

Cummins 55% BTE Project

Lyle Kocher – Principal Investigator Cummins Inc.

June 9, 2016

Project ID: ACE098

This presentation does not contain any confidential or proprietary information.

<u>Overview</u>

<u>Timeline</u>

- Start: 12/1/2015
- End: 12/31/2017
- 5% Complete

Budget

- \$9.0M Total Budget
 - \$4.5M DOE
 - \$4.5M CMI
- \$0k in Funding for FY2015
- \$2.9M for FY2016

Technical Targets / Barriers

- Advanced Combustion Engine
 - Engine thermal efficiency of 55%
 - Lack of fundamental knowledge of advanced engine combustion regimes
 - Lack of effective engine controls

Partners

- Cummins Fuel Systems
- Cummins Turbo Technologies

<u>Relevance</u>

- Overall Project Objectives
 - Use a diesel engine system to demonstrate in a test cell peak engine system efficiency of 55%
 - Develop and demonstrate an engine and aftertreatment system to achieve 2010 emissions compliance
- Goals align with VT Multi-Year Program Plan 2011-2015
 - Engine thermal efficiency of 55%
 - Prevailing emissions compliance

Budget Period	Milestone	Description	Delivery Date	Status
1	M1	Lube Pump Design Complete and Procured	3/31/2016	Complete
1	M2	Air Handling Controls System Design Selection Complete	6/30/2016	In-Process
1	M3	Lube Pump Design Integration Complete	9/30/2016	In-Process
1	M4	WHR Turbine Expander Design Complete	12/31/2016	In-Process
1	GNG1	50% BTE (Engine Only) Demonstration Complete	12/31/2016	In-Process
2	M5	Aftertreatment System Design Complete	3/31/2017	
2	M6	SET Emissions Demonstration Complete	6/30/2017	
2	M7	Hot FTP Emissions Demonstration Complete	9/30/2017	
2	M8	55% BTE Final Demonstration Complete	12/31/2017	

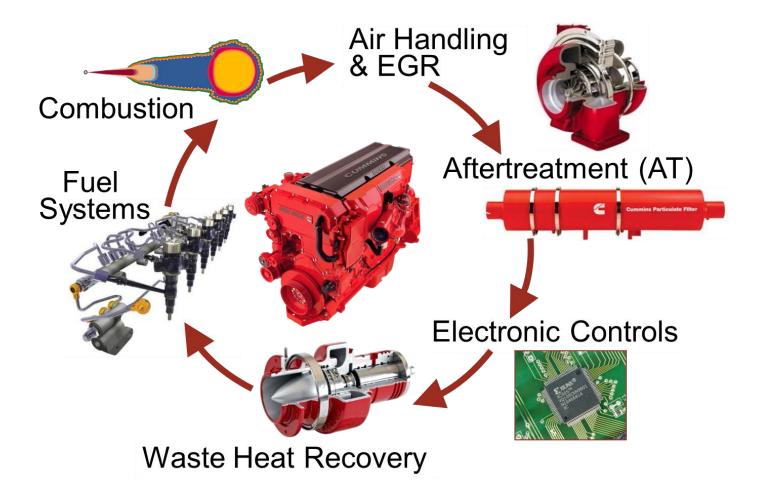
Technical Approach

Go / No-Go Decision Point

- Test cell demonstration of 50% BTE
 - Engine only performance
 - No WHR

Final Demonstration

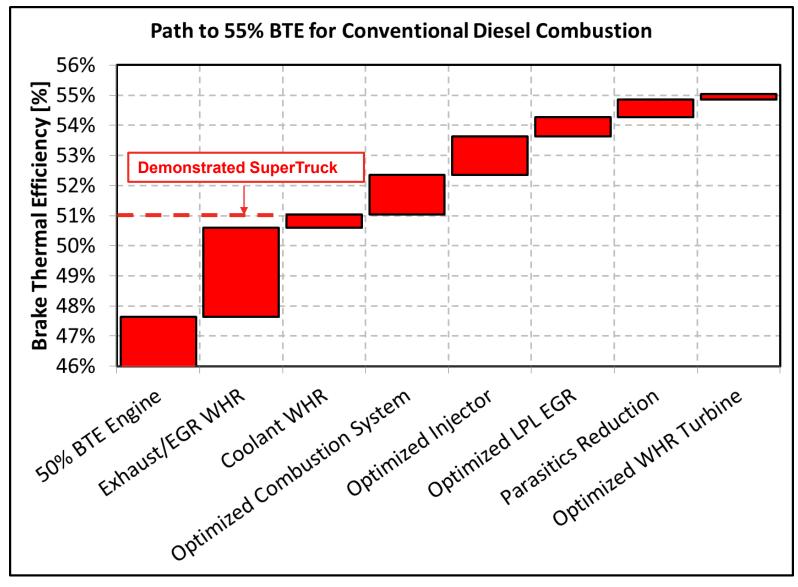
Final demonstration will include emissions demonstration and 55% BTE peak point


Technical Challenges / Barriers

- Combustion system design to achieve 50% BTE without WHR
- Design integration of parasitic reduction efforts
- Optimization of Dual Loop EGR architecture

Technical Approach

Approach - Integration of Cummins Component Technologies

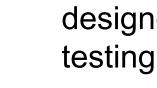


cummins

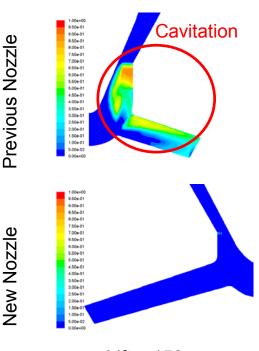
Technical Accomplishments

- Cummins has created an analytical path to 55% BTE
 - Demonstrated Performance To Date
 - Initial fuel system injector designs have been completed
 - Injectors will be robust to cavitation and are expected to meet performance targets
 - Combustion system development is progressing
 - -Analysis supports target improvement levels in path to 55% BTE
 - Initial air handling architecture has been evaluated
 - -Analysis support gains in path to 55% BTE
 - Might need to run higher engine out NOx levels to hit BTE goal
 - Parasitic reduction are being pursued with rig validation planned
 - WHR system is being optimized for new heat sources
 - -New turbine expander being designed for best BTE point

Technical Accomplishments: Path


Lummins

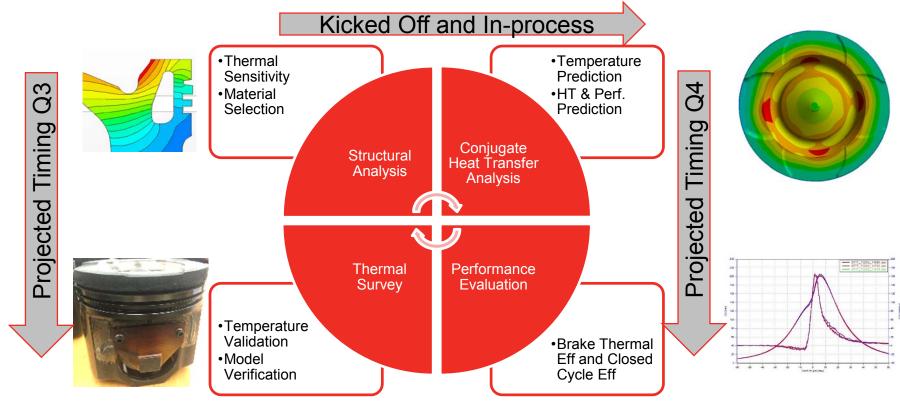
Technical Accomplishments: Path


Subsystem	SuperTruck 51% BTE (Baseline)	55% BTE Proposal (Additional or Replace)	Expected Benefit
Combustion System	Steel Piston, Piston Cooling	Higher CR Piston, Insulated Surfaces No/Low Piston Cooling, Higher Coolant Temperature	+1.3% BTE Point
Fuel System	Traditional Common Rail Injector	High Flow Injectors (3 times faster injection)	+1.3% BTE Point
Air Handling	High Pressure Cooled EGR, Variable Geometry Turbocharger	Dual Loop EGR & Larger Turbocharger, Consider Twin Entry WG	+0.6% BTE Point
WHR	EGR, Exhaust, Coolant, Lube	HP EGR, LP EGR, Exhaust, Coolant, Lube, Charge Air Cooler	+0.2% BTE Point
Aftertreatment	DOC+DPF+SCR Conventional	DOC+SCRF Close-Coupled + SCR	NOx Conversion Efficiency
Mechanical System	Low Tension Oil Ring, Variable Flow Lube Pump, Plasma Coated Liners, Reduced Piston Cooling	Low Tension Piston Rings, DLC Coated Rings, New Plasma Coated Liners, No/Low Piston Cooling, Variable Flow Pumps, Reduce Valvetrain Parasitic	+0.6% BTE Point

Innovation You Can Depend On™

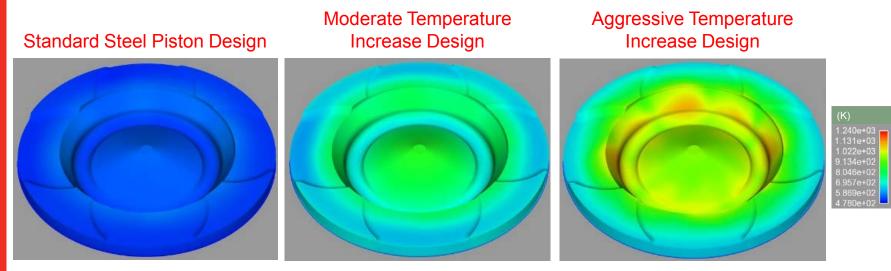
Technical Accomplishments: Injectors

- Diffusion combustion is mixing controlled/limited
- Shorten combustion duration by increasing fuel injection rate
- Challenge for injector design is avoiding cavitation
- Cummins Fuel Systems
 - Analysis led design process
 - Enables robust, cavitation-free operation
- Next generation injectors are designed, procured and ready for



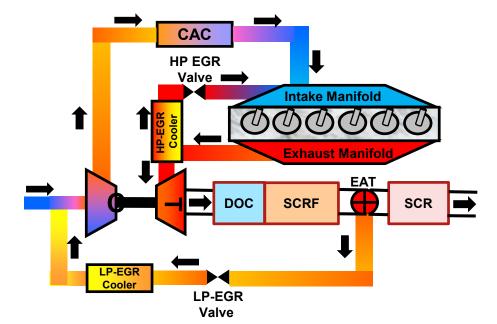
cummin

 $Lift = 150 \mu m$


Technical Accomplishments: Pistons

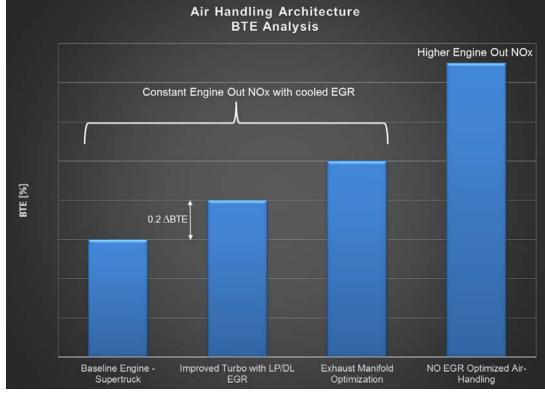
Technical Accomplishments: Pistons

Piston Crown Temperatures



- Working with multiple suppliers on piston designs
- Conjugate Heat Transfer analysis is guiding the work
 - Performing CHT with suppliers in the analysis process
- Challenge is to turn heat transfer reductions into efficiency
 - This has been limiting factor in previous work

Technical Accomplishments: EGR

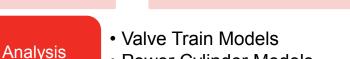

- HP & LP Cooled EGR
 - Dual Loop
- Advanced turbo technologies
 - Larger turbocharger
 - Abradable coatings
 - Turbine diffuser
 - Roller bearings
 - Extrusion honed turbine casing
- Optimized exhaust manifold design
 - Pulsation utilization
- Cam timing optimization

Technical Accomplishments: EGR

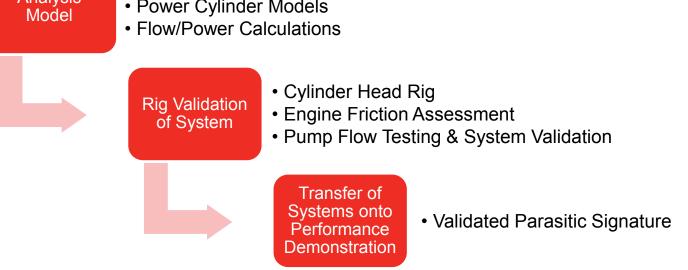
- Initial EGR Loop architecture analysis is underway
- Baseline is the 51% BTE SuperTruck Engine
 - HP EGR Loop
- Dual Loop EGR solution paired with larger turbocharger showing potential for 0.2dBTE-unit improvement
- Exhaust manifold optimization showing potential for additional 0.2 dBTE-unit
- Higher Engine Out NOx & turbocharger improvements can provide additional BTE improvements

cummin **Technical Accomplishments: Parasitic**

Coolant and Lube System

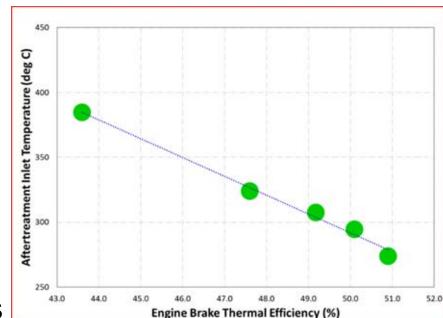

- Variable Coolant Pump
- Variable Lube Oil Pump
- Improved Lube System Flow Losses
- · Reduced Oil Flow of Valve Train

Valve Train

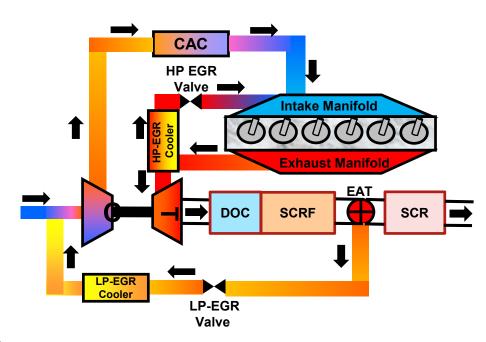

- Reduced Component Inertias
- Reduced Stiffness Springs
- Reduced Oil Flow

Power Cylinder

- Lower Friction Ring Coatings
- Lower Ring Tension
- Improved Piston Skirt Coatings
- Improved Piston Profiles



• Power Cylinder Models


- Two main challenges for aftertreatment system on high BTE engines
 - 1. Low exhaust temperatures
 - 2. Higher engine out NOx
 - Due to hotter combustion temperatures
- Performance Requirements
 - Comply to 2010 HD EPA
 - Enable LP EGR by close coupling
 - Minimize heat loss to ambient to maximize WHR efficiency
 - Maximize open cycle efficiency by lowered back pressure penalty

Technical Accomplishments: WHR

- Waste Heat Sources
 - Engine Coolant/Lube
 - EGR (LPL & HPL)
 - Exhaust
 - Charge Air Cooler
- Turbine Expander
 - New turbine expander design
 - Optimized for best BTE point
- WHR Temperature Control
 - Avoid condensation in LPL EGR

Response to Reviewer Comments

This project was not reviewed last year.

Collaborations

- Cummins Fuel Systems
 - Provide Advanced XPI Fuel System (Direct Injection)
 - Higher flow rate injectors
 - Analysis led design process
 - Robust, cavitation-free injectors
- Cummins Turbo Technologies
 - Provide Advanced Turbocharger Technologies
 - Larger turbocharger
 - Advanced coatings
 - Turbine diffuser

Innovation You Can Depend On™

- High flow rate injectors can potentially have worse shot-to-shot performance
 - Need additional testing and analysis to ensure injector dynamics will not become unstable
- Higher engine out NOx will likely be required to achieve BTE goal
 - How much NOx can be tolerated by AT system?
- Previous work with insulated combustion systems have been challenged to demonstrate improved efficiency

Proposed Future Work

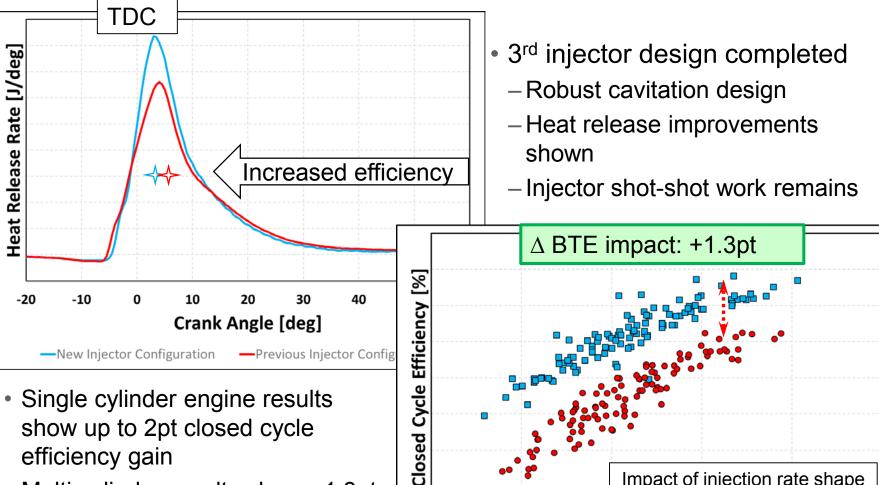
- Continue engine system developments
 - Reduce in-cylinder heat losses
 - Shorten combustion duration
- Continue air handling optimization
 - Dual loop EGR optimization
 - Turbocharger efficiency improvements
- Continue WHR system optimization
 - Develop new turbine expander
 - System optimization at best BTE point
 - Consider new waste heat sources

Summary

- Cummins has created an analytical path to 55% BTE
 - Demonstrated Performance To Date
 - Initial fuel system injector designs have been completed
 - Injectors will be robust to cavitation and are expected to meet performance targets
 - Combustion system development is progressing
 - -Analysis supports target improvement levels in path to 55% BTE
 - Initial air handling architecture has been evaluated
 - -Analysis support gains in path to 55% BTE
 - Might need to run higher engine out NOx levels to hit BTE goal
 - Parasitic reduction are being pursued with rig validation planned
 - WHR system is being optimized for new heat sources
 - -New turbine expander being designed for best BTE point

Technical Back-Up Slides

Technical Progress Optimized Injector – Single Cylinder Engine Results

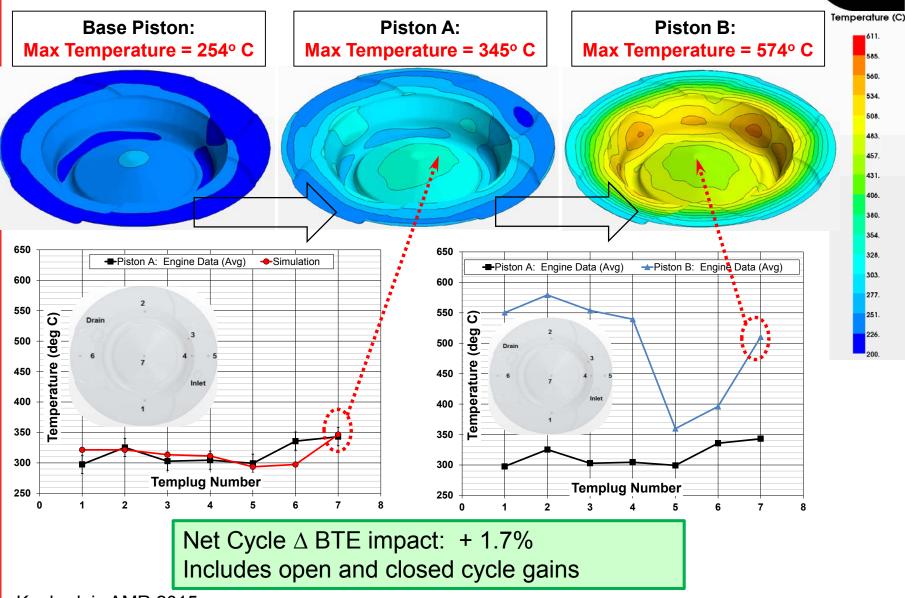


Impact of injection rate shape

at constant intake conditions

Previous Injector Configuration

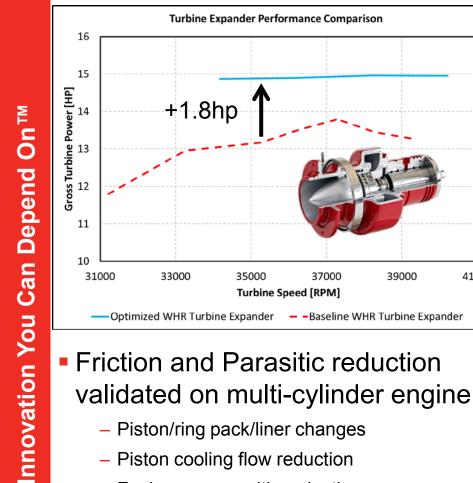
Peak Cylinder Pressure [psi]


- Multi-cylinder results show ~1.3pt closed cycle gains
 - Air handling enhancements needed Koeberlein AMR 2015

This presentation does not contain any confidential, proprietary, or otherwise restricted information.

New Injector Configuration

<u>Technical Progress</u> – Piston Thermal Solution Validation Results

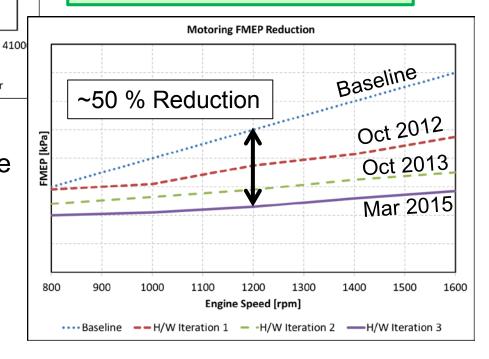

turnmint

This presentation does not contain any confidential, proprietary, or otherwise restricted information.

Innovation You Can Depend On™

Technical Progress – Improved WHR Turbine Expander & Parasitic Reduction Results

- Fuel pump parasitic reduction
- Lube pump improvements


 \triangle BTE impact: + 0.9% BTE

Koeberlein AMR 2015

This presentation does not contain any confidential, proprietary, or otherwise restricted information.

- Improved turbine efficiency
- System heat exchanger architecture arrangement
 - Pre-heat of low pressure loop

Total BTE contribution: 3.6% \triangle BTE impact: + 0.7% BTE

