Studies on High Capacity Cathodes for Advanced Lithium-Ion

Jagjit Nanda and Rose Ruther Oak Ridge National Laboratory June 2016

Project ID # ES106

LiCuO Li_CuO Li CuO LigO CuO Li_O iCuČ

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

- Project start date: October 1, 2015
- Project end date: Sept 30th 2018
- Percent complete: 30%

Barriers

Performance: High energy density for PEV applications with cell level targets ≥ 400 Wh/kg and 600 Wh/L Life: More than 5000 deep discharges (SOC range) over the entire life Safety: Thermally stable and abuse tolerant

<u>Budget</u>

- Funding received in FY15: \$400K
- Funding received in FY 16: \$400K

Partners

- Lawrence Berkeley Laboratory
 In-situ X-ray absorption spectroscopy & interfacial studies
- Brookhaven National Laboratory Synchrotron X-ray diffraction and microscopy
- SSRL, SLAC, Stanford CA XANES and X-ray imaging
- CAMP Facility, Argonne National Laboratory

Relevance and Project Objectives

Develop high energy density lithium-ion cathodes for EV and PHEV applications that meet or exceed DOE USDRIVE/USABC cell level targets (> 400 Wh/kg and 700 Wh/L)

Current high voltage cathodes and limitations

There is a critical need to develop alternative high capacity cathodes to meet high energy density at cell level.

Desired Attributes

Milestones 2015-16

Due Date	Description	Status
06/30/2015 (Q3)	Determine interfacial charge transfer and area specific impedance at various SOC for LMR-NMC cathodes	Complete
09/30/2015 (Q4)	Local morphology and chemical structure analysis of pristine and cycled LMR-NMC and other high capacity cathodes	Complete
12/31/2015 (Q1)	Synthesize three compositions of $Li_2Cu_xNi_{1-x}O_2$ cathodes with x between 0.4-0.6 and improve their anionic stability by fluorination. Subtask-1.1: Fluorination of Li_2CuO_2	Complete
03/31/2016 (Q2)	Subtask-1.2: Fluorination of $Li_2Cu_xNi_{1-x}O_2$ with x ~ 0.4-0.6	In progress
06/30/2016 (Q3)	Identify the roles of Ni and F towards obtaining reversible redox capacity at higher voltage and stabilize Ni-rich compositions. Subtask-2.1 XANES, microscopy, and XPS studies	70% complete
09/30/2016 (Q4)	Identify the roles of Ni and F towards obtaining reversible redox capacity at higher voltage and stabilize Ni-rich compositions. Subtask 2.2 Gas evolution and electrochemistry	In progress

Approach-I

Synthesize and stabilize solid solutions of high capacity 2-lithium cathode compositions belonging to $Li_2M_x^iM_{1-x}^{ii}O_2 \& Li_2M_x^iM_{1-x}^{ii}O_3$ (where Mⁱ and Mⁱⁱ = Cu, Ni, Fe, Mn).

Criteria

- (i) Reversible capacity > 250 mAh/g at C/3
- (ii) Structurally stable under > 1 lithium transfer per TM
- (iii) Include relatively low cost transition metals: Cu, Ni, Fe
- (iv) Cathode compositions guided by modeling^{*} (DFT and phase diagram)

 \rightarrow Synthesize and test high capacity nickel-stabilized Li₂Cu_xNi_{1-x}O₂ and evaluate the role of Ni in stabilizing the copper oxide phase. Improve the electrochemical performance and achieve higher redox voltage by methods such as fluorination.

*Ceder, G., *et al., Chem. Mater.* **2004,** *16* (13), 2685-2690; Godshall, N. A., *Solid State Ionics* **1986,** *18-9*, 788-793.

Approach-II

- Increase the redox voltage of cathodes by stabilizing transition metals in higher oxidation state.
- Improve the oxidative stability and capacity loss of high voltage cathodes by anionic substitution, coatings, and post-processing.
- Correlate structure and interfaces with electrochemical performance.

X-ray Imaging and Spectroscopy (XANES)

- 3D elemental mapping and tomography of pristine and cycled cathode particles
- Measure transition metal (TM) oxidation state, migration, and segregation which lead to voltage fade

Micro-Raman mapping of high voltage cathodes

- Monitor changes in crystal chemistry as a function of charge and electrochemical cycling
- Evaluate electrode homogeneity

3-Electrode EIS as function of SOC and temperature

- Cu K-edge shows significant shifts only > 3.9 V
- Direction of shift is inconsistent with Cu oxidation
- Change in Cu XANES likely reflects structural transformations at high voltage

Technical Accomplishment: In situ XANES microscopy maps out structural transformations

CAK RIDGE NATIONAL LABORATORY

R. Ruther et al. unpublished 2016

Technical Accomplishment: XANES at Ni K-edge tracks chemical changes *in situ*

- Spectral analysis is complicated by Ni-containing impurities and phase transformation at high voltage
- Overall shift to higher binding energy confirms our previous work showing Ni oxidation during charge [R. Ruther *et al.* Chem Mater. 227, 6746-6754, 2015]

Technical Accomplishment: In situ XANES microscopy reveals phase changes and impurity

- XRD shows $Li_{1-x}Ni_xO$ as the only Ni-containing impurity.
- However, Li_{1-x}Ni_xO is not expected to be electrochemically active and impurity phase is indistinguishable from main phase after charge.

Technical Accomplishment:

In-situ Raman confirms close-packed lattice forms when charged

- In situ Raman spectra were compared to standards of LiNiO₂ (close-packed) and NaCuO₂ (monoclinic).
- Raman spectroscopy confirms that the structure of Li₂Cu_{0.5}Ni_{0.5}O₂ transforms from orthorhombic to close-packed layered during charge, similar to previous studies of Li₂NiO₂.

R. Ruther et al. Chem. Mater. 227, 6746-6754, 2015

- Gas evolution in pouch cells was quantified using Archimedes' principle
- Using the ideal gas law, the moles of gas generated were calculated from the change in pouch cell buoyancy.
- All capacity extracted above 3.9 V can be attributed to gas evolution, assuming 4 e⁻ per mole of gas.
- O₂ and CO₂ were main gasses detected by mass spectrometry.

Technical Accomplishment:

Fluorination of Li₂CuO₂ using F-containing polymers is a "no go"

- Fluorination of Li₂CuO₂ should suppress oxygen evolution at high voltage.
- Borrowing from work with copper-based superconductors, teflon and PVDF polymers were selected as fluorinating agents for safety and ease of use.
- Reactions carried out in O_2 at 375 400 °C resulted primarily in decomposition of Li_2CuO_2 to LiF and other Cu-containing phases.

Technical Accomplishment

Li₂CuO₂ is fluorinated using LiF, but the product is not homogeneous

(2-2x)LiOH + 2xLiF + CuO $\xrightarrow{800 \circ C, air}$ Li₂CuO_{2-x}F_{2x} + (1-x)H₂O

- Fluorination was carried out by substituting LiF for LiOH during synthesis
- XRD indicates formation of a single phase, but is not very sensitive to LiF
- EDS shows F is not uniformly doped and some LiF remains as a separate phase

Technical Accomplishment:

Doping with LiF improves electrochemical performance of Li₂CuO₂

- Fluorination increases initial capacity and reduces first-cycle irreversible loss.
- Fluorination does not reduce the overall capacity fade and sensitive to synthesis and processing parameters.
- Fluorination of Ni-stabilized compositions is underway to increase the voltage profile.

Technical Accomplishment: Li_2CuO_2 thin films (~ 1 µm thick) are successfully deposited

- Thin films of Li_2CuO_2 were deposited by RF sputtering from a Li_2CuO_2 target.
- In situ XRD shows that the desired phase forms around 500 °C in dry air.
- Thin film Li₂CuO₂ will serve as a model system to evaluate cathode properties such as lithium-ion diffusivity and electrode-electrolyte interfaces.

Summary

Technical Approach:

Design and synthesis of high voltage, high capacity cathodes guided by *state-of-the-art* characterization and modeling

- Synthetic approaches include anionic substitution and advanced coatings to stabilize the interface and bulk structure.
- Diagnostic tools include a suite of microscopic and sprectroscopic techniques.

Accomplishments:

- Identified chemical and structural changes that occur in Li₂Cu_{0.5}Ni_{0.5}O₂ under in situ conditions and mapped out phase transformations using TXM-XANES.
- Unraveled mechanisms of electrochemical activity and degradation of Li₂Cu_xNi_{1-x}O₂ cathodes using a combination of X-ray and neutron diffraction, *in situ* Raman spectroscopy, electrochemistry, and gas evolution experiments.
- Developed fluorination routes to stabilize Li₂CuO₂ cathodes to minimize oxygen loss and capacity degradation at higher voltages.

Ongoing work:

- Partial fluorination of high capacity Li₂Cu_xNi_{1-x}O₂ cathodes to improve stability at high voltage and prevent oxygen loss.
- Synthesis of Ni-rich compositions of Li₂Cu_xNi_{1-x}O₂.
- Fabrication and testing of thin film Li₂Cu_xNi_{1-x}O₂ cathodes to extract fundamental physical properties (ionic and electronic transport, interfacial reactions).

Response to Reviewers Comments

Reviewers 1&3: Both reviewers noted that the work on $Li_2Cu_xNi_{1-x}O_2$ cathodes is encouraging, but the structure needs to be stabilized. PI should narrow the scope of work and explore this system exhaustively.

Response: In the current year, we focused on $Li_2Cu_xNi_{1-x}O_2$ and improved the electrochemical performance and oxidative stability of this system. We also performed more detailed X-ray synchrotron studies to investigate the chemical and structural transformations that occur in this material and limit reversibility.

Reviewer 2 noted the need to eliminate impurities, improve the stability by cationic substitution, and reduce the particle size to improve the rate performance.

Response: New synthesis and precursors are used to address the above issues. With respect to stability, we have pursued anionic substitution to limit oxygen participation in the redox process.

Reviewer 3 saw no clear strategy to mitigate oxygen evolution and wondered if cation substitution will help. He/she also commented that the voltage profile is still not attractive.

Response: This year we tried fluorination of $Li_2Cu_xNi_{1-x}O_2$ with 5-7% F atoms substituting oxygen. This should suppress oxygen evolution and prevent capacity loss at higher voltage. We succeeded in fluorinating Li_2CuO_2 . Gas evolution studies and work with Ni-containing samples are in progress.

Ongoing Partnership and Collaboration

In situ XAS Study of High Capacity Cathodes Dr. Guoying Chen

In-operando X-ray Synchrotron Studies and Microscopy Dr. Feng Wang

Electron Microscopy Dr. Chong Ming Wang

Synchrotron X-ray microscopy and 3D microstructure Dr. Johanna Nelson Weker

Industrial Advisor Cell and Electrode Targets and Performance Dr. Andy Drews, Ford Advanced Engineering and Research

Remaining Challenges and Barriers

- Improve the synthesis methods to make phase pure Li₂Cu_xNi_{1-x}O₂ with smaller particle sizes including carbon coating to improve capacity retention
- Synthesize and stabilize Ni-rich Li₂Cu_xNi_{1-x}O₂ compositions to increase the voltage profile
- Investigate the role of fluorine in improving the capacity retention and provide further evidence that fluorine is substituting for oxygen
- Investigate the role of Ni substitution in stabilizing the structure and correlate with electrochemical performance

Proposed Future Work

FY 16-17

- Continue synthesis efforts of high-capacity 2-lithium Cu-Ni oxides to improve electrochemical performance and capacity retention
 - (i) Reduce the particle size to improve rate performance
 - (ii) Eliminate impurity phases and vary composition
 - (iii) Continue fluorination of nickel-rich Li₂Ni_xCu_{1-x}O₂ to increase the redox voltage
- Fabricate thin films of Li₂Ni_xCu_{1-x}O₂ by RF sputtering and study the structure and electrochemical reactivity at the interface
- Investigate the rate capability of $Li_2Ni_xCu_{1-x}O_2$ for x = 0.4, 0.5, and 0.6
- Study the lithiation-delithiation mechanism and determine the reversibility of Cu and Ni redox activity using *in situ* synchrotron XAS and diffraction

Beyond

- Synthesize other copper/nickel cathode compositions using polyanionic groups that stabilize transition metals in higher oxidation states
- Study model cathode compounds to monitor lattice oxygen loss at higher redox potentials and understand the mechanism of oxygen loss

