Multi-Functional Cathode Additives for Li-S Battery Technology

PI: Hong Gan Brookhaven National Laboratory 2016 Annual Merit Review June 9, 2016

a passion for discovery

Project ID # ES281

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start Oct. 2014
- Project end Sept. 2017
- 50% complete

Barriers

- Performance: Low Wh/kg (or L) & W/kg (or L)
- Cycle life: Poor cycle life
- Cost: High \$/kWh

Budget

- Total project funding
 - FY 2015 \$500K
 - FY 2016 \$500K

Partners

- Brookhaven National Laboratory (BNL) (lead)
- Stony Brook University

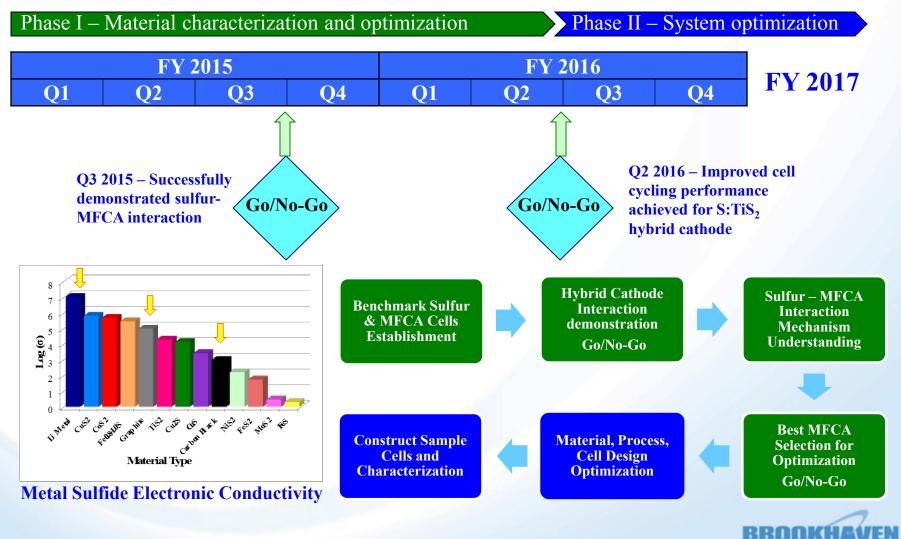
Relevance and Project Objectives

Project Objectives

- Develop high energy Li-S batteries for HEV/PEV/EV applications and reduces the cost associated with batteries.
- Achieve long cycle life of Li-S battery by increasing the sulfur cathode conductivity with transition metal sulfides as multifunctional cathode additives (MFCA).
- Optimize the chemical and physical properties of selected MFCA for high sulfur utilization and long Li-S cell cycle life.

Project Relevance

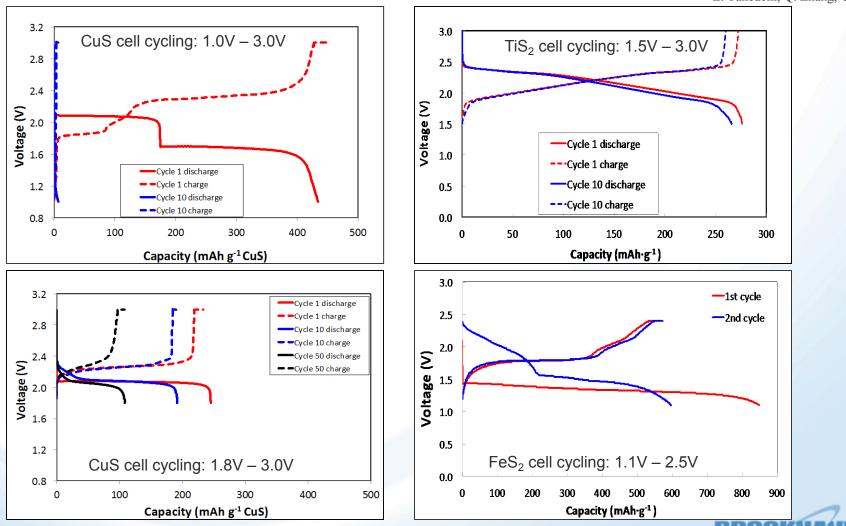
- Our project objectives are aimed at addressing three barriers associated with today's benchmark Li-ion batteries: high cost, lower energy density and short cycle life.
 - Li-S battery technology potentially may double the energy density and lower the battery cost.
 - Success development of MFCA will help to achieve long cycle life for Li-S battery.



Milestones for FY 2015 and 2016

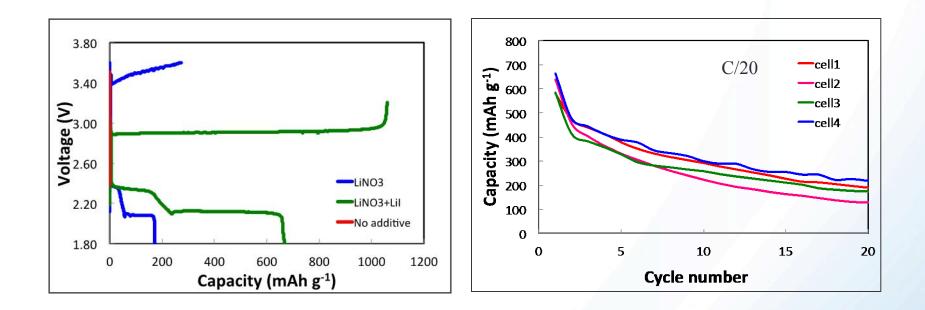
Date	Milestones	Status
December, 2014	Benchmark MFCA coin cells: Achieve > 50% of theoretical capacity of MFCA upon activation	Completed
March, 2015	Benchmark S coin cells: Achieve 1 st cycle utilization of cathode comparable to literature report (> 50% of theoretical capacity of Li ₂ S and S) upon activation	Completed
June, 2015 Go/No-Go	Concept demonstration: Achieve Li_2S or S efficiency > 60% theoretical in the presence of MFCA for hybrid cathode	Completed
September, 2015	Synthesis of the selected MFCA (FeS ₂ and TiS ₂)	Completed
December, 2015	Lab prepared TiS_2 and FeS_2 testing in hybrid cathode: Achieve equal or better cathode utilization vs. the control with commercial TiS_2 and FeS_2	Completed
March, 2016 Go/No-Go	Obtain MFCA material with different PS and shape and testing in hybrid cathode: Achieve equal or better cathode utilization vs. the control with commercial MFCA.	Completed
June, 2016	Binder selection: Achieve good electrode mechanical integrity with no delamination from Al foil and no loose particles.	On-schedule
September, 2016	Cathode formulation optimization for maximized capacity density: Achieve >500 mAh/g (S + Additive).	On-schedule

Approach/Strategy


5

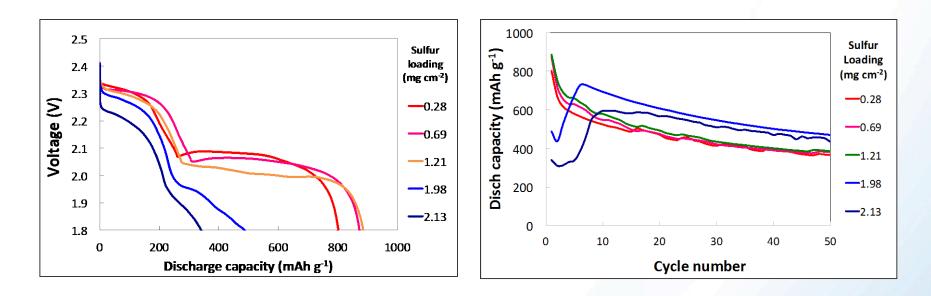
NATIONAL LABORAT

Accomplishments and Progress Benchmark MFCA cell performance and activation

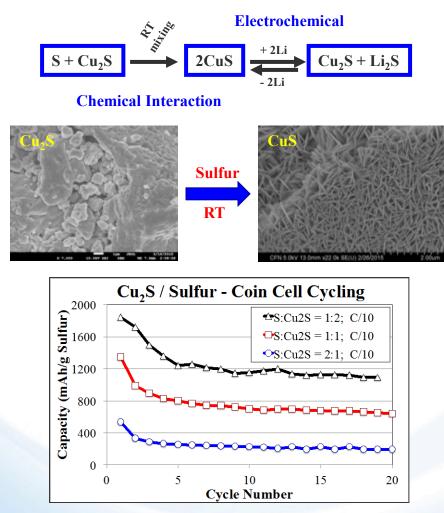

A. Marschilok, K. Takeuchi, E. Takeuchi, Q. Zhang, C. Cama

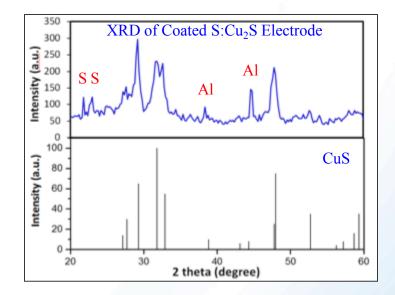
6

NATIONAL


Accomplishments and Progress Benchmark Li₂S cell performance

- Li₂S cell activation requires electrolyte additives.
- 50% sulfur utilization in the presence of $LiNO_3$ and LiI at C/40.
- Fast capacity fade upon cycling at C/20.

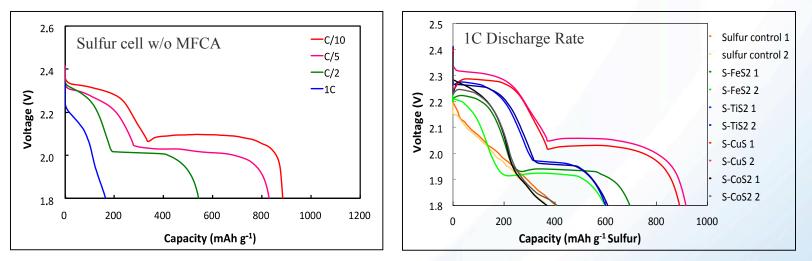

Accomplishments and Progress Benchmark sulfur cell performance – loading effect



- The initial sulfur utilization is sulfur loading dependent.
- Up to 53% theoretical capacity delivered in the initial discharge (882 mAh g⁻¹ S) for Li-S cells at C/5 rate.
- Activation required for high sulfur loading cells (2+ mg/cm²).

Helen Liu, Ke Sun, Hong Gan, "The effects of carbon type and cathode loading on Li-S battery performance", Poster at 2015 American Institute of Chemical Engineers (AIChE) Annual Meeting, Nov. 8-13, 2015.

Accomplishments and Progress Concept demonstration – Sulfur/CuS interaction



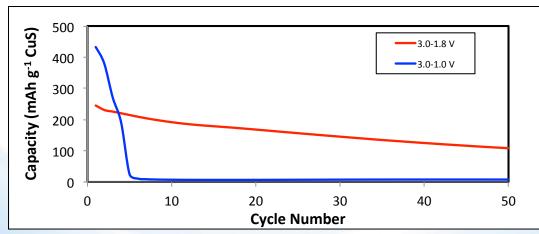
- Sulfur reacts with Cu₂S at RT to form nano-structured flake CuS crystals.
- With excess $Cu_2S:S$ ratio > 1.0, 100% of sulfur utilization can be achieved (3.0V to 1.8V at C/10 rate).
- Low sulfur utilization observed when $Cu_2S:S$ ratio < 1.0.

Accomplishments and Progress Sulfur cell discharge rate and sulfur-MFCA interaction

MFCA	Sulfur%	MFCA%	Carbon%	PVDF%	S Utilization (1C)
None	45	0	45	10	24%
CuS	45	15	30	10	54%
FeS2	50	17	25	8	39%
TiS2	50	17	25	8	36%
CoS2	50	17	25	8	24%

Transition metal sulfide (CuS, TiS₂, FeS₂, CoS₂) in S:MFCA hybrid cathodes promote initial sulfur cell discharge power capability at 1C rate.

Accomplishments and Progress CuS additive effect on sulfur cathode - background


• CuS has high theoretical capacity – 560 mAh/g

$2CuS + 2Li \rightarrow Cu_2S + Li_2S$	3.0V to 1.8V	(1)
$Cu_2S + 2Li \rightarrow 2Cu + Li_2S$	1.8V to 1.0V	(2)

• CuS is electronically as conductive as carbon black.

Ke Sun, Dong Su, Qing Zhang, David Bock, Amy Marschilok, Kenneth Takeuchi, Esther Takeuchi, Hong Gan, J. Electrochem. Soc., 162 (14) A1-A6, 2015.

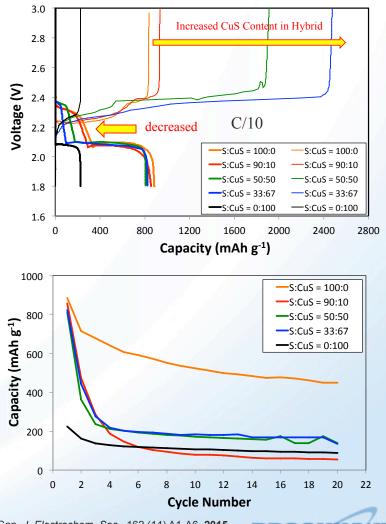
• The presence of CuS promote sulfur electrode utilization under high rate discharge.

- Reaction 2 is not reversible.
- 1.8V discharge limit for reversible cycles.

A. Marschilok, K. Takeuchi,

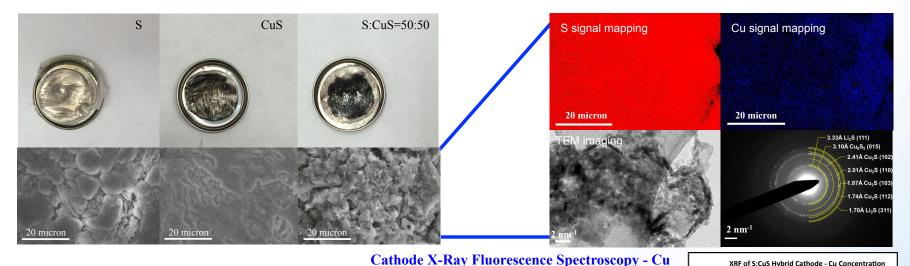
E. Takeuchi, Q. Zhang.

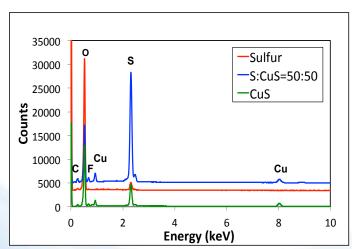
Stony Brook

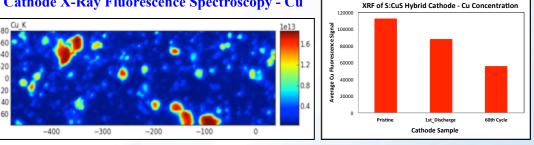

Brookhaven Science Associates

11

Accomplishments and Progress CuS additive effect on sulfur cathode - electrochemical


S:CuS Ratio	Mole Ratio	Theoretical Capacity Ratio
S:CuS	100:0	100:0
S:CuS	90:10	95:5
S:CuS	50:50	67:33
S:CuS	33:67	33:67
S:CuS	0:100	0:100


- All hybrid electrode delivered less capacity than the sulfur control.
- Shuttling effect severity proportional to CuS content.
- All hybrid electrode cells showed fast capacity fade within the initial 5 cycles – why?


Ke Sun, Dong Su, Qing Zhang, David Bock, Amy Marschilok, Kenneth Takeuchi, Esther Takeuchi, Hong Gan, J. Electrochem. Soc., 162 (14) A1-A6, 2015.

12

Ke Sun, Dong Su, Qing Zhang, David Bock, Amy Marschilok, Kenneth Takeuchi, Esther Takeuchi, Hong Gan, *J. Electrochem. Soc.*, 162 (14) A1-A6, **2015**.

- Recovered anode different discoloration and morphology.
- EDS more Cu and S on hybrid cell anode surface.
 - TEM/ED Li_2S , Cu_2S , and Cu_8S_5 on hybrid cell anode surface.
- XRF decreased Cu fluorescence signals from hybrid cathode after cell cycling (pristine vs. cycled hybrid cathode).

IONAL LABOR

A. Marschilok, K. Takeuchi, E. Takeuchi, D. Bock.

niversi

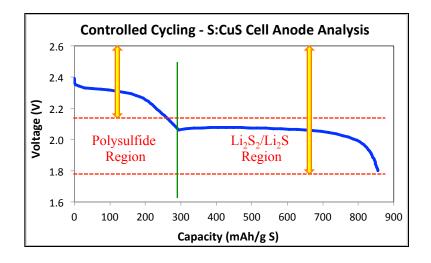
Stony Brook

- Is CuS soluble in electrolyte?
- Do polysulfides catalyze the solubility of CuS?

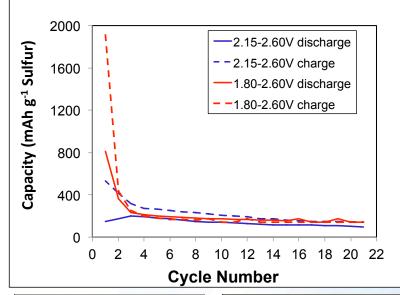
Copper Concentration Measurement by ICP-OES

Sample #	Sample*	Cu Concentration (ppm)
1	Electrolyte for calibration	0.0
2	Electrolyte + CuS	6.9
3	$Li_2S_4 + Electrolyte + CuS$	0.0
4	Li_2S_8 + Electrolyte + CuS	0.0

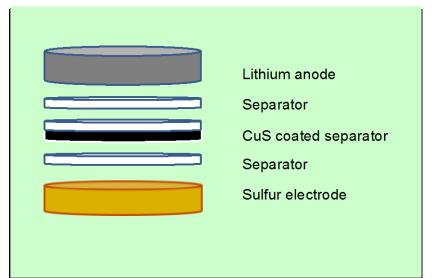
*Electrolyte: 1.0 M LiTFSI / DOL:DME = $1:1 \text{ v/v} + 1 \text{ wt\% LiNO}_3$

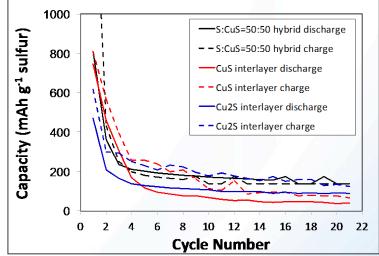

Polysulfide concentration = 70 mM

- CuS is only slightly soluble in pure electrolyte.
- CuS is insoluble in electrolyte in the presence of polysulfides.


Ke Sun, Dong Su, Qing Zhang, David Bock, Amy Marschilok, Kenneth Takeuchi, Esther Takeuchi, Hong Gan, J. Electrochem. Soc., 162 (14) A1-A6, 2015.

- 2.6V to 2.15V cycling
 - Clean anode surface
- 2.6V to 1.8V cycling
 - Dark anode surface
- Polysulfide (Li₂S₈ and Li₂S₄) is not the cause of CuS dissolution.




Ke Sun, Dong Su, Qing Zhang, David Bock, Amy Marschilok, Kenneth Takeuchi, Esther Takeuchi, Hong Gan, J. Electrochem. Soc., 162 (14) A1-A6, 2015.

15

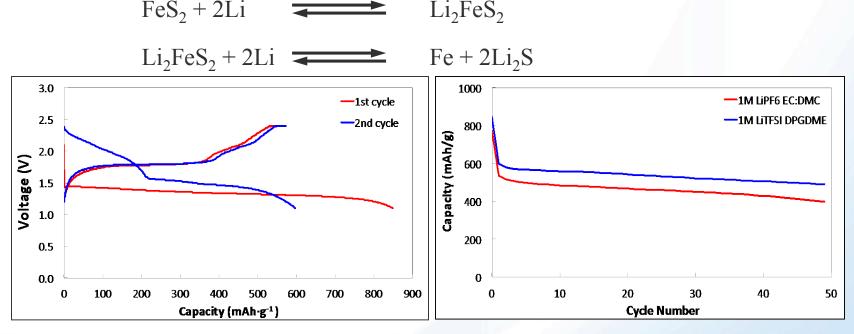
Can CuS dissolution caused by the insoluble Li_2S_2 or Li_2S ?

 The low ordered soluble polysulfide species (S₃ – either ions or radical) generated at voltages below 2.15V is the cause of CuS dissolution.

Ke Sun, Dong Su, Qing Zhang, David Bock, Amy Marschilok, Kenneth Takeuchi, Esther Takeuchi, Hong Gan, J. Electrochem. Soc., 162 (14) A1-A6, 2015.

- The presence CuS in hybrid cathode promotes sulfur cell discharge under high rate.
- CuS additive is detrimental to the sulfur cell cycling stability due to CuS dissolution.
 - High ordered polysulfide (Li_2S_n , n = 4 to 8) does not cause CuS dissolution.
 - Electrolyte soluble low ordered polysulfide (Li_2S_n , n = 3 or less) is responsible for CuS dissolution.
 - Deposition of conductive Cu₂S species on the anode surface catalyze the polysulfide reduction, enhancing shuttling effect and inducing more Li₂S deposition on anode surface.

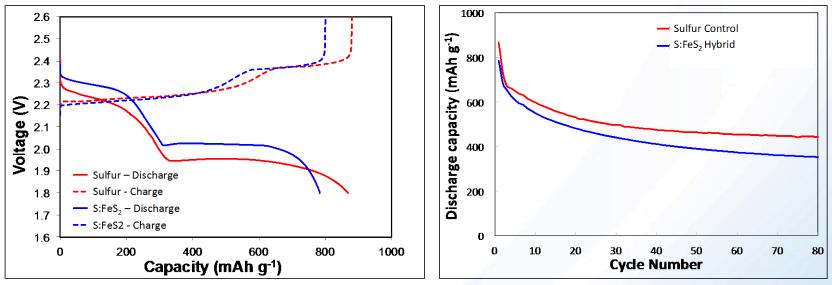
Ke Sun, Dong Su, Qing Zhang, David Bock, Amy Marschilok, Kenneth Takeuchi, Esther Takeuchi, Hong Gan, J. Electrochem. Soc., 162 (14) A1-A6, 2015.



Accomplishments and Progress FeS₂ additive effect on sulfur cathode - background

A. Marschilok, K. Takeuchi, E. Takeuchi, C. Cama

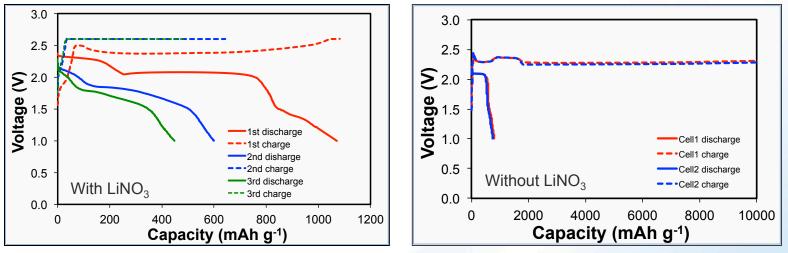
FeS₂ is conductive (semi-conductor) and used as cathode in thermal lithium batteries - theoretical capacity – 890 mAh/g


- Phase transition during 1st discharge
 - 1st discharge needs to go down to \sim 1.0V to activate FeS₂

Manuscript in preparation

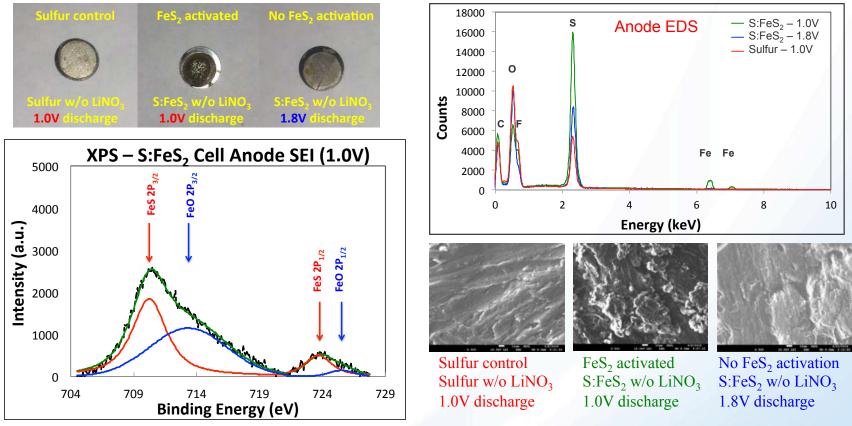
Accomplishments and Progress FeS₂ additive effect on sulfur cathode – without activation

Study	Hybrid Formulation	Electrolyte	Cycling Voltage	Discharge Rate	Charge Rate
	S:FeS ₂ :C:PVDF	LiNO₃	Range		
1	60:0:50:10	Yes	2.6V - 1.8V	1C	C/5 - C/20
2	60:20:30:10	Yes	2.6V - 1.8V	1C	C/5 - C/20


- Cell with FeS₂ exhibited higher voltage relative to control cell.
- Without FeS₂ activation, hybrid electrode cell showed no obvious effect on cycling.

Manuscript in preparation

Accomplishments and Progress FeS₂ additive effect on sulfur cathode – LiNO₃ and activation


Study	Hybrid Formulation	Electrolyte	Cycling Voltage	Discharge Rate	Charge Rate
	S:FeS ₂ :C:PVDF	LiNO ₃	Range		
1	60:20:30:10	Yes	2.6V - 1.0V	0.2C	C/5 - C/20
2	60:20:30:10	No	2.6V - 1.0V	0.2C	C/5 - C/20

- FeS₂ activation at voltage below 1.5V during 1st discharge.
- With LiNO₃ leads to significant cell impedance growth resulting in polarized cell voltages.
- Without LiNO₃, cells can not be charged due to severe shuttling effect Why?

Manuscript in preparation

Accomplishments and Progress FeS₂ additive effect on sulfur cathode – Fe dissolution

- FeS₂ dissolution observed for the hybrid cathode cell with iron identified on anode surface.
- Severe Fe dissolution happens only for FeS₂ activated (1.0V) hybrid cathode cells
- XPS identified FeS and FeO on the anode surface correlated to severe shuttling effect.

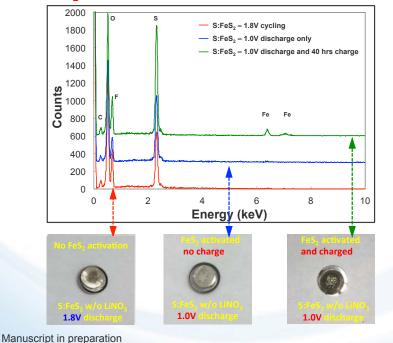
Manuscript in preparation

IONAL LABO

Accomplishments and Progress FeS₂ additive effect on sulfur cathode – Fe dissolution A. Marschilok, K. Takeuchi, E.

Takeuchi, D. Bock, J. Huang

Universit


Stony Brook

Does polysulfide catalyze the dissolution of FeS_2 ? – No!

Iron Concentration Measurement by ICP-OES

Sample	Corrected Fe Concentration (ppm)
FeS ₂ in 1:1 DME:DOL	2.6
$FeS_2 + 0.07 M Li_2S_8$ in 1:1 DME:DOL	1.8
1:1 DME:DOL only	0.0

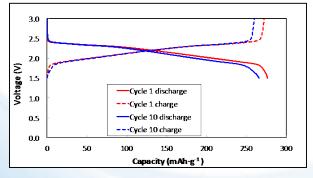
Is FeS₂ activation sufficient for iron dissolution? – No!

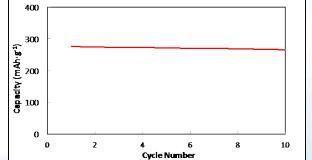
Activated S:FeS₂ Cell Intermittent Charging 2.6 Stable voltage due to shuttling 2.4 22 **Noltage** () 2.0 educed impedance over tim 1.4 charge 1.2 open circuit 1.0 8 16 24 32 40 0 Time (hours)

- Polysulfide does not catalyze FeS₂ dissolution.
- FeS₂ activation only is not sufficient for iron dissolution.
- The charging of FeS₂ activated hybrid cathode leads to Fe dissolution.
- Deposition of FeS on anode surface leading to severe shuttling effect, preventing cells to be fully charged.

Accomplishments and Progress FeS₂ additive effect on sulfur cathode – conclusion

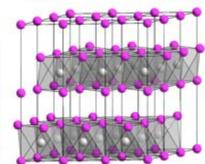
- Activation of FeS₂ requires cell to be discharged to 1.0V.
- The presence of FeS₂ additive leads to higher sulfur cell discharge voltages.
- Without activation, FeS₂ has no obvious impact on sulfur cell cycling performance.
- The presence of LiNO₃ allows the FeS₂ to be activated and the cell can be cycled, but with the compromised cell impedance growth.
- Elimination of LiNO₃ from the electrolyte also allows the FeS₂ to be activated, but resulting in uncontrollable shuttling effect during charging.
- Significant iron dissolution occurs during charging step of the FeS₂ activated S:FeS₂ hybrid cathode cell.
- FeS and FeO deposition on anode SEI layer catalyzes the polysulfide shuttling effect during cell charging.

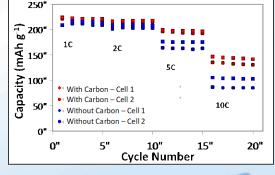



Accomplishments and Progress TiS₂ additive effect on sulfur cathode - background

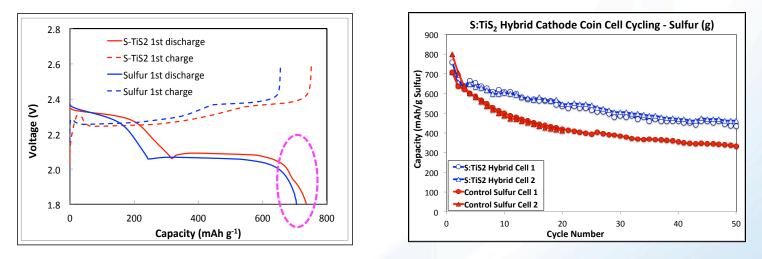
• TiS₂ has layered crystal structure and capable of reversible lithium intercalation - theoretical capacity 239 mAh/g.

 $TiS_2 + Li \implies LiTiS_2$


- TiS_2 can be activated at voltage above 1.5V.
- TiS_2 is electronically more conductive than carbon black.
- TiS₂ cells have high rate capability even without carbon conductive additive.



A. Marschilok, K. Takeuchi, E. Takeuchi, Q. Zhang, C. Cama

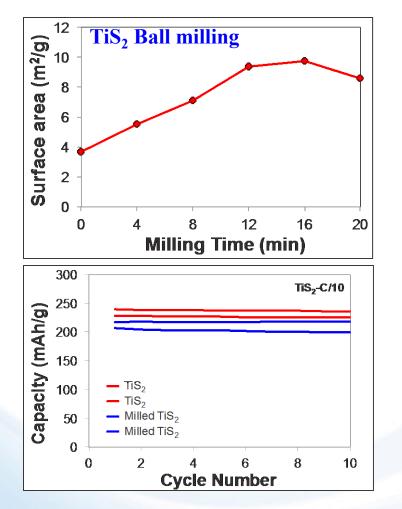


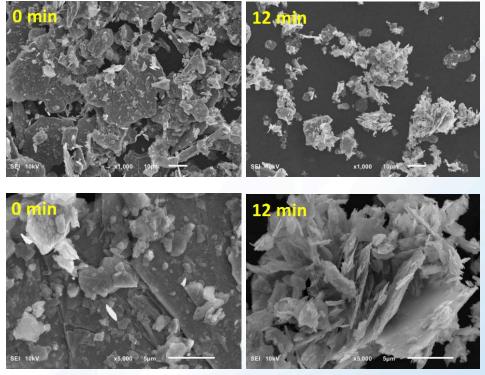
24

Accomplishments and Progress TiS₂ additive effect on sulfur cathode

Cell #	Electrode	S:TiS ₂ :C:PVDF	Total Loading	S Loading Capacity	TiS ₂ Loading Capacity	Total Loading Capacity
			(mg/cm ²)	(mAh/cm ²)	(mAh/cm ²)	(mAh/cm ²)
1	S:TiS ₂	60:20:30:10	1.71	1.43	0.07	1.50
2	S:TiS ₂	60:20:30:10	2.69	2.25	0.11	2.36
3	Sulfur	60:00:30:10	2.58	2.59	0.00	2.59
4	Sulfur	60:00:30:10	2.54	2.55	0.00	2.55

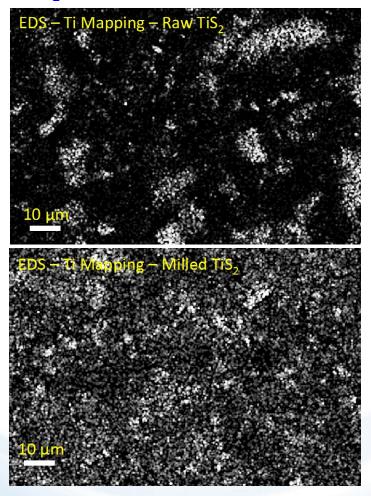
2032 Coin cells; 1.0M LiTFSI/DOL:DME = $1:1 \text{ v/v} + 1 \text{ wt\% LiNO}_{3}$; C/10 rate charge/discharge

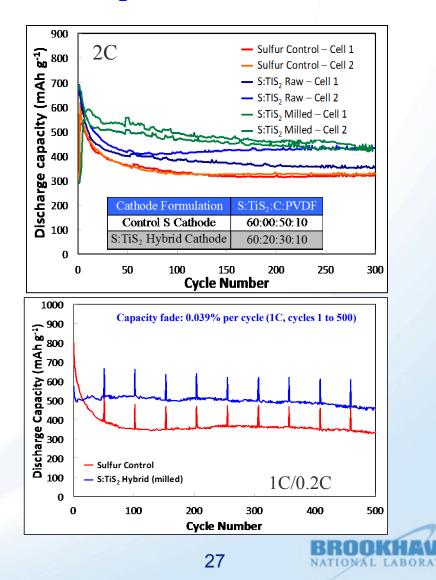


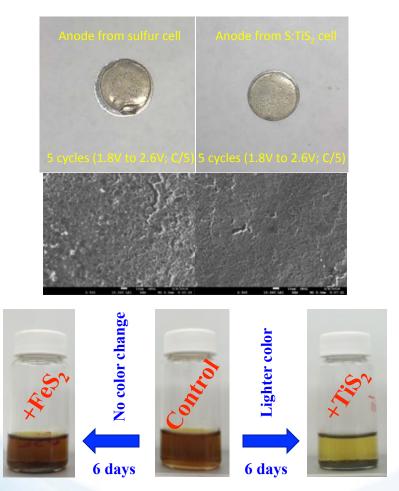

- TiS₂ activated with more sloped voltage profile near the end of discharge.
- Similar initial sulfur utilization observed (based on S only).
- S:TiS₂ hybrid electrode cells exhibited lower capacity fade rate.

Accomplishments and Progress Stony Brook TiS₂ additive effect on sulfur cathode – BET & particle size

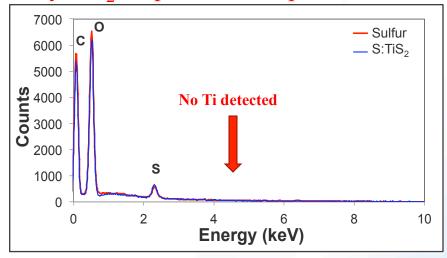
Amy Marschilok, Kenneth Takeuchi, Esther Takeuchi, Qing Zhang, Jeff Jou




12 minutes ball milling sample selected for hybrid cathode study


Accomplishments and Progress TiS₂ additive effect on sulfur cathode – particle size effect

TiS₂ distribution in coated cathode



Accomplishments and Progress TiS₂ additive effect on sulfur cathode - mechanism

Li_2S_8 5 mM in DOL:DME = 1:1

Why TiS₂ help sulfur cell performance?

- TiS₂ additive benefit
 - No TiS₂ dissolution
 - Smooth and clean anode surface.
 - EDS detect no Ti on anode surface.
 - Polysulfide adsorption by TiS₂
 - Decreased polysulfide solution coloration vs. control.

Accomplishments and Progress TiS₂ additive effect on sulfur cathode - conclusion

- TiS₂ can be reversibly cycled at up to 10C rate with good capacity retention.
- TiS₂ additive promotes sulfur electrode high rate discharge with improved cycling life.
- Adsorption of polysulfide by TiS₂ contributes to the better cell electrochemical behavior.
- Smaller TiS₂ particle size and uniform TiS₂ distribution are beneficial for S:TiS₂ hybrid cell cycle life.
- Sulfur cells with TiS₂ additive achieved 500 cycles at 1C discharge rate with < 0.04% capacity fade per cycle.</p>

Responses to Previous Year Reviewers' Comments

 This project is a new start and was not reviewed last year.

30

Partners / Collaborations

- Brookhaven National Laboratory (BNL)
 - Dr. Hong Gan (PI) Project coordination
 - Dr. Ke Sun Project execution
- Stony Brook University
 - Prof. Esther Takeuchi (Co-PI), Prof. Amy Marschilok, Prof. Kenneth Takeuchi – Transition metal sulfide cathode testing, transition metal sulfide synthesis and sample preparation for particle size study, ICP dissolution studies
- Center of Functional Nanomaterials (CFN), BNL
 - Dr. Dong Su TEM/ED, SEM morphology and structural characterization
 - Dr. Xiao Tong XPS analysis on anode SEI from S:FeS₂ cycled cells
- National Synchrotron Light Source II, (NSLS II) BNL
 - Dr. Yu-chen Karen Chen-Wiegart XRF on CuS dissolution studies
- Columbia University
 - Prof. Simon Billinge PDF structural characterization on S:FeS interaction

Remaining Challenges and Barriers

- It is challenging to resolve Li-S cell performance issues at just cathode level. Strong interactions between cathode, anode and electrolyte at the system level need to be addressed.
- Decreased sulfur utilization with high sulfur cathode mass loading (>2 mg/cm²) impedes the achievement of low cost, high energy density Li-S batteries.
- Low energy density at the electrode and cell levels due to the low active sulfur % in electrode formulation and low sulfur utilization.
- Dissolution of metal sulfides (CuS and FeS₂) in the conventional electrolyte system limits our choice of MFCA to TiS₂.
- Polysulfide dissolution is still a major challenge for Li-S cell to achieve high energy efficiency and long cycle life.
- Fast capacity fade during the initial cycles needs to be mitigated.
- Anode passivation by LiNO₃ limit the discharge voltage cut off to 1.8V.

Proposed Future Work

- Understand the mechanism that governs the beneficial interaction between sulfur/TiS₂ and continue modify TiS₂ properties for optimized sulfur cell performance.
- Optimize the S:TiS₂ electrode mechanical and electrochemical properties by selecting the appropriate electrode binders and conductive carbons, as well as the electrode preparation process.
- Optimize sulfur cathode formulation and achieve high areal sulfur mass loading of $> 2 \text{ mg/cm}^2$ for high cathode energy density.
- Develop method for cell activation with high sulfur loading.
- Evaluate electrode and cell design factors, such as interlayer cathode structure, to promote sulfur utilization and maximize cell cycle life.
- Reduce polysulfide dissolution by developing new electrolyte systems and revisit some promising MFCA additives.
- Anode surface protection to minimize or prevent side reactions between polysulfide and lithium metal anode.

Summary

- MFCA improves sulfur cathode discharge power capability.
- MFCA activation is highly dependent on metal types (CuS, FeS₂, TiS₂) with unique characteristics for each candidate.
- Dissolution of CuS and FeS₂ is the leading cause for poor cycling performance in cells with hybrid sulfur cathode.
- TiS₂ additive improves sulfur cell high rate cycle life and contributes to the delivered cell capacity.
- Smaller TiS₂ particle size and uniform TiS₂ particle distribution within the S:TiS₂ hybrid cathode are beneficial for improved sulfur cell cycle life.
- Hybrid S:TiS₂ cathode exhibits no Ti dissolution with strong adsorption interaction between TiS₂ and polysulfide.

