

Sustainable TRANSPORTATION

VTO Analysis Portfolio

Jacob Ward Vehicle Technologies Office vehicles.energy.gov

Annual Merit Review May 16, 2013
Project ID: VANOOO

VTO Analysis Mission and Vision

mission

Plan, execute, and communicate technology, societal, economic, and interdisciplinary analyses for VTO, EERE, DOE, and external stakeholders

Robust transportation energy analysis that speaks for itself

VTO Analysis Portfolio at a Glance

Models and Tools:

Macro-econ.
Accounting

Integrated

Analysis

MA3T, ADOPT, VCM, SEDS, TRUCK

Market Penetration

GREET

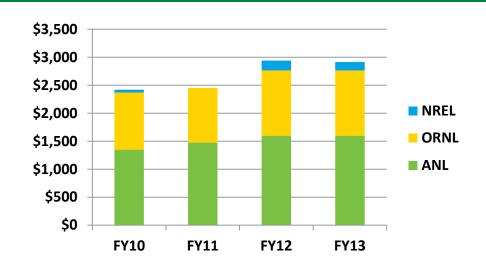
VISION+

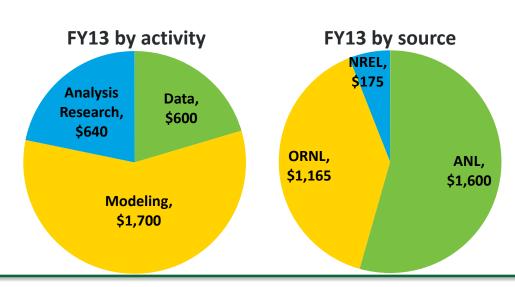
Emissions and Environmental Modeling

Autonomie, FASTSim HTEB

Vehicle Modeling and Simulation

TEDB, xEV data, SRA databse




Technology and Market Data

VTO Analysis Budget

- Budget has been roughly steady around \$3 M for four fiscal years
- The portfolio funds data, modeling, and original analysis
- Laboratory support comes from ANL,
 ORNL, and NREL

Technology and Market Data

now

- Published Transportation Energy Data Book, edition 31
- Track and publish xEV sales domestically and abroad
- Develop database to test effects of economic effects on vehicle sales

next

- Continue updating and disseminating data sources regularly
- Expand market knowledge with third-party data
- Distill and publish robust economic effects affecting and related to vehicle sales

DATA

Vehicle Modeling and Simulation

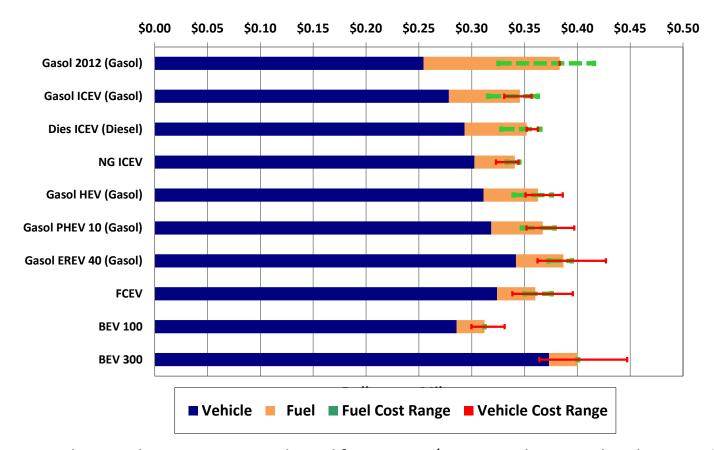
now

- Calculate vehicle cost-performance pair meta-data
- Establish VTO inputs for official EERE Low-Carbon Scenario
- Facilitate DOE Levelized Cost of Driving (LCD) official Program Record

next

Continue development of user-friendly vehicle characteristics
 GUI and diagnostic metrics

VEHICLE

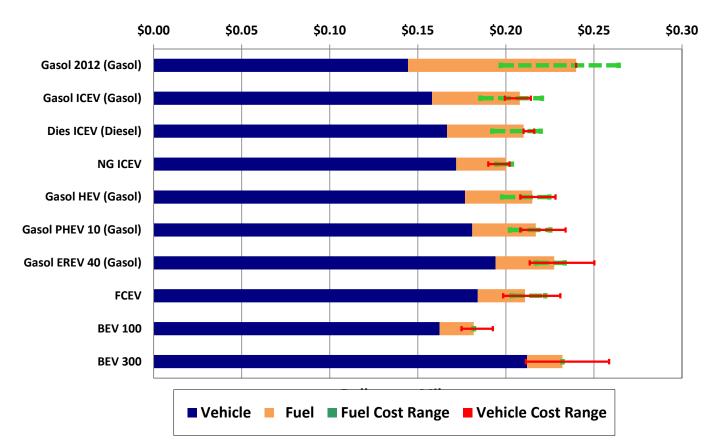

- Author and publish results and methodology documentation
- Leverage vehicle characteristic meta-data into a family of spinoff publications

Example Results – Levelized Cost of Driving (\$/mi)

Private View: 5-year ownership period

Vehicle and Fuel Costs per Mile for Midsize Vehicles, 2035 (Vehicle purchase price estimated as 1.5 x manufacturing cost) (2010\$)

Notes: Average distance driven per car-year derived from USDOT/NHTSA analysis, Resale value at 25% of price, 7% net discount rate for future fuels expenditures, 2035 Results – 5-Year Ownership, 14,000 Miles, (22,500 km) per year (2010 Dollars)


VEHICLE

Example Results – Levelized Cost of Driving (\$/mi)

Societal View: 15-year vehicle life

Vehicle and Fuel Costs per Mile for Midsize Vehicles, 2035 (Vehicle purchase price estimated as 1.5 x manufacturing cost) (2010\$)

Notes: Average distance driven per car-year derived from USDOT/NHTSA analysis, Resale value at 25% of price, 7% net discount rate for future fuels expenditures, 2035 Results – 15-Year Ownership, 14,000 Miles, (22,500 km) per year (2010 Dollars)

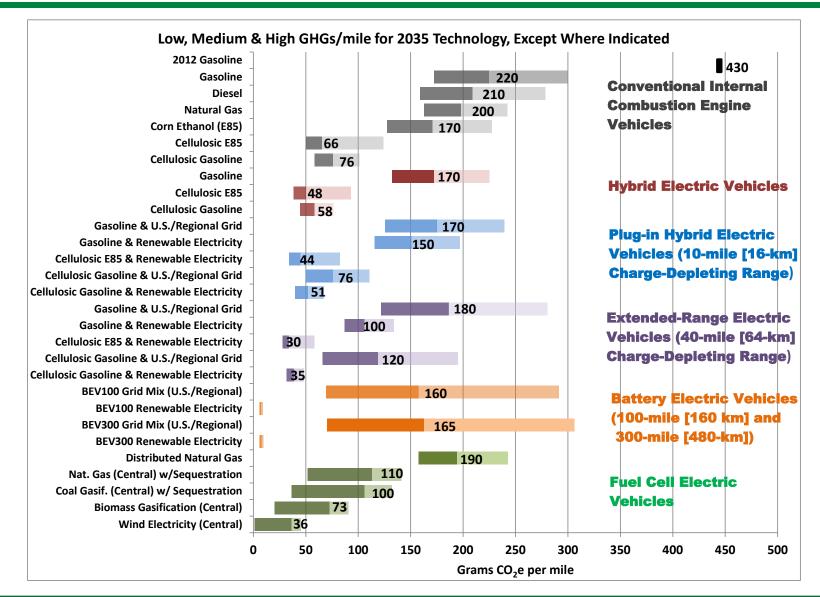
VEHICLE

Emissions and Environmental Modeling

now

- Provide input to and publish DOE Well-to-Wheel (WTW) official Program Record
- Research and incorporate facility/infrastructure cycle data
- Further develop "GREET.net" user-friendly software platform

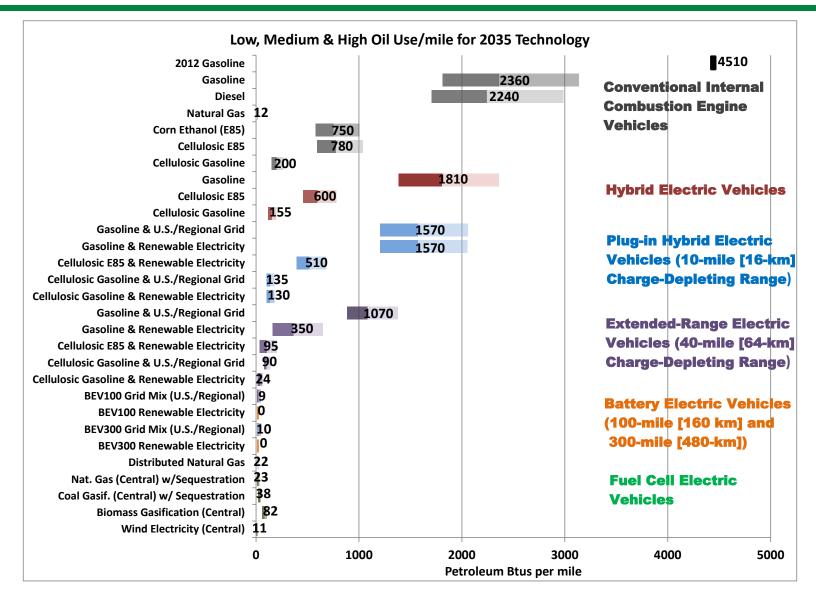
next


- Continue expansion of GREET.net user-friendly GUI
- Research and refine "back-end" infrastructure and facility data
- Formally begin vehicle-fuel pathway water footprint modeling

ECO

ECO

Example Results – Emissions (gCO₂e/mile)



ECO

Example Results – Petroleum Use (BTU/mile)

Market Penetration and Consumer Behavior

now

- Coordinate 4 vehicle choice models (VCMs) for suite operation using common input
- Refine range-anxiety research and incorporate into models
- Estimate market penetration scenario and provide inputs to various analyses

next

- Cross-validate VCMs via suite operation
- Incorporate 2 additional vehicle choice models for more robust market penetration "triangulation"
- Expand VCM dialogue by engaging with experts beyond the DOE community; compare and refine models accordingly

MARKET

Macroeconomic Accounting

now

 Update baseline scenarios to match historical and AEOprojected future data

- Expand tool set to novel analysis modes (e.g., off-highway)
- Design and execute integrated, coherent macroeconomic analysis scenarios examining and estimating VTO technology R&D benefits

next

- Author and publish benefit metrics and methodology
- Prepare and execute iterative analytical updates as VTO goals, targets, and milestones are updated

MACRO

VTO Analysis Portfolio in Summary

Analysis Type: Models:	DATA	VEHICLE	ECO	MARKET	MACRO
TEDB					
xEV sales					
SRA database					
Autonomie					
FASTSim					
НТЕВ					
GREET					
MA3T					
ADOPT					
VCM					
SEDS					
TRUCK					_
VISION					

- The VTO analysis portfolio (left) covers the full analysis space and includes some redundancies
- Some projects (e.g., GPRA, below) span all categories for a truly integrated analyses

GPRA integrated analysis	DATA	VEHICLE	ECO	MARKET	MACRO
expert input	1				
Autonomie		X			
НТЕВ		A			
GREET			K		
MA3T				K	
TRUCK				A	
VISION					A

VTO Analysis Presentations

Time	Project ID	VAN Category	Principal Investigator	Project Title	
9:30	VAN001	MACRO	Tom Stephens, ANL	Analysis of Vehicle Technologies and Reduction of Oil Use and GHG Emissions	
10:00	VAN002	ECO	Michael Wang, ANL	WTW Analysis of Vehicle/Fuel Systems and GREET Development	
10:30	10:30 BREAK				
11:00	VAN003	DATA	Mark Singer, NREL	Consumer Vehicle Technology Data	
11:30	VAN004	MARKET	Aaron Brooker, NREL	Analytical Modeling Linking the FASTSim and ADOPT Software Tools	
12:00	VAN005	MARKET	Zhenhong Lin, ORNL	Updating and Enhancing the MA3T Vehicle Choice Model	

VTO Analysis Posters

Project ID	Principal Investigator	VAN Category	Project Title
VAN006	Anant Vyas, ANL	MACRO	Development and Update of Models for Long-Term Energy and Emissions Projections
VAN007	Tom Stephens, ANL	MACRO	Government Performance and Results Act (GPRA) Analysis
VAN008	Aymeric Rousseau, ANL	VEHICLE	Support for Government Performance and Results Act (GPRA)
VAN009	Stacy Davis, ORNL	DATA	Vehicle Technologies Data, Markets, and Publications
VAN010	David Greene, ORNL	MACRO	Enhancement of the Oil Security Metric Model (OSMM)

Sustainable TRANSPORTATION

Energy Efficiency & Renewable Energy

Jacob Ward Vehicle Technologies Office vehicles.energy.gov

