

Novel Chemistry: Lithium Selenium and Selenium Sulfur Couple

K. Amine (PI)

Z. Chen and G. Xu

Argonne National Laboratory DOE merit review June 6th ~10th , 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID: ES280

Overview

Timeline

- Start October 1st, 2015.
- Finish September 30, 2018.
- 60% Completed

Budget

- Total project funding
 DOE share: \$1000K
- Funding received in FY15: \$500K
- Funding for FY16: \$500K

Barriers

Barriers addressed

- High energy
- Long calendar and cycle life

Partners

- Project lead: Khalil Amine
- Interactions/ collaborations:
- Prof. C. S. Wang (UMD) Encapsulating S_xSe_y in carbon matrix
- Dr. C. J. Sun (ANL) Mechanism study using in situ XANES
- Dr. Y. Ren (ANL) Mechanism study using in situ HEXRD.
- Dr. X. Cheng, Dr. L. Curtiss (ANL) DFT calculation.

Relevance and project Objectives

 Objective: develop a novel S_xSe_y cathode material for rechargeable lithium batteries with high energy density and long life as well as low cost and high safety.

This technology, If successful, will lead to:

- A cell with nominal voltage of 2 V and energy density of 600 Wh/kg
- A battery capable of operating for 500 cycles with low capacity fade.

Milestones

- Investigate the lithium storage mechanism of Se using in situ synchrotron probes (completed).
- Investigate the performance of S₅Se₂ in ether-based electrolyte (completed).
- Investigating the potential use of carbonates for Li/Se cell (completed).
- Exploring the phase diagram of $S_x Se_y$ (ongoing).
- Encapsulate $S_x Se_v$ in porous carbon matrix (ongoing).
- Investigate the alloying mechanism between S and Se (ongoing).

Motivation

Li/Se can be charged to 4.5 V without any shuttle effect.

Approach

- Micro-porous and meso-porous carbons will be designed to replace carbon black for better encapsulation and higher loading of the active material.
- > The electrolyte composition will be optimized based on the composition of $S_x Se_y$.
- In situ synchrotron probes will be used to identify the capacity fade mechanism.

Approach: advanced characterization

□X-ray Diffraction

• Powerful and fast, need good crystals, no solutions

□X-ray Absorption Spectroscopy

- XAFS uses the X-ray photoelectric effect and the wave nature of the electron to determine local structures around selected atomic species in material
- Precise local structural information (distances, numbers of atoms, types, disorder) in crystalline or noncrystalline systems e.g. metalloprotein active sites, liquids, amorphous materials
- Information on charge state, orbital occupancy may be available by studying XANES depending on system and edge

Technical accomplishments

- Electrical conductivity of cathode improved significantly by adding Se to Sulfur
- Lithium storage mechanism of Se cathode was investigated using synchrotron probes.
- Lithium storage mechanism of S₅Se₂ cathode was investigated using synchrotron probes.
- Dissolution of polyselenide phases can be prevented depending on electrolyte choice
- Better compatibility between Se cathode and carbonatebased electrolyte was validated with no dissolution of polyselenide phases.

Collaborations

- Prof. C. S. Wang of University of Maryland at Collage Park
 Encapsulating S_xSe_v in carbon matrix.
- > Dr. C. J. Sun (APS, ANL)

•Mechanistic study on the capacity fade of Se and S_xSe_y cathodes using in situ XANES.

> Dr. R. Yang (APS, ANL)

•Mechanistic study on the capacity fade of Se and S_xSe_y cathodes using in situ HEXRD.

Dr. X. Chen, and Dr. L. Curtiss (MSD, ANL)
 •DFT calculations.

Cost and toxicity consideration

Se:

60-70\$/kg for 99.99 purity.

✓ 50mg/day is recommended by doctor as a supplement. <u>http://www.wisegeek.com/what-is-a-selenium-toxicity.htm</u>

SeS_2 :

commercially called selenium disulfide is sold as an <u>antifungal</u> agent in <u>shampoo</u>s for the treatment of <u>dandruff</u> and <u>seborrheic</u> <u>dermatitis</u> associated in the scalp with <u>Malassezia</u> genus fungi. At the 2.5% strength, selenium disulfide is also used on the body to treat <u>tinea versicolor</u>, a type of <u>fungal</u> skin infection caused by a different species of <u>Malassezia</u>.

* We are not going to use H_2 or any H_2 sources that can lead to the formation of H_2 Se.

Selenium Powder 99.99 China usp/kg				
Date	Low	High	Avg.	Change
Current pricing available to subscribers				
24 Apr 09	63.0	70.3	66.66	.05
17 Apr 09	63.0	70.3	66.61	.01
03 Apr 09	62.9	70.3	66.60	01
27 Mar 09	63.0	70.3	66.61	.08
20 Mar 09	62.9	70.2	66.53	0
06 Mar 09	62.9	70.2	66.53	0
27 Feb 09	62.9	70.2	66.53	-2.99
13 Feb 09	65.9	73.2	69.52	0
06 Feb 09	65.9	73.2	69.52	2.94
19 Dec 08	62.9	70.2	66.58	4.77

Source - Reuters / Shanghai Nonferrous Metals Prices include VAT

Selenium Sulfide 2.5% Anti-Dandruff Shampoo, 40 Oz (18.5\$) 10

Li/Se battery performance: etherbased electrolyte

1M LiTFSI in DOL/DME

Li storage in Se: in situ HEXRD

The compete conversion of Se to Li_2Se by the end of the discharge.

Changes of chemical environment during lithiation of Se

Se K-edge of standard end products:

Se K-edge of Se²⁻ at a higher energy than atomic Se

Se –edge of Li2Se at a higher energy than elemental Se. this is inconsistent with the commonly observed phenomenon that the edge shifts to higher energy with the increase in the oxidation states

Delithiation of Li₂Se to form Se - *in situ* XANES study

Se K-edge of Li₂Se shifted to high energy may be caused by the strong columbic interaction between Se²⁻ and surrounding lithium leading to reduction in the screening effect.

Identification of intermediate - Li₂Se₂

Se and Li₂Se two phase-transition is impossible.

The presence of intermediate phases is plausible as shown by the good fits achieved with tiny residuals.

Confirmation of dissolved polyselenide in ether-based electrolyte

16

Potential of carbonates for Li/Se batteries

Carbonate based electrolyte :

Li₂Se Se+Li₂Se

Ether based electrolyte: Se Li₂Se Se

Se

Li₂Se Se+Li₂Se

Proposed Mechanism (no dissolution of polyselenide phases)

Improvement on ion/electron transport kinetics: short solid-state diffusion length, darge surface area...

Se + $2Li^+$ + $2e \longrightarrow Li_2Se$

 $nSe + 2Li^{+} + 2e \xrightarrow{} Li_2Se_n$ $Li_2Se_n + (n-2)Li^{+} + (n-2)e \xrightarrow{} n/2Li_2Se_2$ $Li_2Se_2 + 2Li^{+} + 2e \xrightarrow{} 2Li_2Se$

The solubility of redox products dominate the lithiation mechanism of a Li-Se cell.

Reducing shuttle effect:
 material confinement,
 saturated electrolyte...

Se has a reversible lithiation/ delithiation in carbonate-based electrolyte

Se K-edge position did not show clear shifts, but the absorption intensity decreased with discharging.

Bypassing the formation of Li₂Se_x(X>1)

 Li_2Se is formed and increasing in composition with discharge to 0.8V, then oxidized to Se with charge.

Se and Li₂Se two phase fitting leads to decent results.

New electrochemical behavior of Se in carbonate-based electrolyte

Proposed Future Work for FY 2016 and FY 2017

- FY 2016 Q3 Milestone:
 - Investigate the phase stability of $S_x Se_y$.
- FY 2016 Q4 Milestone:
 - Investigate the synergetic effect of S_xSe_y alloys and explore Encapsulating S_xSe_y in porous carbon matrix
- FY2017 work proposed
 - Finalize the optimization of S-Se-C composite.
 - Finalize the optimization of solvent.
 - Develop functionalized electrolyte additives for extended cycle life.

Summary

- In situ synchrotron probes were used to investigate the lithium storage mechanism of Se and S_xSe_y.
- A reversible lithiation/delithiation of Se in carbonated-based electrolyte was confirmed.
- The dissolution of polyselenides in carbonate-based electrolyte was suppressed.