

High Energy Lithium Batteries for Electric Vehicles

Bing Li, Iris Li, Pedro Hernandez, Libo Hu, Subramanian Vankatachalam, Sujeet Kumar, Michael Sinkula, <u>Herman Lopez</u> (PI)

Envia Systems

2016 DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting June 6–10, 2016 - Washington D.C.

Project ID: ES247

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Program Overview

TIMELINE

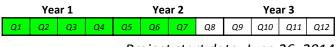
- Project start date: Jun 2014
- Project end date: Jun 2017
- Percent complete: ~60%

BARRIERS

- Meet USABC EV energy and power cell specs
- Meet cycle life and calendar life
- Enable a cell cost target of 100\$/kWh

BUDGET

- Total project funding:
 - ✓ DOE share: \$3,859,246
 - ✓ Envia & partners share: \$3,859,246
- Funding received in FY2015: \$1,404,866
- Funding for FY2016: \$1,549,386



Project Relevance

• Goals:

Develop high capacity cathode and anode materials, screen commercial electrolytes and separators, optimize pre-lithiation process and integrate to build high capacity pouch cells that meet the USABC electric vehicle (EV) battery goals for CY 2020

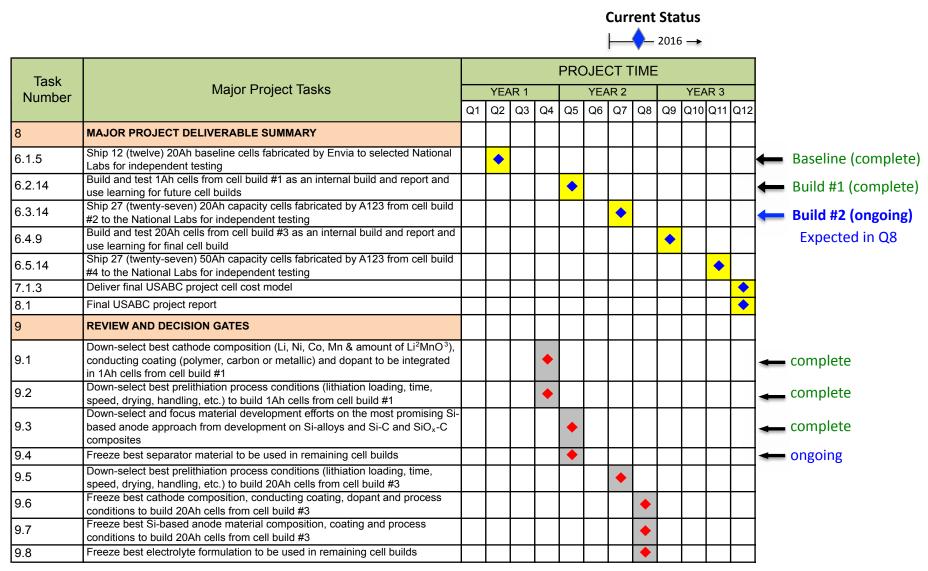
• Project Timeline:

Project start date: June 26, 2014

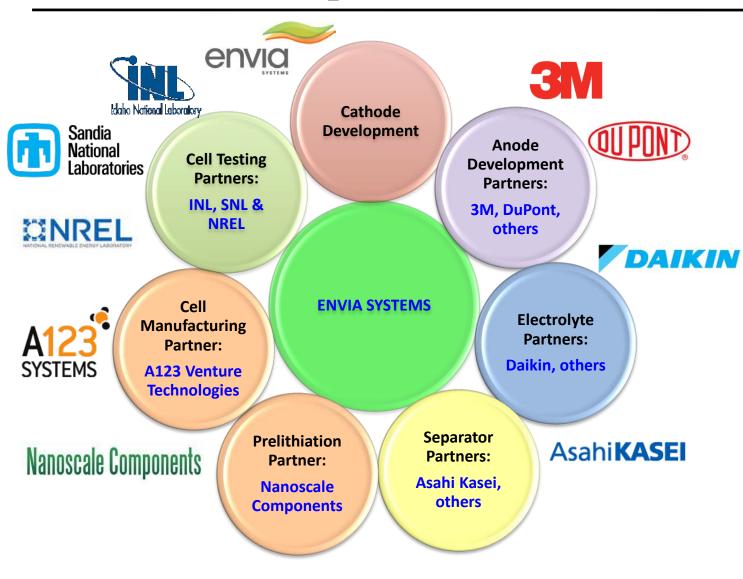
• Barriers and Tasks:

- Develop high capacity cathode and anode materials and electrodes
- Mitigate cycle life challenges associated with Si anodes and Li-rich cathodes
- ✓ Develop an economical and manufacturable pre-lithiation process
- ✓ Cell development to ensure meeting the cell metrics, safety and cost targets

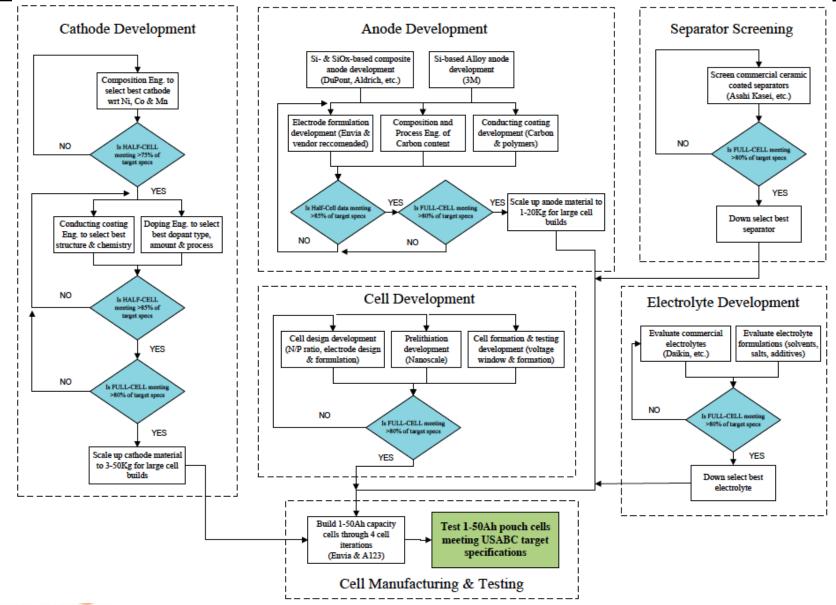
• Deliverables:


Demonstrate & deliver cells that meet the USABC EV cell targets with independent validation from the National Labs (INL, SNL, & NREL)

• USABC EV Cell Targets for 2020:


End of Life Characteristics at 30°C	Units	Cell Level
Peak Discharge Power Density, 30 s Pulse	W/L	1500
Peak Specific Discharge Power, 30 s Pulse	W/kg	700
Peak Specific Regen Power, 10 s Pulse	W/kg	300
Useable Energy Density @ C/3 Discharge Rate	Wh/L	750
Useable Specific Energy @ C/3 Discharge Rate	Wh/kg	350
Useable Energy @ C/3 Discharge Rate	kWh	N/A
Calendar Life	Years	15
DST Cycle Life	Cycles	1000
Selling Price @ 100K units	\$/kWh	100
Operating Environment	°C	-30 to +52
Normal Recharge Time	Hours	< 7 Hours, J1772
High Rate Charge	Minutes	$80\% \Delta SOC \text{ in } 15 \text{ min}$
Maximum Operating Voltage	V	N/A
Minimum Operating Voltage	V	N/A
Peak Current, 30 s	А	400
		> 70% Useable Energy
Unassisted Operating at Low Temperature	%	@ C/3 Discharge rate at
		-20 °C
Survival Temperature Range, 24 Hr	°C	-40 to+ 66
Maximum Self-discharge	%/month	< 1

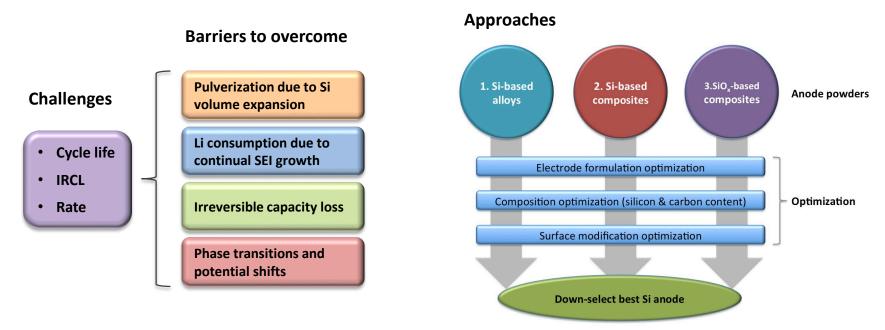
Project Milestones and Gates


Development Areas & Partners

envia

Envia has partnered with leaders in their respective fields to develop materials, processes and cells which will meet the USABC EV cell goals

Approach Strategy

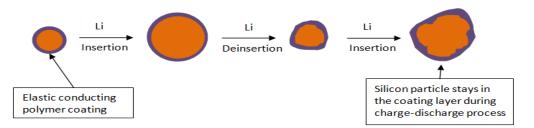


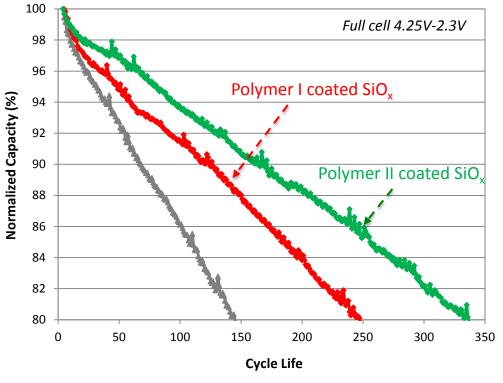
Si-based Anode Challenges & Development

Si-based anode Advantages:

Silicon-based anodes are attractive alternatives to graphite because Silicon can alloy 4.4 Lithium ions per silicon ($Li_{4.4}Si$) resulting in an extremely large theoretical capacity of 4200 mAh/g versus graphite's 372 mAh/g.

Envia develops proprietary Si anodes by using commercially available Si-based materials (Si-based alloys & nSi- and SiO_x-based composites) and applies its electrode formulation, processing, and coating know-how to further improve the performance of the silicon anodes

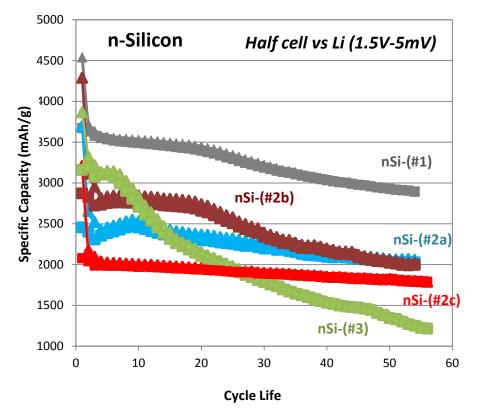



Surface Modification of SiO-based Anodes

SiO_x-Polymer Composites Anode Development:

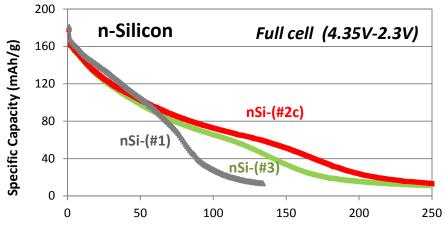
Elastic conducting polymer coatings can:

- (1) Improve particle integrity by reducing pulverization
- (2) Increase electronic conductivity
- (3) Passivate surface and stabilize SEI growth

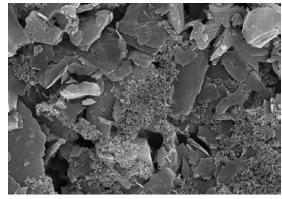


Significant cycle life improvement is observed for the Polymer-SiO_x composite anodes in coin-cell Full-cells

- Cycle life improvement of 100 & ~200 cycles is observed for polymer I-SiO_x and polymer II-SiO_x composites, respectively
- Polymer I-SiOx composite has been successfully scaled-up to Kg levels to build large cells & evaluate cycle life
- Polymer II-SiO_x composite is currently being optimized and scaled up to Kg levels
- Large pouch cells are under validation


Si-based Anode Development

NEXT STEPS:


Evaluate n-Si/SiO anode blends to further increase specific capacity and cycle life by enabling new cell designs while precisely engineering the morphology and environment of the anode electrode

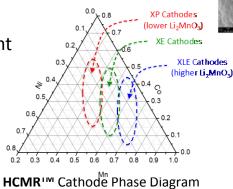
n-Si from different vendors with different particle size, surface area and IRCL were evaluated in HC and FC CCs

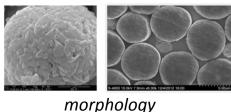
n-Si/SiO Anode Blends

Cathode Development & Challenges

HEV, PHEV & EVs have different battery requirements ranging from power characteristics to cycle life. Envia solves the problem at the materials level by tailoring the cathode for each application

Morphology:

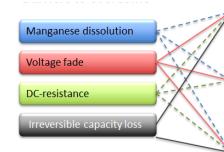

• Particle size, shape, distribution, tap density & porosity


Composition:

- Ni, Co, Mn ratio, & Li₂MnO₃ content
- Dopants & concentration

Nanocoating:

- Chemistry: fluorine, oxide, etc.
- Thickness & uniformity



Nanocoating

HCMR [™] Type	C/10 Capacity Range at 4.6V- 2.0V (mAh/g)	Status
ХР	200 ~ 220	Commercialization
XE	225 ~ 240	R&D
XLE	240~280	R&D

Areas of Development

Barriers to Overcome

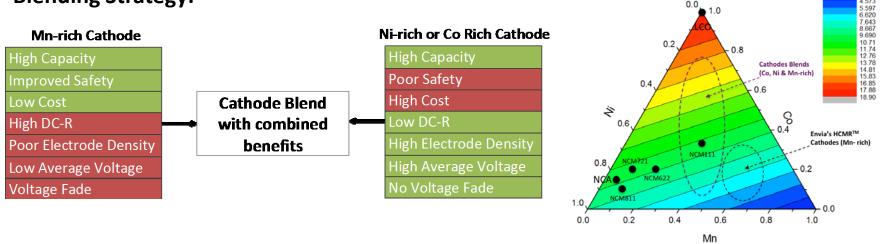
Composition Engineering:

Optimize the amount of Ni, Co, Mn and Li_2MnO_3 in $Li_{1+x}Ni_{\alpha}Co_{\beta}Mn_cO_2$ cathodes

Doping Engineering:

Develop and optimize the appropriate dopants with varying ionic radii, valence state & conductivity (Mg, Al, Ga, W, B, Zr, Ti, La, Zn, Ce, etc.)

Nanocoating Engineering:


Develop and optimize the appropriate electronic and ionic conducting coatings & their combinations

Based on capacity, average voltage, DC-R, usable energy and cycle life, HCMR[™] cathode C#24 was downselected with optimized composition, dopant and coating

Cathode Blend Development Strategy

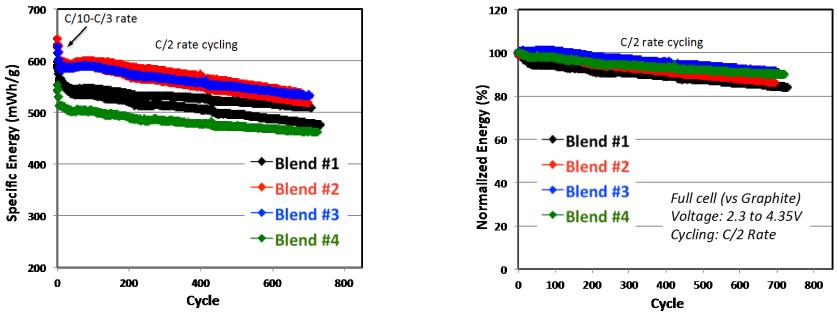
In order to meet the challenging USABC EV cell targets, blending of cathodes to leverage each of their strengths is required

Blending Strategy:

* Cathode metal costs are calculated from publicly traded Ni, Co & Mn metal prices from 10-1-15

Material Blend Costs:

Metal Costs* (\$/Kg)


- Mn-rich blended cathodes with Co-rich or Ni-rich cathodes can enable high gravimetric and volumetric energy (350 Wh/kg and 750 Wh/L) when paired with Silicon anodes while meeting safety and cost requirements (\$/kWh)
- Multiple cathode blends are being evaluated in coin-cells and pouch cells

Cathode Blend Development (Full-cell data)

Full cell vs Graphite (coin cells)

- Cycle life studies from different cathode blends (#1-#4) vs graphite are ongoing in CC-FCs
- Specific energy based on active material weight (mWh/g) is higher for cathode blend #2 & #3
- Cycle life >700 cycles before reaching 80% energy retention is observed across all cathode blends when cycled between 2.3V to 4.35V in graphite full-cell coin cells

NEXT STEPS (Cathode Development):

- 1. Continue evaluating cycle life from cathode blends (coin cells and pouch cells)
- 2. Continue scale-up of promising cathode blends to support cell development and upcoming cell builds

Pre-lithiation of Si-based Anodes

Advantages of Pre-lithiation:

- 1. Pre-lithiation enables the integration of high capacity Si-based anodes, by precisely compensating the high irreversible capacity loss (IRCL)
- 2. In the absence of pre-lithiation, compensation of the IRCL would come from the cathode which is the priciest component in the cell
- 3. Pre-lithiation has also been shown to improve the cycle life in various materials

Nanoscale's roll-to-roll electrochemical pre-lithiation is safe, low-cost & scalable			
Safer manufacturing	No lithium metal is used, eliminating a key fire risk		
Safer cells	No lithium metal is in cells, eliminating tendency to form dendrites		
Better uniformity	Electrochemical method offers more control than powder dispersion		
Less swelling	Partial expansion occurs during pre-lithiation, before cell assembly		
Less expensive	Lithium salt used is much less expensive than metal		

Envia has partnered with Nanoscale Components to use its low cost, roll-to-roll manufacturable pre-lithiation process to fabricate large capacity pouch cells

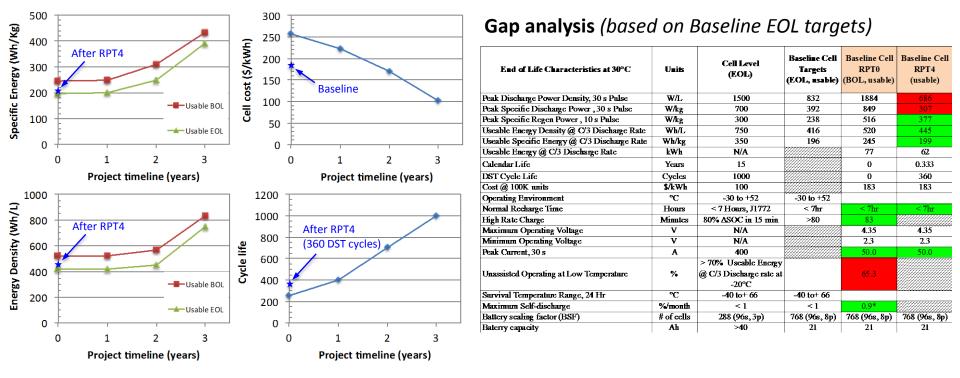
Status of Pre-lithiation Development

STATUS:

- Nanoscale used its 1st generation roll-to-roll pilot line to successfully pre-lithiate SiO_x-based anodes that Envia and A123 assembled into 1Ah pouch cells
- Nanoscale completed its 2nd generation large scale roll-to-roll pre-lithiation pilot line which is 5x wider and 10x faster throughput than the 1st generation line, with capability of supporting large-format high-capacity (>20 Ah) pouch cells
- 3. In order to reduce stress in the electrode and enable the required high Silicon prelithiation dose, an optimized thermal processing step, precisely tailored electrode formulations, and precisely laid-down coatings are required
- 4. Promising SiO-based anode formulations have been down-selected, anode rolls have been coated and pre-lithiation in 2nd generation roll-to-roll line is ongoing

NEXT STEPS:

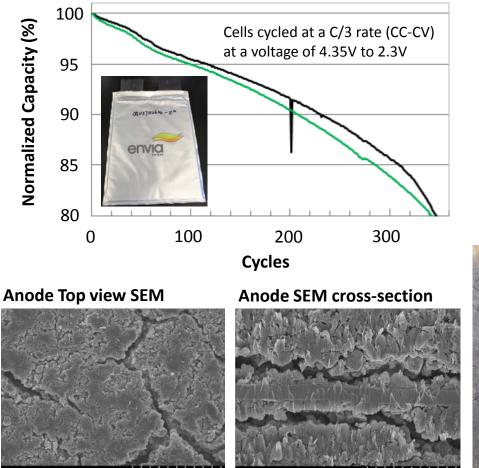
- 1. Fine-tune roll and coating design to allow successful large-format, high dosage pre-lithiation
- 2. Fine-tune pre-lithiation recipe to optimize process conditions for future cell builds
- 3. Continue to pre-lithiate sufficient Silicon anodes to support cell development and large cell builds



Cell Development

Program Goals:

Develop, optimize and integrate advanced materials, cell components and pre-lithiation process into high capacity pouch cells meeting the USABC EV battery goals for 2020

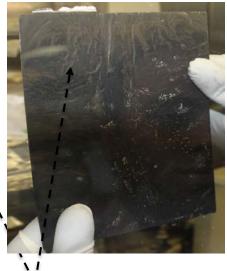


- 21Ah baseline cells completed RPT4 for DST cycling (360 DST cycles) & 30°C Calendar life (120 days)
- Gap chart shows the final USABC program (EOL, usable) and Baseline (EOL, usable) cell targets
- Gap chart coloring is based on Baseline EOL cell targets

Failure Analysis of Cycled Baseline Cells

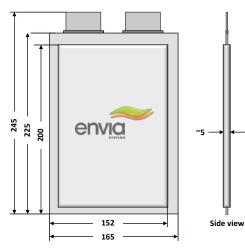
21 Ah Baseline Cells CC-CV cycle testing

Anode delamination and cracking appears to be one of the main failure modes


Postmortem analysis of cycled cells:

- 1. Physical inspection (pouch cell, cathode, anode, separator, electrolyte, tabs, etc.)
- 2. SEM analysis of anode and cathode
- 3. XRD analysis of cycled electrodes
- 4. Electrochemical studies of cycled electrodes

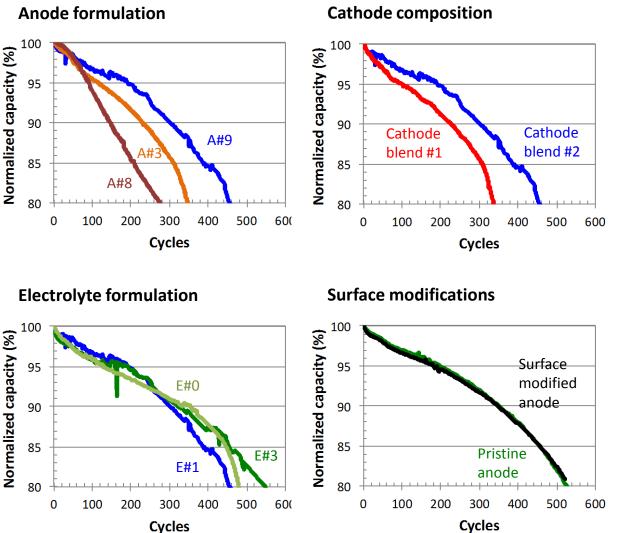
Anode



Cell Development Strategy

Strategy:

- Integrate and optimize various anode and cathode compositions and formulations, material coatings, electrolyte formulations and cell designs (density, loading, N/P, etc.) into high capacity pouch cell designs
- Focused cell development on smaller 21 Ah capacity, ~260 Wh/kg cells (similar capacity to baseline cells), where 275 Wh/kg specific energy is achieved from the 40 Ah capacity cell format

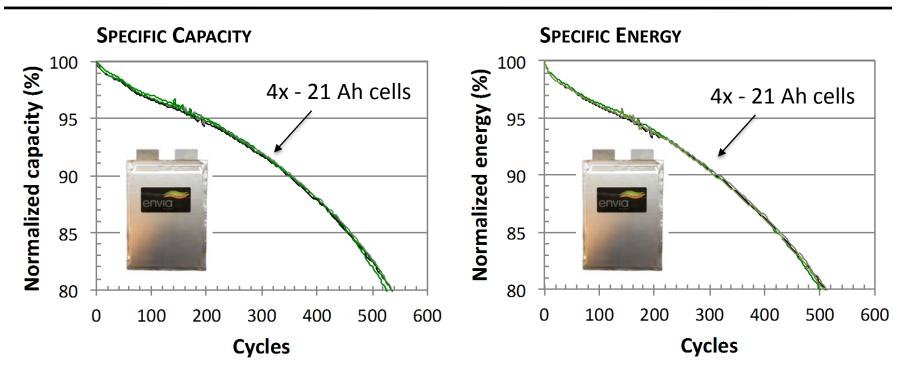


		Units	40Ah	21Ah
Positive	Active Material	N/A	HCMR [™] -XP Blend	HCMR [™] -XP Blend
	Cathode ID	N/A	C#8 + Commercial blend	C#8 + Commercial blend
	Electrode area per side	cm ²	266.96	266.96
	Electrode density	g/cc	High (>3)	High (>3)
	Active Material	N/A	SiO _x -C Composite	SiO _x -C Composite
Negativo	Anode ID	N/A	Vendor #2 SiO _x -C	Vendor #2 SiO _x -C
Negative	Electrode area per side	cm ²	273.6	273.6
	Electrode density	g/cc	Medium (~1)	Medium (~1)
Separator		N/A	S#1	S#1
Cell Weigh	t	g	515	283
Prelithiation		N/A	SLMP [™]	SLMP [™]
Estimated Capacity, C/3-Rate		Ah	40.5	21.2
Energy Density, C/3-Rate (terrace)		Wh/L	554	500
Specific Energy, C/3-Rate		Wh/kg	273	260

Approximate dimensions in mm

Cell Development (Cycle life)

Note: Cells cycled at a C/3 rate, CC/CV, 4.35V-2.3V


21 Ah capacity, ~260 Wh/Kg cycle life data

- Achieved >500 cycles before reaching 80% capacity retention from 21 Ah, ~260 Wh/kg cells that incorporate high Si content (>50%) anode formulations, NMC cathode blends, electrolyte formulations and surface modifications
- Ongoing cell development is focusing on pouch cells with an energy of 275 Wh/kg and cycle life of 700 cycles
- Next cell build by A123 will integrate best anode, cathode, separator, electrolyte & electrochemical pre-lithiation

Cell Development Status

Envia has achieved >500 cycles before reaching 80% capacity and energy retention from 21 Ah capacity, ~260 Wh/kg specific energy (equivalent to ~270 Wh/kg in a 40Ah cell) pouch cells that incorporate >50% Si content

Note: Cells cycled at a C/3 rate, CC/CV, 4.35V-2.3V

Summary

- Achieved >500 cycles from 21 Ah, ~260 Wh/kg pouch cells that incorporate promising high Si content (>50%) anode formulations, NMC cathode blends, electrolytes formulations and surface modifications
- Anode development is ongoing with respect to composition, coatings and electrode morphology engineering to down-select best anode material
- Down-selected promising cathode blend showing cycle life >700 cycles composed of NMC cathode components
- 2nd generation large scale roll-to-roll pre-lithiation pilot line was complete and is currently being used to pre-lithiate promising anode formulations
- Cell tear-down and failure analysis of cycled cells is ongoing to understand and mitigate failure mechanisms

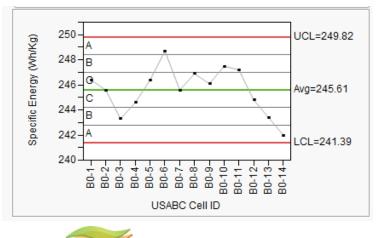
NEXT STEPS:

- 1. Incorporate down-selected materials, validated cell designs and electrochemical pre-lithiation to build large capacity cells
- 2. Down-select best materials and pre-lithiation processing for future cell builds
- 3. Continue cell failure analysis to understand and mitigate cell failure modes

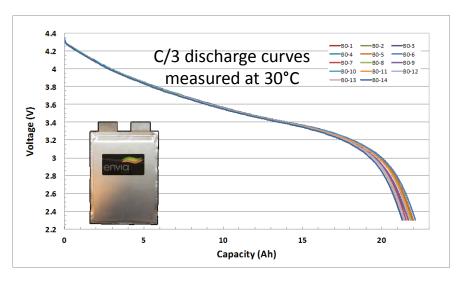
Acknowledgements

- This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S.
 Department of Energy under the Award No. DE-EE0006250, under the United States Advanced Battery Consortium (USABC)
- This work was performed under the guidance and support from the USABC technical work group: Oliver Gross (program manager), OuJung (OJ) Kwon, Meng Jiang, Jack Deppe, Matthew Shirk, Matthew Keyser and Leigh Anna Steele
- This work was performed with processes, materials, cell components and guidance from the various partners: Nanoscale Components, A123 Systems, Daikin America, Asahi Kasei, 3M, and DuPont

Technical Back-up Slides



Baseline Cell Results


Baseline Cell Design:

		Units	Design #2
	Active Material	N/A	HCMR [™] -XP Blend
Positive	Cathode ID	N/A	C#8 + Commercial blend
	Electrode area	mm ²	26696
	Electrode density	g/cc	High (>3)
	Active Material	N/A	SiO _x -C Composite
Negative	Anode ID	N/A	Vendor #2, Composition #1
	Electrode area	mm ²	27360
	Electrode density	g/cc	Medium (~1)
Separator		N/A	S#1
Cell Weight		g	298.7
Estimated Capacity, C/3-Rate		Ah	21.4
Energy Density, C/3-Rate		Wh/L	419
Specific Energy, C/3-Rate		Wh/kg	249

Specific Energy (Wh/Kg)

Specific Capacity (Ah)

- 21Ah capacity baseline cells are currently testing for capacity, energy, power, cycle life, calendar life & temp performance at both Envia and INL
- Preliminary results suggest baseline cells met the target design and show reproducible capacity (21.7 +/- 0.2Ah) and energy (245.6 +/- 1.8Wh/Kg)