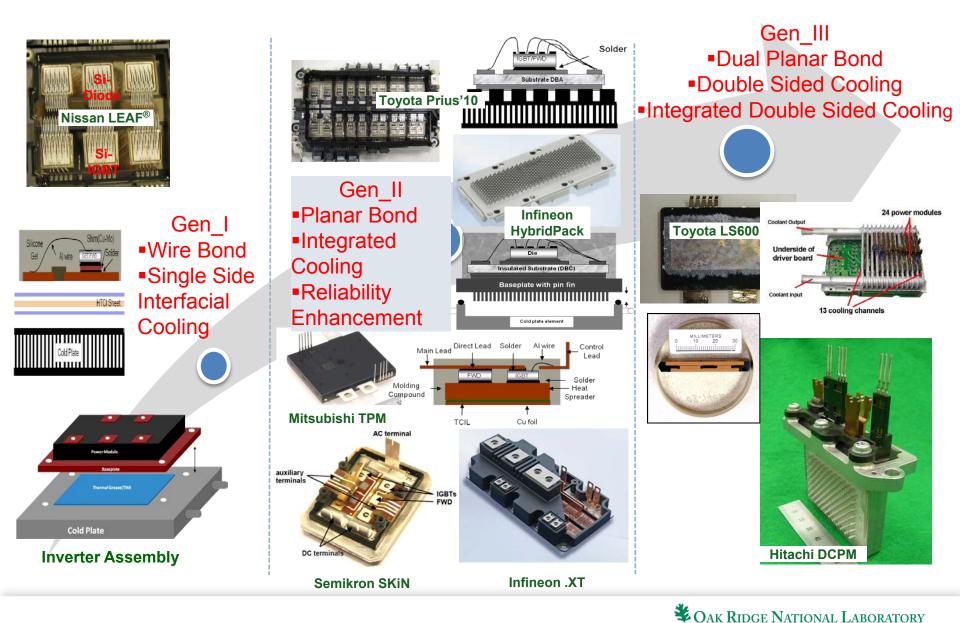


Cold_Base Plate


Conventional Base Plate

DBC Substrate

Technical Accomplishments and Progress Performed System Evaluation



SiC Power Module Under Test at ORNL WBG Performance Evaluation Station

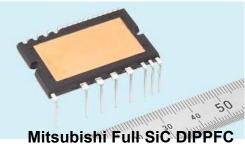
Temperature Dependence of I-V Curves of SiC MOSFET

Si Module Packaging Status and Trend

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

SiC Module Packaging

CREE **Phase-leg Module** 1200V, 100A


Fuji 1200V/120A Phase-leg

Infineon 1200V/30A **JFET Phase-leg**

1200V 800A 2in1

600V/20Arms Interleave

