Thermally Stable Ultra-Low Temperature Oxidation Catalysts

<u>János Szanyi</u>, Chinmay Deshmane, Diana Tran, Charles H.F. Peden, Chang Kim, Se Oh, Steve Schmieg, Wei Li

> Pacific Northwest National Laboratory General Motors Research June 08, 2016

Project ID # ACE078

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Oct 2013
- Finish Sept 2016
- 36-month CRADA

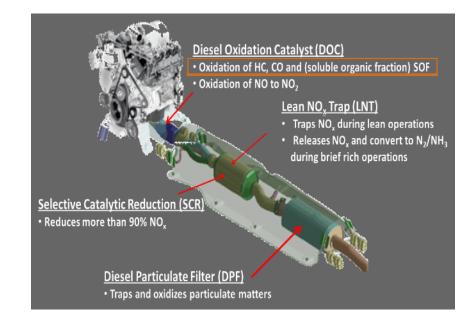
Budget

- Total project funding
- DOE: \$750k (\$250k/year)
- GM (\$450k)

Barriers

- Develop ultra low-temperature oxidation catalysts
- Better understand active site and structure requirements in oxidation catalysts
- Understand deactivation mechanisms
- Design and model catalyst functions and structures

Partner


General Motors

Motivation and Relevance

- High efficiency engines often implies lower exhaust temperature (T), requiring better low-T catalysis to meet emission regulations by inexpensive and reliable CO/HC/NOx emission control:
 - Removal of CO and unburned HC is required at low exhaust T (< 150 °C).
 - High T stability and poison resistance are required as well.
- PGMs are the most active CO/HC oxidation catalysts at high T, but poisoned by strong CO adsorption at low T.
 - PGM commodity pricing is high and volatile. Thrifting or replacement of PGM in oxidation catalysts is desired for:
 - Low T CO/HC oxidation activity
 - cost reduction as an enabler to advanced after treatment and combustion technologies
 - alternative technologies for oxidation reactions

NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965

Institute for

INTEGRATED

CATALYSIS

This CRADA project aim was to *develop ultra low temperature CO/HC oxidation catalysts with sufficient high temperature hydrothermal stability.*

- Improve the understanding of the nature and structure of active sites in CuO/metal oxide catalysts intended for CO/HC oxidation
- Understand
 - the effects of synthetic methods on composition and structure of catalysts and on their effectiveness in CO/HC oxidation.
 - the mechanisms of activity decline under practical operating conditions and regeneration
 - sulfur poisoning mechanism
- Test alternative catalyst formulations (CoO_x; MnO_x)

Institute for INTEGRATED CATALYSIS

Accomplishments

Completed catalytic reaction tests (CO and HC oxidation) on both GM-prepared and PNNL-made catalysts

• Catalyst formulation, aging and sulfur poisoning by GM

Alternative synthesis methods

- Characterize composition, structure, reactivity and active sites
- Performed detailed characterization on selected catalysts
 - **XPS**: Composition and redox properties
 - **FTIR**: characterization of active sites by probe molecule adsorption/reaction.
 - **XRD:** phase identification and variation during thermal aging, sulfur poisoning
 - **TEM/EDX**: morphology and active phase dispersion
- Completed DFT studies on oxygen vacancy formation, sulfure poisoning and possible reaction mechanisms

Collaboration: with GM - CRADA

Based on research reported by GM

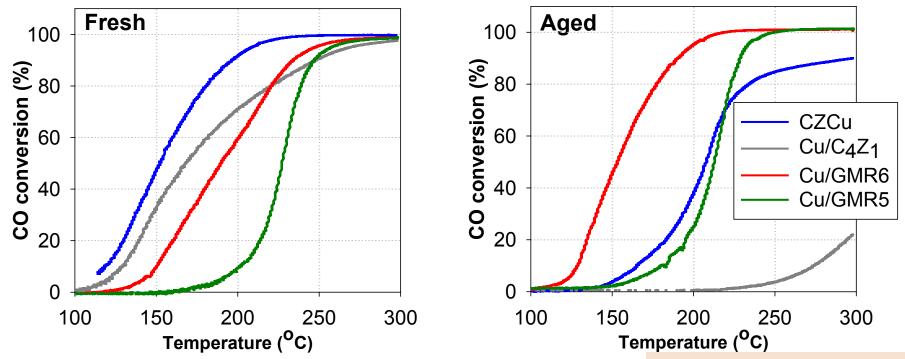
- CRADA initiated for PNNL assistance leveraging surface science, preparation and catalyst characterization capabilities
- Analytical assessment and computational model
- Scope split, but coordinated between GM and PNNL
 - **GM** Catalyst

formulation: metal oxides (CuO on ceria/zirconia-based supports) aging: hydrothermal; deactivation; poisoning testing: CO and HC oxidation

PNNL – Activity and Characterization

- catalyst structure and active sites
- alternative synthesis processes
- aging and poisoning

Institute for INTEGRATED CATALYSIS


- Prepare and evaluate both fresh and lab-aged catalyst materials
- Utilize catalysis expertise, state-of-the-art analytical techniques and computational analysis to investigate:
 - Surface and bulk properties of the catalyst materials with respect to changes in composition and hydrothermal aging, poisoning:
 - XRD, XPS, TEM/EDS
 - Interaction between probe molecules (CO and NO) and the potential active sites
 - FTIR, MS, TPD, DFT
 - Alternative catalyst formulations

INTEGRATED CATALYSIS

CO oxidation activities of CuO/CeZrO₂ catalysts (GM): the effect of high temperature hydrothermal aging

- Most active fresh catalyst: CZCu (prepared by coprecipitation), followed Cu/C4Z1 (prepared by impregnation), and the two CuO catalysts on commercial, doped CeZrO₂ catalysts (GMR5 and GMR6)
- **Hydrothermal aging**: dramatic drop in CO oxidation activity on all CuO catalysts on home-made supports; remarkable activity gain on CuO/GMR6.

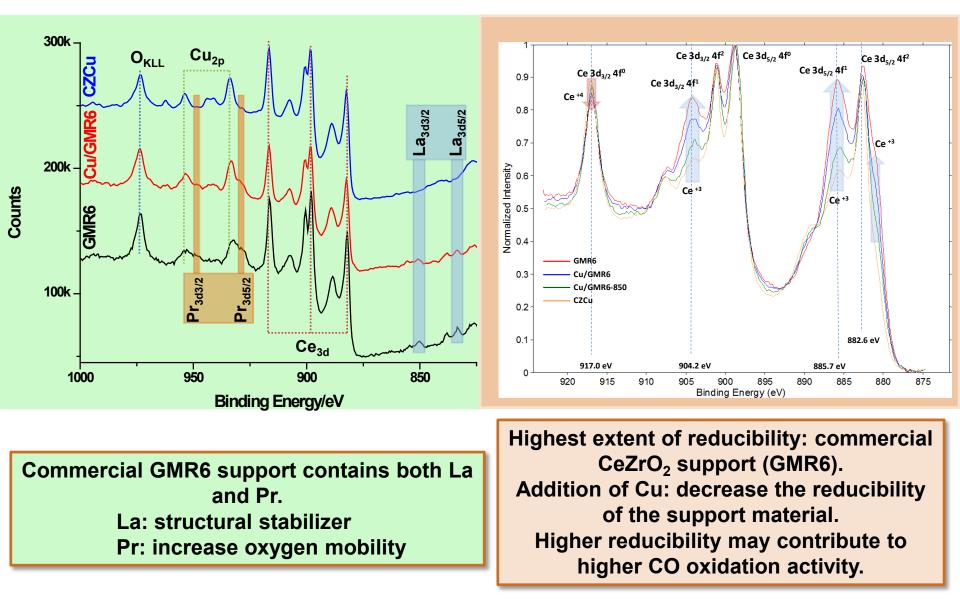
[Feed composition: 500 ppm CO, 260 ppm C_3H_6 , 87 ppm C_3H_8 , 200 ppm NO, 8% O₂, 8% H₂O and N₂ balance. GHSV=170,000 h⁻¹. Catalyst aging: 750 °C for 72 h in 10% H₂O/air.]

Pacific Northwest

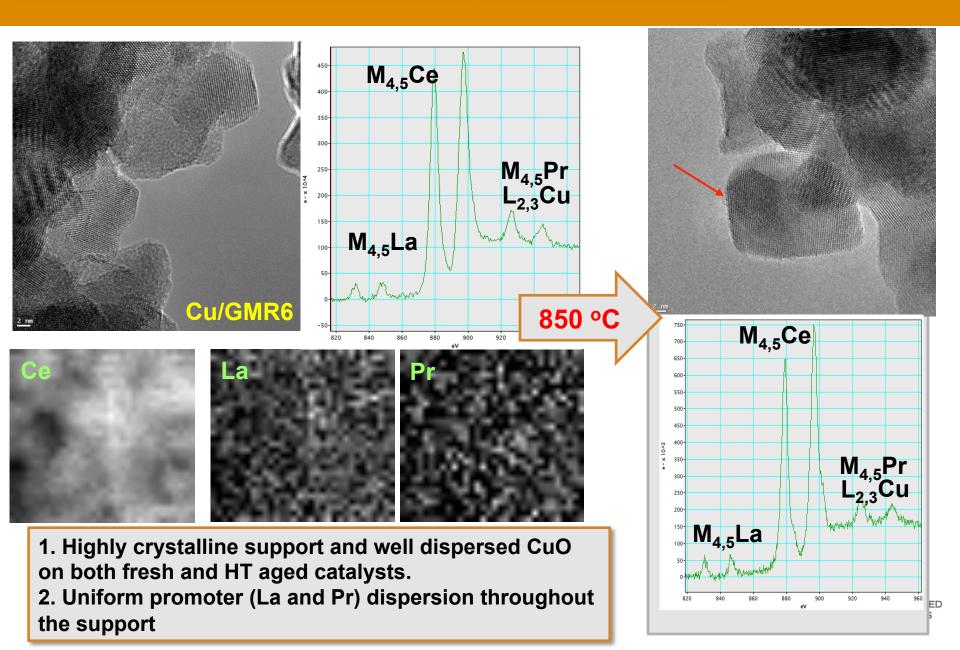
Institute for INTEGRATED CATALYSIS

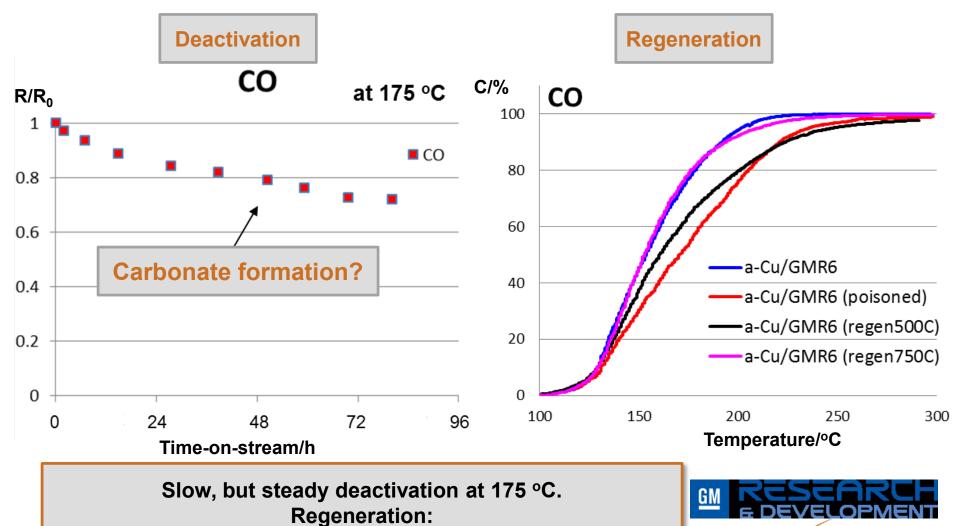
Deactivation: surface area of support and CuO particle size

Sample	Surface Area (m²/g)		Area loss ^a	CuO crystallite size (nm) ^b	
	Fresh	Aged	%	Fresh	Aged
C4Z1 GMR5 GMR6 CZCu Cu/C4Z1 Cu/C4Z1 Cu/GMR6	171 83 66 123 122 53	59 77 59 6 0.4 30	65.5 7.2 10.6 95.1 99.7 43.4	- - 7 6 8	- - 24 27 11


^a Surface Area loss calculated by (S_{fresh}-S_{aged})/S_{fresh}, ^b CuO crystallite size determined by XRD using the Sherrer equation.

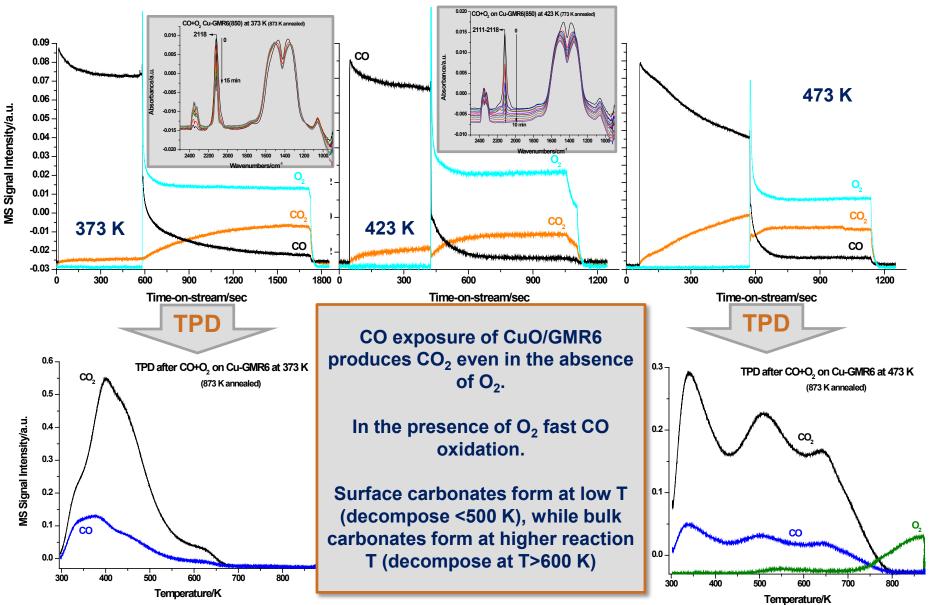
- 1. Home made CeZrO₂ supports suffer huge loss of surface are.
- 2. Surface area loss of commercial CeZrO₂ supports is much less extensive.
- 3. CuO accelerates the loss of support surface area.
- 4. CuO particles severely agglomerate when supported on an home-made CeZrO₂.
- 5. Commercial CeZrO₂ supports preserve high CuO dispersion.



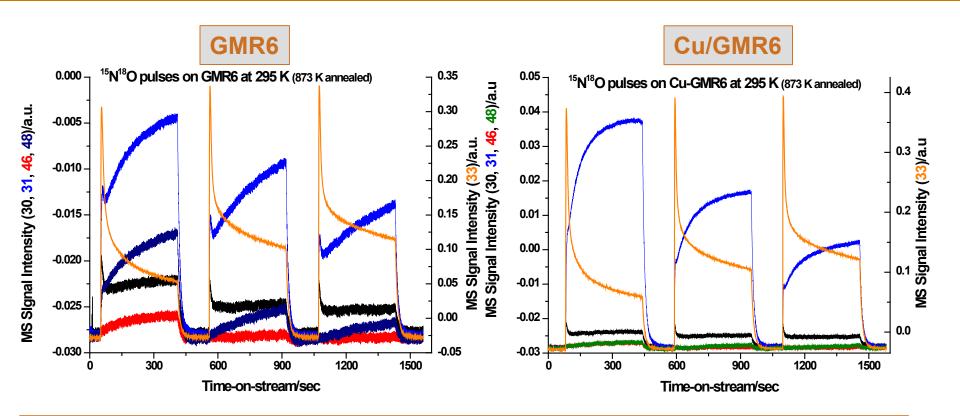

XPS: composition and reducibility of support

TEM/EDS of fresh and aged Cu/GMR6

Catalyst deactivation and regeneration



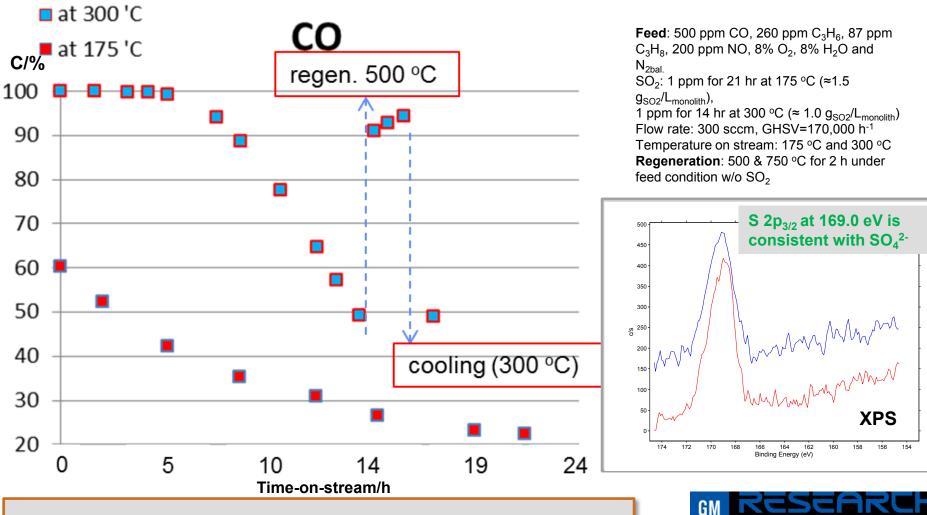
T < 500 °C: partial T > 750 °C: complete carbonate accumulation is the source of deactivation



12

CO and CO+O₂ on CuO/GMR6

Oxygen mobility followed by ${}^{15}N^{18}O \rightarrow {}^{15}N^{16}O$ isotope exchange process on GMR6 and Cu/GMR6 at 295 K

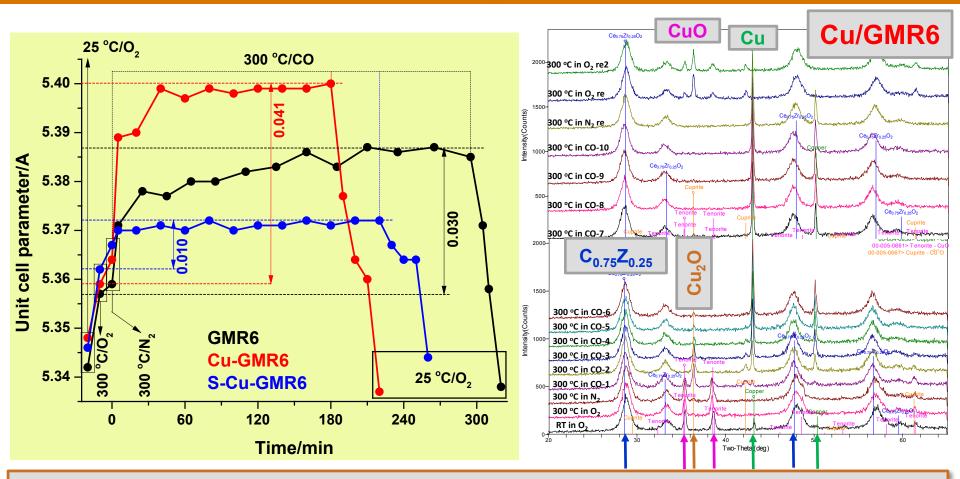


Fast surface reaction: $Ce^{16}O_x + {}^{15}N^{18}O \rightarrow Ce^{18}O^{16}O_{x-1} + {}^{15}N^{16}O$

Besides ¹⁸O \rightarrow ¹⁶O isotope exchange NO reduction to N₂O and N₂ are also observed. Much faster isotope exchange in the presence of CuO on GMR6:

very high oxygen mobility in Cu/GMR6

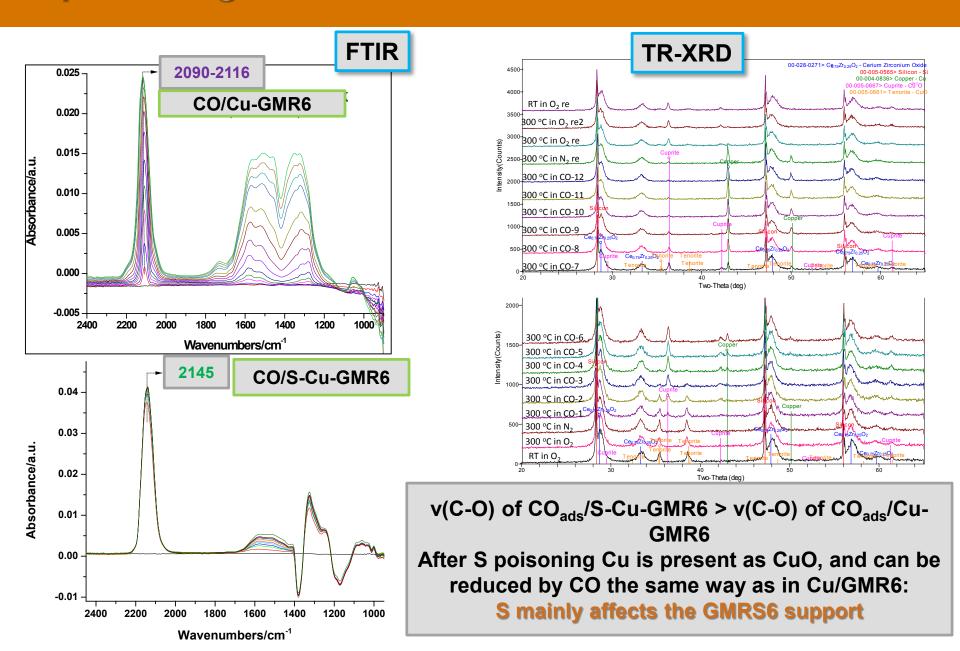
S poisoning and regeneration: Cu/GMR6



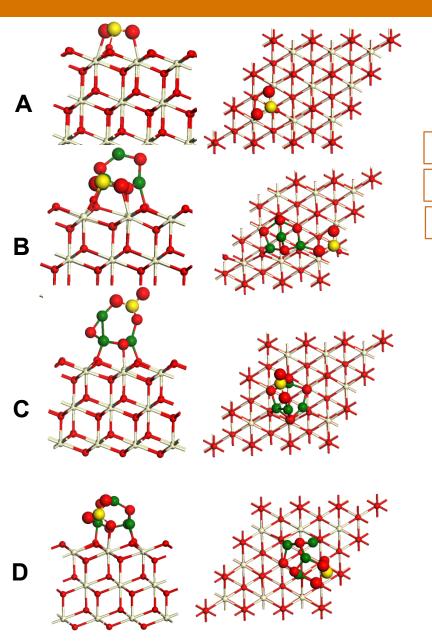
Severe deactivation under both 175 °C and 300 °C. Partial regeneration at T < 500 °C Sulfate accumulation is the source of deactivation

Proudly Operated by Battelle Since 1965

Unit cell expansion upon reduction with CO: the effect of S poisoning



The exposure of Cu/GMR6 to CO at 300 °C leads to CO oxidation by labile lattice oxygen and the expansion of the CeZrO₂ lattice. Highest level of reduction: Cu/GMR6


Lowest extent of reduction: S-poisoned Cu/GMR6

surface sulfates decrease the number of labile lattice oxygens available for CO oxidation.

S poisoning of Cu/GMR6

SO₂ adsorption on the (CuO)₄/CeO₂ surfaces

CeO ₂ (111)	CeO ₂ (100)	CeO ₂ (110)		
-0.97	-2.34	-1.95		
-1.68	-2.76	-2.10		
-1.27	-2.30	-2.64		
-1.77	-2.40	-3.03		
	-0.97 -1.68 -1.27	-0.97 -2.34 -1.68 -2.76 -1.27 -2.30		

 SO_2 adsorption on the $CeO_2(100)$ and $CeO_2(110)$ surfaces are stronger. With the $(CuO)_4$ cluster, SO_2 adsorption on the CeO_2 surfaces becomes stronger.

On the (CuO)₄/CeO₂ surfaces, SO₂ prefers to adsorb at the surface and interface instead of the cluster:

modifies CO adsorption properties of the

cluster

and reduces oxygen mobility of the support

> Pacific Northwest NATIONAL LABORATORY

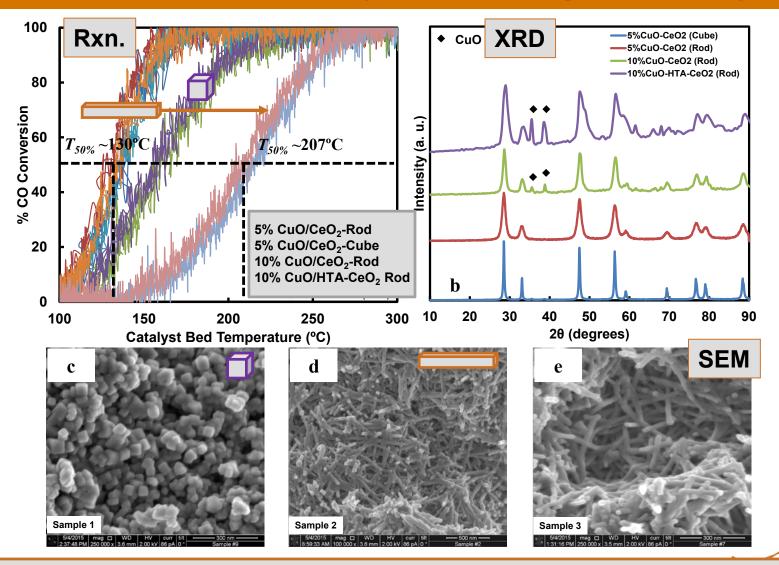
INTEGRATED CATALYSIS

Proudly Operated by Battelle Since 1965

Light-off temperature for CO oxidation

Catalyst	Т _{50%} (°С)
CuO-GMR6	157
1%CuO-GMR6	173
5%CuO-GMR6	160
10%CuO-GMR6	160
10%CuO-HTA-GMR6	178
HTA-10%CuO-GMR6	145
HTA-10%CuO-HTA-GMR6	148
20%CuO-GMR6	164
5%CuO-CeO ₂ (rods)	130
10%CuO-CeO ₂ (rods)	133
10%CuO-HTA-CeO ₂ (rods)	207
5%CuO-CeO ₂ (cubes)	159
5%Co ₃ O ₄ -CeO ₂ (cubes)	246
5%Co ₃ O ₄ -CeO ₂ (rods)	248
1%Mn ₂ O ₃ -CeO ₂ (NP)	204
5%Mn ₂ O ₃ -CeO ₂ (NP)	278
10%Mn ₂ O ₃ -CeO ₂ (NP)	305
5%CuO-1%Mn ₂ O ₃ -CeO ₂ (NP)	172
5%CuO-5%Mn ₂ O ₃ -CeO ₂ (NP)	162
5%CuO-10%Mn ₂ O ₃ -CeO ₂ (NP)	182
10%Cu-CeO ₂ /ZrO ₂	136
10%Cu-HTA-CeO ₂ /ZrO ₂	173
10%Cu-1.75%La ₂ O ₃ -CeO ₂ /ZrO ₂	135
10%Cu-10%La ₂ O ₃ -CeO ₂ /ZrO ₂	135

Summary of "new" catalysts tested


HTA of Cu/GMR6 improves catalytic activity toward CO oxidation. HTA of Cu/GMR6 ≠ Cu/HTA-GMR6

CuO nanorods on GMR6 is more catalytically active than CuO nanocubes Both nanorods and nanocubes loose their activities upon HTA

Neither Co_3O_4 nor Mn_2O_3 are effective CO oxidation catalysts on CeO_2 .

High CO oxidation activity on both ZrO_2 and La₂O₃ doped CeO₂. The addition of ZrO_2 (and La₂O₃) stabilizes the CeO2 during HTA.

The effect of support morphology CuO/CeO₂: *rod vs. cube* (the role of crystal facets)

CuO on rod-shaped CeO₂ shows higher CO oxidation activity than on cube-shaped support. Neither rods nor cubes are hydrothermally stable. Complete activity measurements on C₁₂ hydrocarbon oxidation over selected (mostly GMR6-based) CuO catalysts.

Complete mechanistic DRIFTS studies on selected catalysts.

Complete two manuscripts based on work done at GM and PNNL.

Complete Final Report.

INTEGRATED CATALYSIS

Proudly Operated by Battelle Since 1965

Summary

All CuO/CeO₂-based catalysts prepared by GM and PNNL showed high CO oxidation, but modest C₃ hydrocarbon oxidation activities. (... but not Co₂O₃ and Mn₂O₃)

All the home-made, CeO_2 -based support materials showed poor high temperature hydrothermal stabilities (large increase in $T_{50\%}$, large drop in surface area, agglomeration of active catalytic phase).

GMR6, a commercial La_2O_3 - and Pr_2O_3 -doped $CeZrO_2$ support showed remarkable high temperature hydrothermal stability (CO oxidation activity of HTA-Cu/GMR6>Cu/GMR6).

 La_2O_3 and ZrO_2 significantly enhance the hydrothermal stability of CeO_2 .

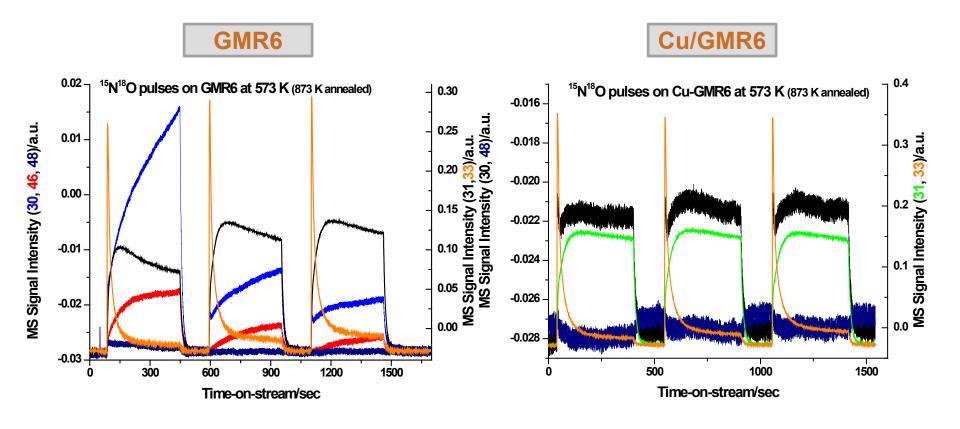
Pr₂O₃ improves oxygen mobility on CeO₂.

Two reason for activity loss in Cu/GMR6: (1) surface and bulk carbonate formation (completely reversible by HT annealing/calcination), and (2) sulfate formation on the support and at the active oxide/support interface (only partially reversible).

Maintenance of high oxygen mobility in the CeO₂-based support is key to long term high CO oxidation activity (Mars-van-Krevelen mechanism).

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

TECHNICAL BACKUP

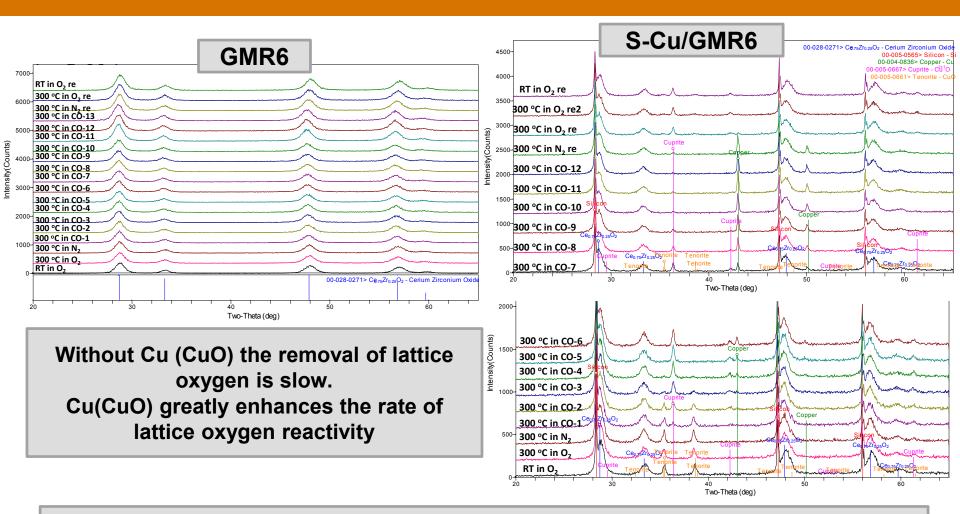


Supplementary slide: Alternative catalysts: support, additive, active oxide

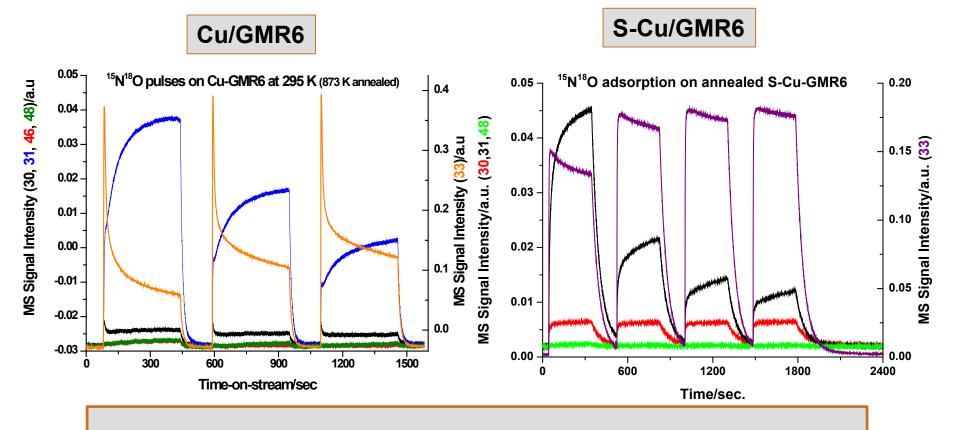
Catalyst	BET Surface Area (m²/g)	Pore Volume (cc/g)	Pore Diameter (nm)	Catalyst	BET Surface Area (m²/g)	Pore Volume	Pore Diameter
$CeO_2(C)$	34.2	0.27	32.2			(cc/g)	(nm)
$CeO_2(R)$	129.5	0.89	27.4	GMR6	68.2	0.47	27.4
5%CuO-CeO ₂ (C)	32.8	0.21	25.1	10%Cu-GMR6	58.9	0.21	14.4
5%CuO-CeO ₂ (R)	115.2	0.52	18.1	10%Co-GMR6	54.8	0.22	16.1
$5\%Co_{3}O_{4}-CeO_{2}(C)$	30.6	0.01	12.7	HTA-GMR6	53.5	0.47	37.1
$5\%Co_{3}O_{4}-CeO_{2}(R)$	81.4	0.16	7.8	10%Cu-HTA-GMR6	42.8	0.23	21.6
Commercial CeO ₂	37.7	0.77	20.5	10%Co-HTA-GMR6	41.9	0.21	19.9
1%Mn ₂ O ₃ -CeO ₂	31.6	0.13	17.3	HTA-10%Cu-GMR6	26.1	0.2	30.5
5%Mn ₂ O ₃ -CeO ₂	29.0	0.11	17.3	HTA-10%Co-GMR6	23.3	0.22	37.1
$\frac{10\% \text{Mn}_2\text{O}_3\text{-CeO}_2}{10\% \text{Mn}_2\text{O}_3\text{-CeO}_2}$	22.8	0.09	17.4	HTA-10%Cu-HTA-GMR6	27.0	0.23	33.8
			I	HTA-10%Co-HTA-GMR6	22.3	0.2	36.0

CeO₂ support: rod and cube shaped: high initial activity; low hydrothermal stability Co_3O_4/CeO_2 : much lower activity than CuO/CeO₂ Mn_2O_3/CeO_2 : much lower activity than CuO/CeO₂ GMR6 support shows high hydrothermal stability (both with CuO and Co₃O₄) The best catalyst (both catalytic performance and hydrothermal stability) is CuO supported on GMR6. Non of the catalyst tested showed sufficient C₃ oxidation ability, but CuO/GMR6 was sufficiently active in C₁₂ oxidation.

Supplementary slide: ¹⁵N¹⁸O exposure of GMR6 and Cu/GMR6 at 573 K


Much faster rate of oxygen isotope exchange at 573 K than at 295 K. Significant NO reduction to N_2O and N_2

Institute for INTEGRATED CATALYSIS


Proudly Operated by Battelle Since 1965

Supplementary Slide: TR-XRD

Sulfur poisoning affects both the support (GMRS6) and the CuO phase. The formation of Cu₂O and then Cu is much slower on the S-poisoned sample than over the Cu-GMR6. Re-oxidation (after CO reduction) only results in the formation of Cu₂O but not CuO. Very small unit cell parameter decrease is seen for the S-poisoned GMR6 support.

Oxygen mobility: ¹⁵N¹⁸O→¹⁵N¹⁶O isotope exchange process on Cu/GMR6 and S-Cu/GMR6 at 295 K

Much faster surface reaction on Cu/GMR6 than on S-Cu/GMR6: **S poisoning dramatically decreases surface oxygen mobility** $[Ce^{16}O_x + {}^{15}N^{18}O \rightarrow Ce^{18}O^{16}O_{x-1} + {}^{15}N^{16}O]$

> Pacific Northwest NATIONAL LABORATORY