

... for a brighter future

Visualization of In-Cylinder Combustion R&D

Stephen Ciatti, Swaminathan Subramanian

Argonne National Laboratory

May 19, 2009

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Project ID# ace_11_ciatti

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

Started May 2008
Ends Sept. 2010
25% Complete

Budget

- Total project funding
 - DOE share 100%
 - Contractor share 0%
- Funding received in
 - FY08 \$200k
 - FY09 \$550k

Barriers

- Barriers addressed
 - Mechanism to control LTC Timing
 - LTC high load and high speed operation
 - LTC control during change of speed and load

Partners

- Argonne is project lead
- Partners are
 - GM Europe and GM R&D
 - Engine maps, piston crowns and other hardware, cylinder head modifications, technical support
 - University of Illinois Chicago
 - Graduate student performing engine simulations
 using Converge code
 - USAF
 - Fuels, sensors, technical support
 - FACE program
 - Fuels

Objectives of this Study

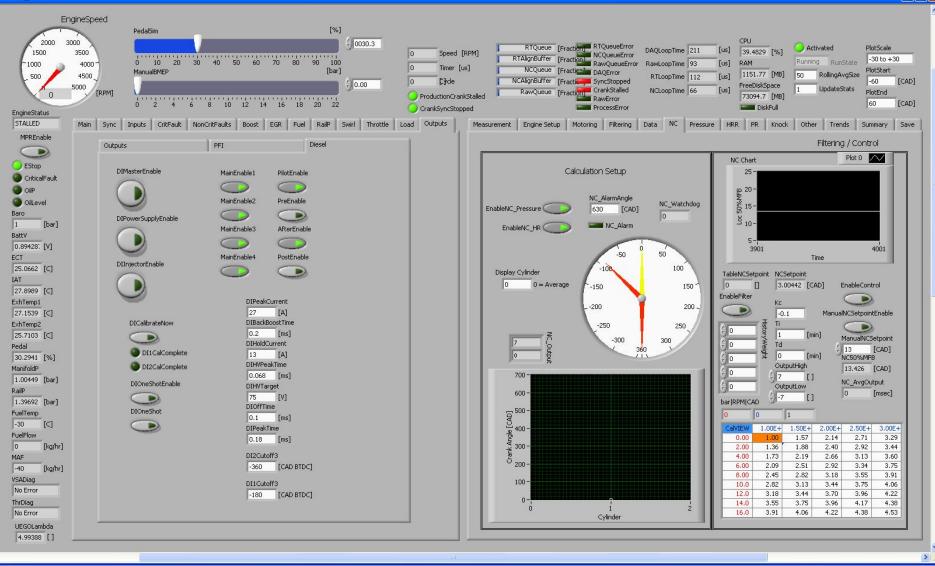
- Utilize in-cylinder combustion imaging to enable the implementation of low temperature combustion in a production automotive engine
- Focus upon gasoline-like (low cetane) fuels
 - Avoid soot/NO_x production by insuring the end of injection occurs before the start of combustion
 - Diffusion flames show up well in endoscope imaging
 - Fuel/(Air+EGR) will be premixed, but not well mixed
- Maintain relatively high power densities (~10 bar BMEP) while retaining high efficiency and low emissions
- Control combustion phasing by utilizing in-cylinder controls
 - EGR will be unevenly distributed, as well as cylinder wall temperature
 - Cylinder-to-cylinder control required
 - Use pressure transducer and other sensors for feedback control

Milestones

Endoscope access cylinder head installed on engine	Dec 2008
New postdoc arrived to support project	Feb 2009
Drivven controller commissioned	Feb 2009
Optical images acquired on diesel operation	Mar 2009
Validate gasoline fuel cart operation	May 2009
Future milestones	
Install lower compression ratio pistons	Jun 2009
Attempt LTC with 14:1 pistons	Jul 2009
Discover LTC operating envelope	Sept 2009

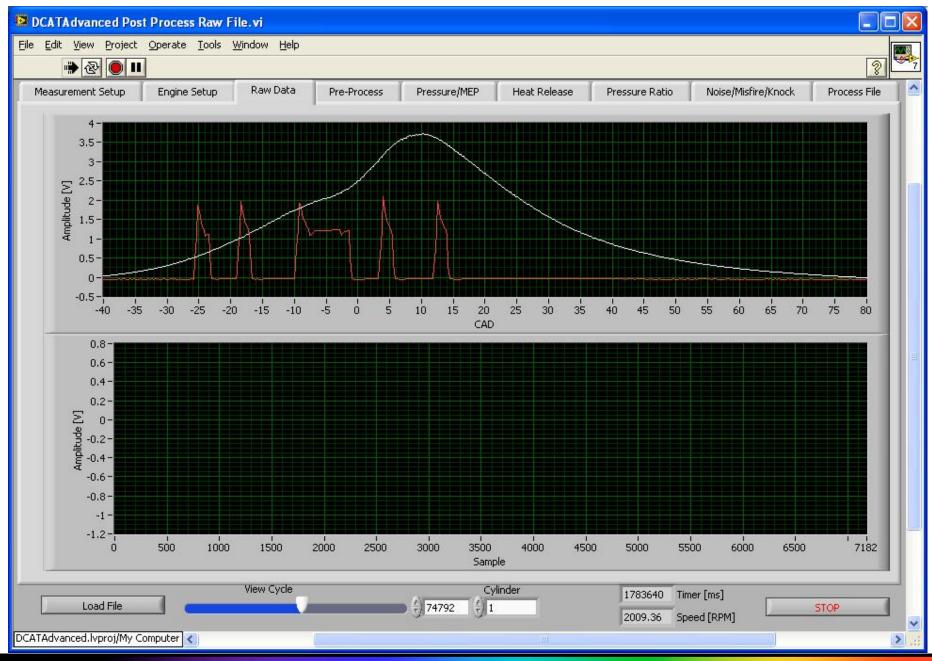
Approach

- This project will use low cetane/high volatility fuel
 - Increase ignition delay
 - Limit/eliminate wall and piston fuel wetting
 - Ignition to occur AFTER the end of injection to avoid mixing controlled combustion
- Low compression ratio pistons from GM-E (14:1, 15:1 and 16:1)
- Gasoline-like fuels with low cetane/high volatility
- Lubricity additive to insure operation of diesel injection equipment
- Use fluid mechanics to control combustion phasing and engine load
- Use combustion imaging to guide optimal engine parameters and evaluate different fuel combustion characteristics
- Support experimental work with engine simulations from UIC using "Converge" code
- Leverage our APS injector work to better understand diesel injector performance using gasoline-like fuels

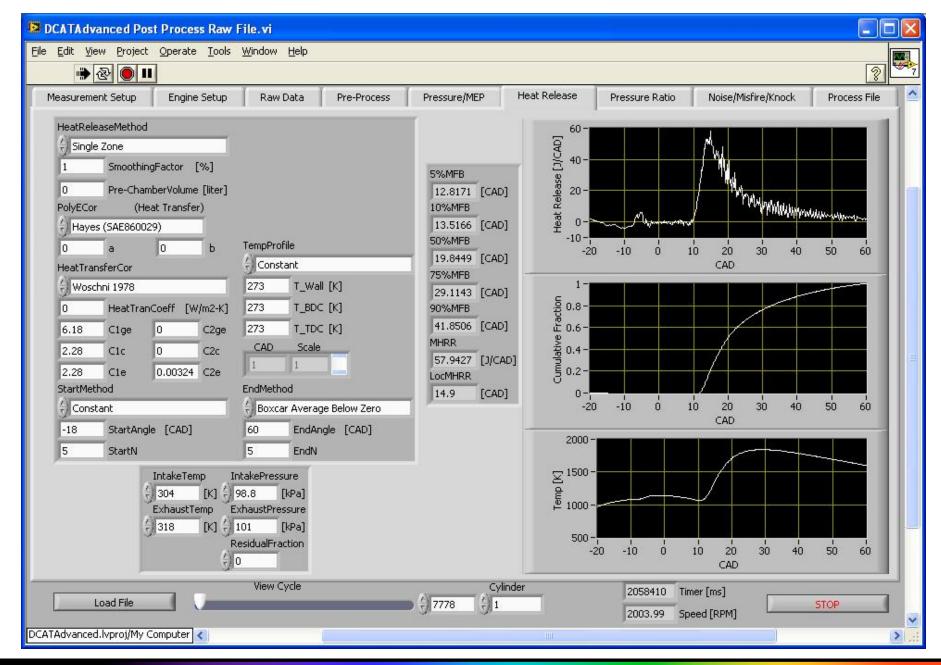

Technical Accomplishments

Full authority control of engine parameters

- EGR
- Boost
- Intake Swirl
- Injection Rail Pressure,
- Injection Timing
- Multiple Injection up to 5 independent injections/cycle
- Lambda closed loop control
- Next Cycle control
- Engine can operate on the stock Bosch engine map or modified in any way the operator chooses.
- Cylinder by cylinder independent control capability is functional.



GM19L_Host.vi



~

Future Work

- Validate engine operation on lower compression ratio pistons with gasoline fuel
 - Lubricity additive
 - FACE fuel (~30 cetane), USAF fuel (20-25 cetane) and low octane (20-25 cetane) gasoline
- Characterize entire engine operating range of speeds/loads for each fuel to see what range of BMEP is possible.
- When LTC operation is determined, use combustion imaging to obtain detailed fluid mechanics and chemistry information
 - Spectroscopic measurements
 - Any possible soot radiation
- Fine-tune combustion phasing control by use of multiple injections, EGR and boost.
- Correlate results with APS spray data and with SNL's fundamental combustion work
 - We are all using identical hardware (Bosch Gen II)
 - Make data available to Engine Combustion Network (managed by SNL; Lyle Pickett)

Summary

- Power density needs to be addressed in LTC operation
- Fluid mechanics is a more robust control parameter than fuel chemistry
- Project will focus upon decreasing the fuel sensitivity for LTC by utilizing injection parameters for combustion phasing
- Insuring that ignition occurs after end of injection provides premixed (but not well mixed) fuel/air charge = opportunity for higher power densities than HCCI
- Cylinder to cylinder control should be helpful due to lack of even EGR distribution
- Combustion imaging is a very familiar and well-validated tool to help us understand the characteristics of LTC
 - Will be simultaneously with pressure transducers, current clamps, emissions bench, fast FID and fast NO_x analyzers
- Working with GM (and USAF) allows for a rapid path for Technology Transfer
 - Monthly GM teleconferences and scheduled visits

