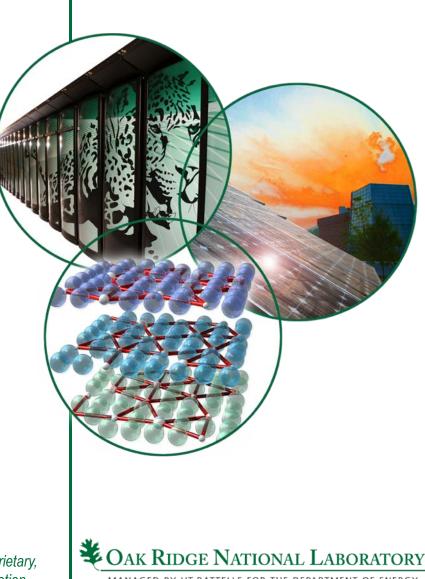
Ionic Liquids as Engine Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings

Project ID: FT014

ORNL: <u>Jun Qu</u>, Todd Toops, Huimin Luo, Brian West, Harry Meyer, Donovan Leonard, William Barnhill, Yan Zhou, and William Brookshear


Shell: Bassem Kheireddin and Hong Gao

DOE HQ Program Manager: Kevin Stork

2016 DOE Vehicle Technologies Program Annual Merit Review, June 8, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Overview

Timeline

- FOA with Shell: Ionic liquids as multi-functional lubricant additives to enhance engine efficiency
 - Duration: July 23, 2012 December 31, 2015
 - Percent complete: 100%
- AOP: ongoing but re-focused each year to address current DOE and industry needs
 - Task 1: Lubricant effects on emissions control technologies
 - Task 2: Compatibility of lubricant anti-wear additives with hard coatings

Budget

- FOA with Shell
 - Total project funding: DOE share: \$1.2M + Shell in-kind cost share: \$400K
 - FY15 funding: DOE share: \$270K (carryover from FY14) + Shell in-kind cost share: \$130K
 - FY16 funding: \$0 (project completed)
- AOP
 - FY15 funding: \$450K
 - FY16 funding: \$400K

Barriers

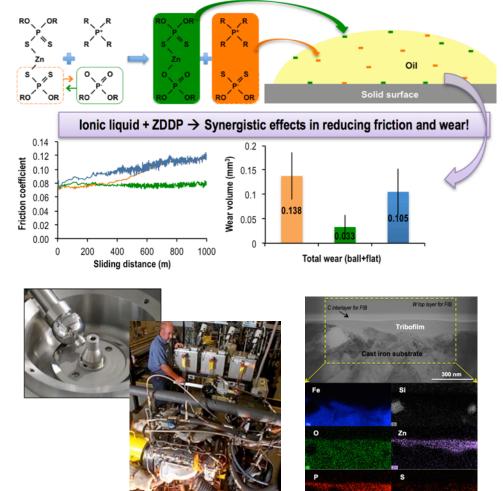
- Low-viscosity engine oils improve engine fuel economy but increase boundary friction and wear.
- Inadequate data on long-term impact of lubricants on engines and emissions control systems.
- Lack of understanding of the compatibility of lubricant anti-wear additives with non-metallic coatings.

Partners

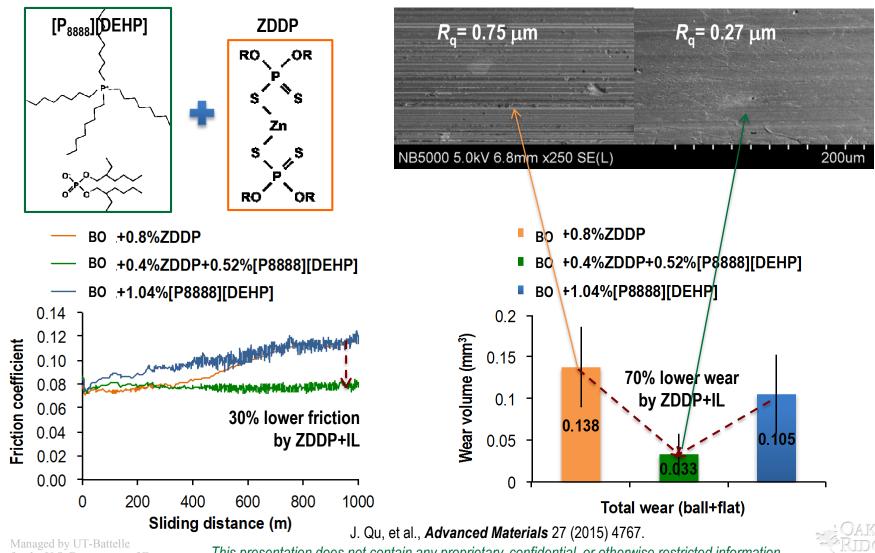
- FOA/CRADA partner: Shell Global Solutions (US)
- Other collaborators: Cytec, Chevron, Lubrizol, NCT, IonBond, Eaton, Hardcoat, ANL, UT, and PSU

Relevance

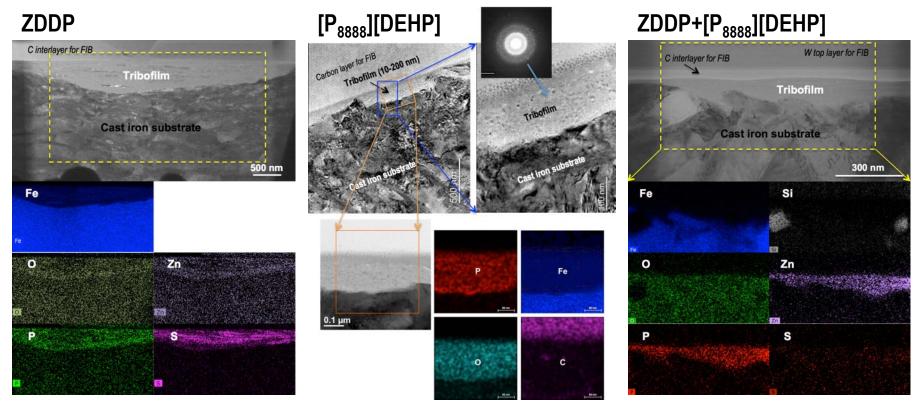
- To develop oil-soluble ionic liquids (ILs) as engine oil additives to improve the mechanical efficiency of IC engines.
- To enable broad acceptability of new lubricant formulations it is important to demonstrate compatibility with modern emissions control systems
- To investigate the compatibility of lubricant anti-wear (AW) additives, specifically conventional ZDDP and newly developed ionic liquids, with selected hard coatings.
- Fundamental understandings gained in this study will help guide future development of engine lubricants.


Milestones

- Design formulated engine lubricants that are compatible with ionic liquid additives (12/31/2014) Completed
- Install and commission new stoichiometric gasoline genset for lubricant compatibility investigations (3/31/2015) *Completed*
- Conduct tribological testing and analysis of the AW-coating pairs of interest in mixed friction regime (3/31/2015) *Completed*
- Demonstrate improved fuel economy without sacrificing wear protection for a fullyformulated lubricant containing IL additives using multi-cylinder engine dynamometer tests (6/30/2015) Completed
- Correlate experimental and modeling results to reveal the mechanisms behind the AW-coating compatibility (9/30/2015) *Completed*
- Investigate TWC compatibility of new IL formulation both independently and when mixed with ZDDP and compare it to ZDDP-only lubricant additives (12/31/2015) Completed


Approach – Ionic liquids as multi-functional lubricant additives to enhance engine efficiency (FOA/CRADA w/ Shell)

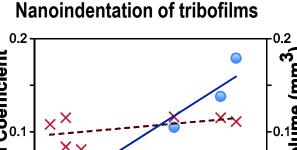
- Several groups of oil-miscible ionic liquids (ILs) had been developed and demonstrated effective anti-wear functionality in tribological bench tests in FY 2012-2014.
- FY 2015-2016 efforts focused on
 - Combining various ILs and ZDDP to seek synergetic effects;
 - Investigating the mechanisms behind the IL+ZDDP synergism;
 - Exploring compatibilities of IL and IL +ZDDP with other additives in the engine oil formulation;
 - Formulating a prototype low-viscosity (SAE 0W-16) engine oil using IL+ZDDP;
 - Demonstrating fuel economy improvement in both tribological bench and engine dynamometer tests.

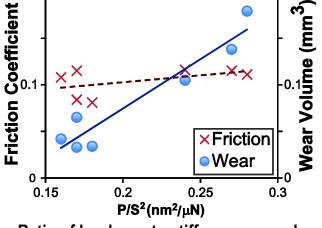

Synergistic effects discovered between [P₈₈₈₈][DEHP] and ZDDP (FY 2014)

for the U.S. Department of Energy

FY 2015 to understand the mechanisms – similar tribofilm morphology, *but...*

- FIB-aided TEM/EDS of ZDDP, IL, and ZDDP+IL tribofilms
 - Similarity: thickness: 10-400 nm, amorphous matrix embedded with some nanocrystals
 - Difference: IL+ZDDP tribofilm seems to contain little S but more Zn compared with ZDDP tribofilm...





7 Managed by UT-Battelle for the U.S. Department of Energy

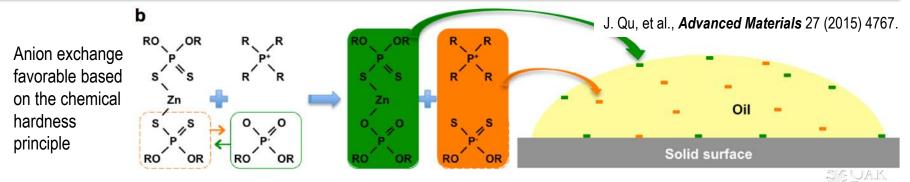
Change of tribofilm composition correlates well with mechanical properties

- Tribofilms by synergistic IL+ZDDP combinations contain more Zn and Fe phosphates than oxides
 - Much increased Zn compounds, but almost eliminated S contents compared with a ZDDP tribofilm;
- Lower hardness to stiffness squared (P/S²) leading to reduced friction and wear
 - Opposite trend as reported for bulk or coating materials;
 - Attributed to the sacrificial and self-healing nature of tribofilms.

Ratio of hardness to stiffness squared

	XPS Element in tribofilm (at%)	С	Fe (metal)	Fe (ion)	O (oxide)	0 (O-P)	Р	S	Zn
	+0.8%ZDDP	6.7	0.7	13.3	11.1	42.8	10.3	8.4	6.5
	+1.04%[P ₈₈₈₈][DEHP]	7.0	1.2	16.3	25.1	39.3	11.1	0	0
BO	+0.4%ZDDP+0.52%[P ₈₈₈₈][DEHP]	7.0	1.2	12.8	2.9	52.8	12.2	<u>\1</u> ,1/	10.0
	+1.0%[P ₆₆₆₁₄][BTMPP]	17.4	3.6	24.2	31.3	20.7	2.8	0	0
	+0.4%ZDDP+0.5%[P ₆₆₆₁₄][BTMPP]	8.0	14.7	21.7	39.3	12.8	1.3	1.7	0.4
	+1.74%[N ₈₈₈ H][DEHP]	14.2	15.9	10.8	22.2	28.9	8.0	0	0
	+0.4%ZDDP+0.87%[N ₈₈₈ H][DEHP]	12.3	5.7	22.7	12.8	36.5	7.1	1.7	1.2

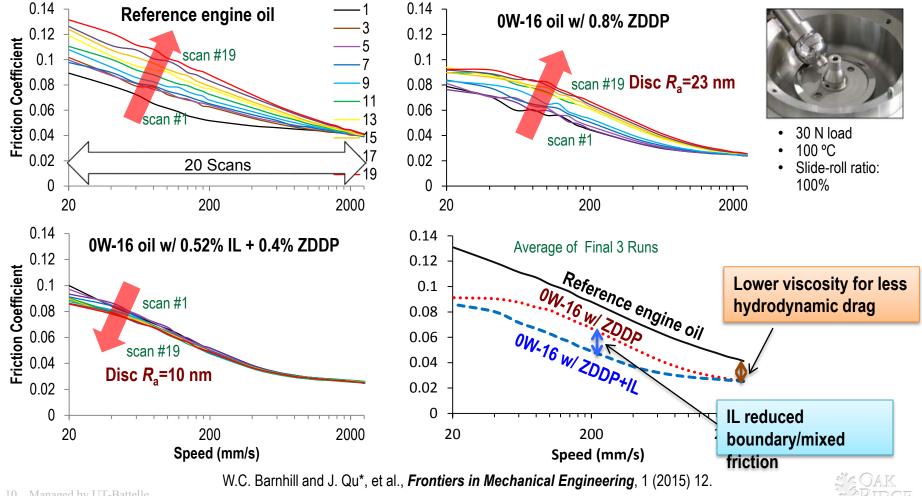
J. Qu, et al., Advanced Materials 27 (2015) 4767; A.K. Landauer, W.C. Barnhill, J. Qu*, Wear 354 (2016) 78-82.


Managed by UT-Battelle for the U.S. Department of Energy

Dramatically increased concentrations of active elements on oil surface: *responsible for synergism?*

Concentrations of P, S, O, and Zn 30-70X higher than nominal values on the oil droplet surface!

XP	S Element concentration on oil surface (at (ratio of measured/nomir	<i>i</i> 11	Zn	S	Р
	+0.8%ZDDP (nominal)	0.0731	0.0183	0.0731	0.0365
	+0.8%ZDDP (measured)	<u> </u>	0.035 (1.9x)	0.11 (1.5x)	0.06 (1.6x)
	+1.04%[P ₈₈₈₈][DEHP] (nominal)	0.0728	0	0	0.0364
o	+1.04%[P ₈₈₈₈][DEHP] (measured)	<u> </u>	0	0	0.06 (1.6x)
ase	+0.4%ZDDP+0.52%[P ₈₈₈₈][DEHP] (nominal)	0.0730	0.0091	0.0365	0.0365
ä	.+0.4%ZDDP+0.52%[P ₈₈₈₈][DEHP] (measured)	<u> </u>	0.68 (74x)	1.19 (33x)	1_19 (33x)
	+0_4%ZDDP+0_52%[P ₆₆₆₁₄][DEHP] (measured)	2.89 (40x)	0.55 (60x)	1.09 (30x)	1.11 (30x)
	+0.4%ZDDP+0.5%[P66614][BTMPP] (measured)	0.20 (3.7x)	0.05 (5.5x)	0.10 (2.8x)	0.09 (2.5x)
	+0.4%ZDDP+0.87%[N ₈₈₈ H][DEHP] (measured)	0.24 (2.0x)	0.03 (4.9x)	0.04 (1.6x)	0.05 (1.4x)


Atomic ratio of O:Zn:S:P close to 3:0.5:1:1, suggesting anion exchange between IL and ZDDP?

9 Managed by UT-Battelle for the U.S. Department of Energy

Prototype IL+ZDDP additized SAE 0W-16 engine oil produces lower boundary and mixed friction in bench tests (Shell data)

Two experimental SAE 0W-16 engine oils w/ different AWs: (a) ZDDP only and (b) ZDDP+[P₈₈₈₈][DEHP] with the same nominal P concentration of <800 ppm (meeting ILSAC GF-5/6 specs).

10 Managed by UT-Battelle for the U.S. Department of Energy

Prototype IL+ZDDP additized SAE 0W-16 engine oil demonstrated improved fuel economy in engine dyno tests

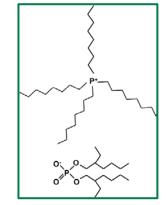
Sequence VIE (ASTM D7589) FEI 1 fuel economy engine dyno tests at InterTek

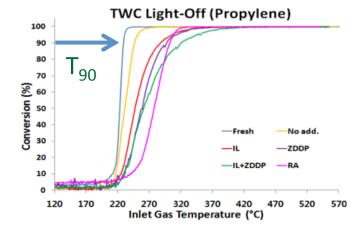
	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
	2000 rpm,	2000 rpm,	1500 rpm,	695 rpm,	695 rpm,	695 rpm,
Engine condition	105 N-m,	105 N-m,	105 N-m,	20 N-m,	20 N-m,	40 N-m,
	115 ºC	65 °C	115 °C	115 °C	35 °C	115 °C
Lubrication regime						
0W-16 w/ ZDDP vs. BLB	2.36%	2.84%	1.66%	3.72%	5.98%	3.03%
0W-16 w/ ZDDP+IL vs. BLB	2.54%	2.91%	1.77%	4.48%	6.46%	3.81%
ZDDP+IL vs. ZDDP only	0.17%	0.07%	0.11%	0.76%	0.48%	0.79%
	1		l	·		•
1.77 – 6.46% FEI for the pro	ototype IL+Z	DDP additize	ed engine oil			

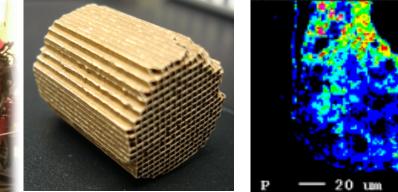
1.66 – 5.98% FEI by using lower viscosity oil (0W-16) to reduce HD/EHD drag

0.07 – 0.79% FEI by using IL+ZDDP to reduce boundary/mixed friction vs. ZDDP only

Synergistic IL+ZDDP offers opportunities in mitigating increased wear and boundary friction for the trend of using lower-viscosity oils and highly-boosted low-speed downsized engines.


W.C. Barnhill and J. Qu^{*}, et al., *Frontiers in Mechanical Engineering*, 1 (2015) 12. This presentation does not contain any proprietary, confidential, or otherwise restricted information


11 Managed by UT-Battelle for the U.S. Department of Energ


Approach – Lubricant effects on emissions control technologies (AOP Task-1)

- 1. Add lubricant-additive to fuel in quantity that reflects lifetime exposure
- 2. Using gasoline genset, operate at relevant exhaust conditions with commercial TWC

- 3. Core aged-TWC samples for bench flow reactor evaluation
- 4. Characterize aged-TWCs for chemical and material properties; compare to standards

12 Managed by UT-Battelle for the U.S. Department of Energy

800

ق 300 ق

200

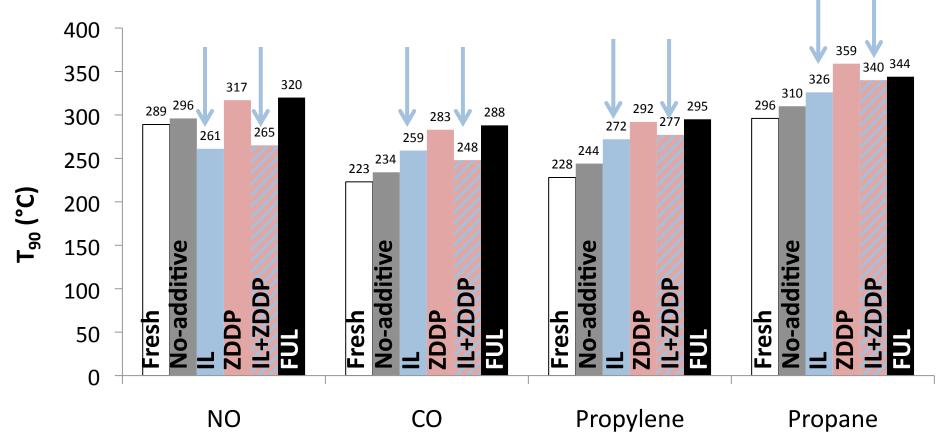
100

0

0.00

Evaluated compatibility of full range of lubricant additives with TWCs

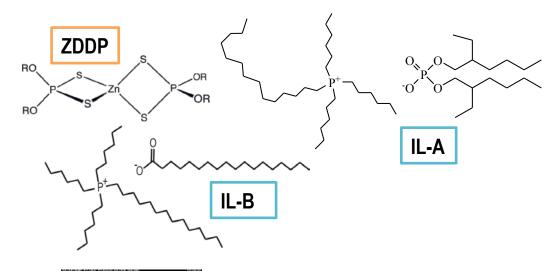
- Baseline TWC is from a MY2009 Jeep Liberty V6
 - Obtained TWCs from local dealership
 - Also have baseline aged-TWC from ethanol intermediate blend study
 - gasoline fuel, 116k miles driven on the road-cycle
- TWCs evaluated in study
 - Fresh: as-received TWC
 - NA: No-additive baseline
 - IL: ionic liquid lubricant-additive
 - ZDDP: industry standard
 - IL+ZDDP: best lubricant formulation
 - FUL: TWC aged to full-useful life on the road-cycle
- Evaluated directly after aging and following desulfation, de-sooting steps

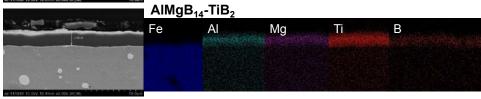

Evaluation conditions

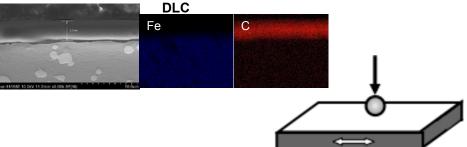
Gas	Concentration
Propylene	850 ppm
Propane	100 ppm
CO	0.5%
NO	0.1%
0 ₂	0.4-0.8%
H ₂	0.167%
H_2O and CO_2	13%
GHSV	60k h ⁻¹

IL generally has moderately less catalytic impact than ZDDP

• After removing any residual sulfur and soot, all of the IL-containing TWCs are moderately less impacted than the ZDDP and road-aged full-useful life TWCs

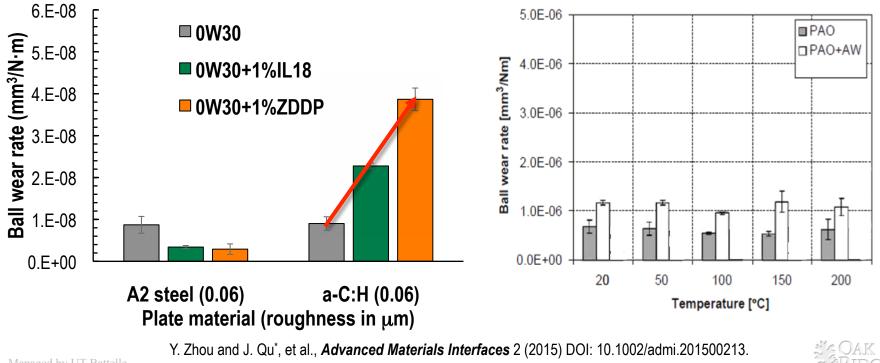





14 Managed by UT-Battelle for the U.S. Department of Energy

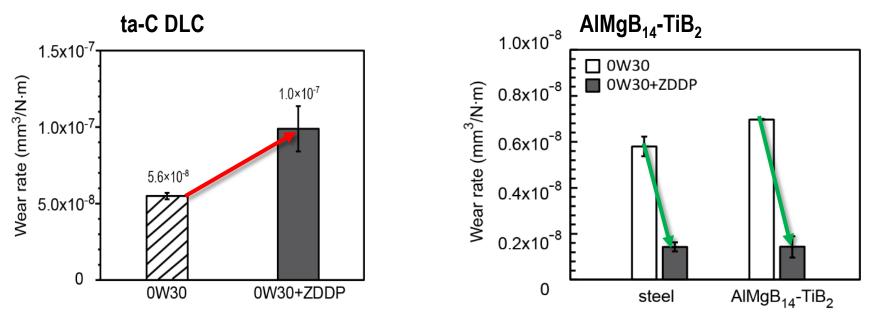
Approach – Compatibility of lubricant anti-wear additives with hard coatings (AOP Task-2)

- Lubricants
 - SAE 0W-30 base oil (Chevron) + AW
 - ZDDP (secondary, Lubrizol)
 - IL-A ([P₆₆₆₁₄][DEHP])
 - IL-B ([P₆₆₆₁₄][C₁₇H₃₅COO])
- Coatings (PVD)
 - Diamond-like-carbon (DLC, a-CH)
 - DLC (ta-C)
 - AIMgB₁₄+50 vol%TiB₂ (BAM)
- Friction and wear testing
 - Ball-on-flat reciprocating sliding: 52100 steel ball against coatings (100 N, 10 Hz w/ 10 mm stroke, 1000 m, 100 °C)
- Mechanistic investigation via tribofilm characterization
 - SEM, TEM/EDS, and XPS



Steel ball experienced higher wear when rubbing against DLC in presence of ZDDP or phosphate IL (FY 2014)

- Using DLC and ZDDP together actually increased the steel ball wear (by ~4X compared with using neither) instead of simply competing each other...
 - The wear of the steel counterface against DLC was largely ignored in the literature, except [Spikes, Tribol Int 2011] and [Podgornik, Surf Coat Tech 2005] that had similar observations!
- Using DLC and [P₆₆₆₁₄][DEHP] together also increased the steel ball wear, but less bad (~2X)...

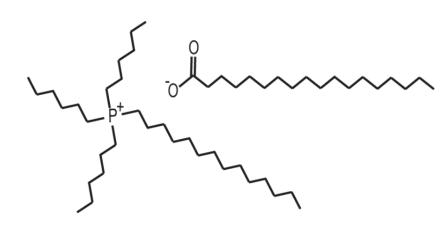

16 Managed by UT-Battelle for the U.S. Department of Energy

FY 2015: Investigating the mechanism behind the antagonistic effect

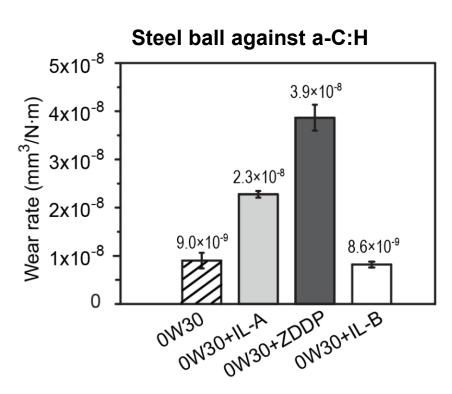
Applicable to other coatings?

Managed by UT-Battelle

17


- H-free ta-C also increased the steel ball wear;
- C-free AIMgB₁₄-TiB₂ did not increase ball wear;

Carbon (from DLC) seems the cause from the material side...

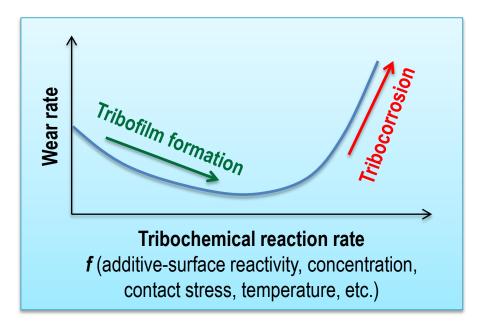

Y. Zhou and J. Qu^{*}, et al., *Advanced Materials Interfaces* 2 (2015) DOI: 10.1002/admi.201500213. This presentation does not contain any proprietary, confidential, or otherwise restricted information

Applicable to other ILs?

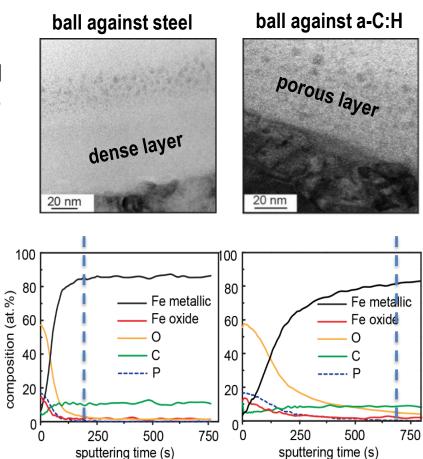
IL-B: [P₆₆₆₁₄][C₁₇H₃₅COO]

Phosphate anion seems the
cause from the chemical side

	Phosphate (wt%)
BO+1%ZDDP	10
BO+1%IL-A	3.9
BO+1%IL-B	0


Y. Zhou and J. Qu*, et al., Advanced Materials Interfaces 2 (2015) DOI: 10.1002/admi.201500213.

18 Managed by UT-Battelle for the U.S. Department of Energy



Hypothesis

- It is known that an anti-wear additive with reactivity unnecessarily high may cause higher wear rate [Chem & Tech Lubricants, 2011]
- sp² and sp³ carbon from DLC are good catalysts, which may accelerate the chemical reactions between phosphate anions and steel surface, and change the protective tribofilm formation process to detrimental tribocorrosion!

A thicker and porous tribofilm found on the ball against DLC, supporting the tribocorrosion hypothesis...

Managed by UT-Battelle

Y. Zhou and J. Qu*, et al., Advanced Materials Interfaces 2 (2015) DOI: 10.1002/admi.201500213. This presentation does not contain any proprietary, confidential, or otherwise restricted information

Responses to Previous Year Reviewers' Comments

• Not applicable – this project was not reviewed last year.

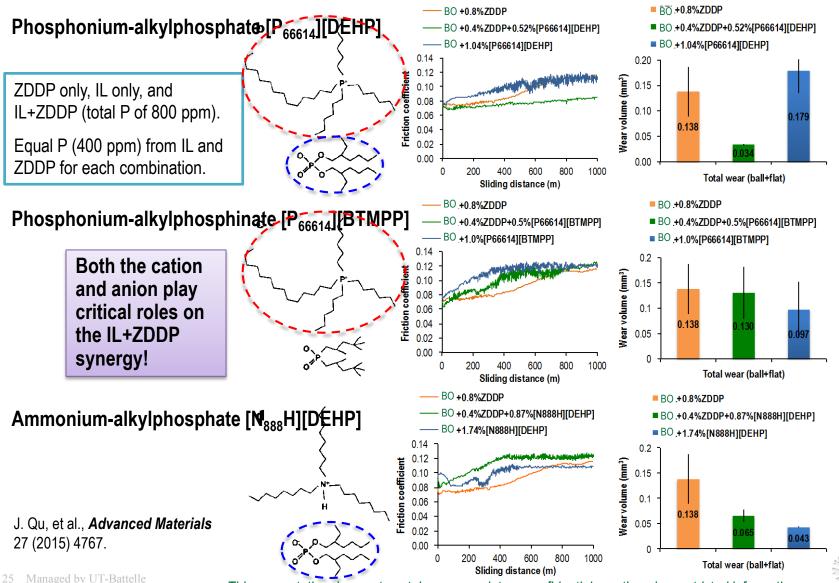
Collaboration

- FOA/CRADA partner: Shell Global Solutions (US)
 - Participated in tribological bench testing
 - Conducted industrial standard no-harm storage, corrosion, and elastomer compatibility tests of candidate ILs
 - Led engine oil formulation
 - Produced prototypes of IL-additized low-viscosity engine oils
- Other collaborators:
 - Cytec Industries: supplied feed stocks to ORNL for synthesizing ILs
 - Chevron: supplied base oil
 - Lubrizol: supplied ZDDP
 - NCT, IonBond, Eaton, Hardcoat, and ANL: provided various coatings
 - UT: hosted graduate students
 - PSU: chemical analysis of oil-solid interfaces using total reflection infrared (ATR-IR) spectroscopy (subcontract)

Remaining Challenges and Barriers

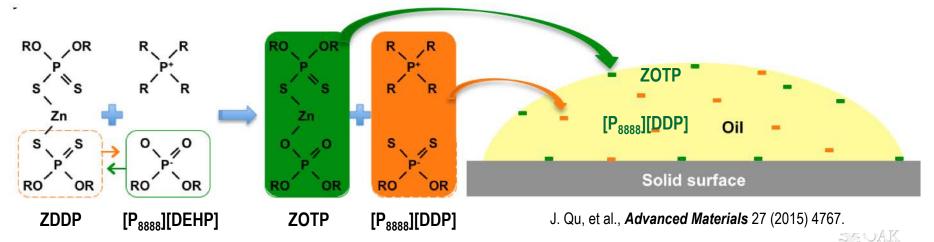
- ILs' molecular structures remain to be optimized.
- IL's oil miscibility theory is not fully established yet.
- IL+ZDDP lubricating mechanism is not fully understood yet.
- Compatibility of ILs with friction modifiers, detergents, and dispersants requires further investigation.
- Performance of ILs in aged engine oil containing water, fuels, and soot is little known.
- ILs' lubricating functionality for other vehicle bearing components, such as rear axle, is yet to be studied.
- ILs' compatibility with non-ferrous bearing materials, such as bronze and AI-Si alloys (used for connecting rod end bushings/bearings), are to be studied.
- Are the materials difference in the IL+ZDDP TWCs consistent with ZDDP or IL? Neither?

Summary


- Accomplishments in FY 2015-16:
 - Successfully completed the joint FOA project with Shell.
 - Identified a specific IL group with unique synergistic with ZDDP and gained mechanistic understanding of the synergism.
 - Investigated compatibility between a candidate IL and other oil additives and produced a prototype low-viscosity (SAE 0W-16) fully-formulated engine oil.
 - Conducted Sequence VIE engine dyno tests to demonstrated FE improvement for the IL+ZDDP additized prototype engine oil, and was able to separate the contributions from the lower viscosity and friction reduction.
 - Studies the impact of IL, ZDDP, and IL+ZDDP on TWC using accelerated engine tests and results suggested less adverse impact of IL than ZDDP.
 - Gained fundamental understanding of the antagonistic effect when using phosphate AW with DLC coatings.
- Future Work:
 - Further develop the IL technology for both engine and rear axle lubrication to get a combined FEI in a new joint FOA project with GM.
 - Investigate the impact of new ILs and IL+ZDDP combinations on TWC.
 - Understand the compatibility of ILs and IL+ZDDP combinations with bronze and aluminum bearing alloys.

Technical Back-up Slides

Synergism with ZDDP observed for *but only for* phosphonium-alkylphosphate ILs


for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

CAK RIDGE National Laboratory

Hypothesis: new compounds formed by anion exchange between IL and ZDDP

- Anion exchange favorable based on the chemical hardness principle
 - [P₈₈₈₈]⁺ is a harder Lewis acid compared with the Zn²⁺ (a neutral organic more difficult to lose electrons than a neutral metal, thus a softer base);
 - [DEHP]⁻ is a softer Lewis base than DDP⁻ (O⁰ is stronger acid than S⁰)
- For ZDDP + [P₈₈₈₈][DEHP] at 1:1 molecular ratio, ultimately each ZDDP would have one DDPreplaced with [DEHP]:
 - ZDDP + $[P_{8888}]$ [DEHP] → ZOTP + $[P_{8888}]$ [DDP]
- The measured ratio of O:Zn:S:P (3.7:0.57:1:1) on the oil surface of BO+ZDDP+[P₈₈₈₈][DEHP] is similar to the nominal atomic ratio 3:0.5:1:1 of ZOTP!

26 Managed by UT-Battelle for the U.S. Department of Energy

Formulation of the prototype IL+ZDDP additized SAE 0W-16 engine oil

Table 1. Formulation

	Detergent- D A		Viscosity		Friction Modifier	Pour-point depressant	Anti- foam	Anti-wear	
Lubricant			Modifier					ZDDP	[P ₈₈₈₈][DE HP]
0.8% ZDDP	3%	2%	2.4%	1%	0.8%	0.3%	0.03%	0.8%	0%
0.52% IL + 0.4% ZDDP	3%	2%	2.4%	1%	0.8%	0.3%	0.03%	0.4%	0.52%

Table 2. Physiochemical properties

Lubricant	Density	P Content	Zn Content (ppm)	Viscosity Index	HTHS	Kinematic Viscosity (cSt)	
	(g/cm³)	(ppm)			@ 150 °C (cP)	40°C	100°C
0.8% ZDDP	0.84	723	836	157	2.4	38.5	7.3
0.52% IL + 0.4% ZDDP	0.84	705	392	155	2.4	38.8	7.3

W.C. Barnhill and J. Qu*, et al., *Frontiers in Mechanical Engineering*, 1 (2015) 12.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

SAF 0W-16

Performance evaluation of fresh and aged TWC samples

Degreening

Middle of catalyst temperature at 700°C for four hours in 10% H2O, 10% CO2, and N2 balance (only for fresh TWC)

Light-off Temperatures

Determining light-off temperature for NO, CO, and HCs under stoichiometric condition with simulated exhaust gases consisting of 850 ppm C_3H_6 , 100 ppm C_3H_8 , 0.5% CO, 0.1% NO, 0.167% H₂, 0.72% O₂, 13% H₂O, 13% CO₂, and N₂ balance

- Temperature ramp: 100-600°C @ 5°C/min
- Natural cooling : 5 minutes after temperature ramp the catalyst is cooled from 600°C to 150°C
- Obtaining 1st light-off for fresh TWC sample and 2nd light-off for aged TWC samples

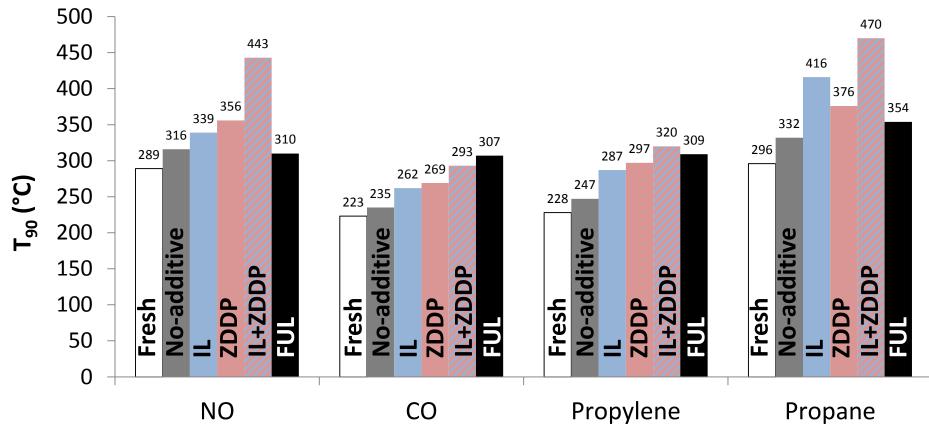
Water-gas shift reaction

- 0.5% CO, 13% $\rm H_2O,$ and $\rm N_2$ balance
- 200-550°C in 50°C increments

• O₂ Storage

- Cycling between lean (0.69% O₂ and N₂ balance) and rich (0.5% CO and N₂ balance)
- Cycling consists of 2 minutes lean followed by 2 minutes rich for four cycles for a total of 16 minutes
- Varying temperatures from 300 to 550°C in 50°C increments

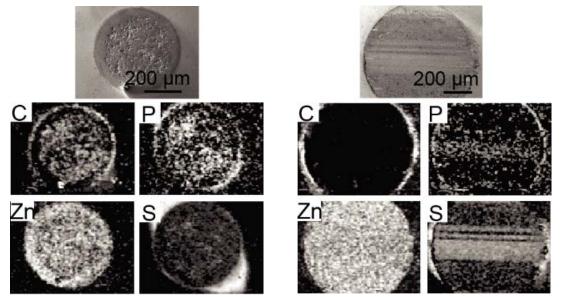
Desulfation/Desooting


-Cycling between lean (0.3% O2, 0.2% H2, 13% H2O and N2 balance) and rich (0.3% O2, 1% CO, 13% H2O and N2 balance)

- -Cycling consists of 2 minutes lean followed by 2minutes rich for 30 cycles for a total of 2 hours
- Maintaining temperature at middle of catalyst at 700 °C

IL generally has moderately less catalytic impact than ZDDP

 Before desulfation/de-sooting the IL+ZDDP has the highest T50 and T90, and thus appears to be the most impacted; after removing soot and sulfur trend is reversed



29 Managed by UT-Battelle for the U.S. Department of Energy

Earlier hypotheses for antagonistic effects between ZDDP and DLC

- 1. DLC carbon transfer competes with ZDDP tribofilm formation on steel ball surface to reduce the anti-wear effectiveness [*Spikes, Tribol Int 2011*]
- However, this cannot explain:
 - The significantly increased ball wear, much higher than that w/o using ZDDP nor DLC
 - EDS elemental maps show little C on the ball scar against DLC, not supporting carbon transfer

Steel ball against DLC-coated plate

2. Chemical-mechanical polishing (CMP) effect

- But this cannot explain:
 - Not applicable to noncarbon coatings or nonphosphate additives

Y. Zhou and J. Qu^{*}, et al., *Advanced Materials Interfaces* 2 (2015) DOI: 10.1002/admi.201500213.

Steel ball against steel plate