High Energy Density Lithium Battery

M. Stanley Whittingham State University of New York at Binghamton June 9th, 2016

Project ID # ES231

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 10-01-2014
- Project end date: 9-30-2017
- Percent complete: 60%

Budget

- Total project funding
 - DOE \$1,265,773
 - Contractor share: Personnel
- Funding received
 - FY15: 398k\$
 - FY16: 427k\$

Barriers

- Barriers addressed
 - Higher volumetric energy density
 - Cyclability of conversion electrodes
 - Lower cost
 - Abuse-tolerant safer electrodes

Partners

- National Laboratories
 - Brookhaven; Argonne
- Local Industry
 - Through NYBEST
- Academia
 - Electrolytes UC Boulder, URI, U Michigan, Army

- The primary objectives of our work are to:
 - Replace the present volume intensive carbon anode
 - Replace the present cathodes with ones where more than one Li reacts per transition metal
 - Lower the cost of materials and approaches
- The relevance of our work is:
 - Achieving the above objectives
 - Will increase the volumetric energy density of lithium batteries by > 50%
 - 1 kWh/liter at the cell level
 - Will increase the gravimetric energy density
 - ≥ 300 Wh/kg at the cell level
 - Will lower the cost of tomorrow's batteries

- 1.1 Demonstrate synthesis and complete characterization of CuF₂. (Dec. 14)
 Completed
- 1.2 Determine discharge product of CuF₂. (March 15) **Completed**
- 1.3 Begin cyclability testing of CuF₂. (June 2015) **Completed**
- 1.4 Demonstrate more than 100 cycles on Sn₂Fe at 1.5 times the volumetric energy density of carbon. (Sept. 15) Completed
 _____Go/No-Go: Demonstrate cyclability of CuF₂. <u>Criteria</u>: Capacity of 200 mAh/g over 10 cycles. (Sept-15) Completed
- 2.1 Determine the optimum composition Li_xVOPO4. (Dec-15) Completed
- 2.2 Demonstrate VOPO₄ rate capability. (Mar-16) **Completed**
- 2.3 Demonstrate Sn_2Fe rate capability. (Jun-16) Underway
- 2.4 Demonstrate CuF₂ rate capability. (Sep-16) Underway
 - <u>Go/No-Go: Demonstrate lithiation method</u>. <u>Criteria</u>: A cycling cell containing lithium in one of the intercalation or conversion electrodes must be achieved. (Sept-16) Underway

- Replace intercalation carbon host with conversion reaction material
 - Allows for much higher capacities
 - Carbon only 350 Ah/kg and 0.8 Ah/liter
 - Pure lithium anode has around 2.5 times the volumetric capacity
 - Place emphasis on tin-based systems
 - Why Sn₂Fe?
 - 804 Ah/kg and >2000 Ah/liter
 - > 2.5 times that of carbon
 - Protect with carbon coating
 - Initial BMR results promising
 - Safer than carbon and silicon
 - $\Box \Delta G Sn/Fe-SnO_2 160 \text{ kJ/mole Li}$
 - $\Box \Delta G \text{ Si-SiO}_2$ 194 kJ/mole Li
 - $\Box \quad \Delta G \text{ C-CO}_2 \qquad 2366 \text{ kJ/mole Li}$

- Replace materials that react with ≤ 1 Li per transition metal - E.g. LiFePO₄ and LiCoO₂
- By materials that can react with up to 2 Li per transition metal
- Two-pronged approach
 - Intercalation cathode
 - Essentially retain the crystal structure
 - The system $VOPO_4$ -Li $VOPO_4$ -Li₂ $VOPO_4$ chosen
 - Conversion cathode
 - Destroy and rebuild the crystal structure
 - The system $CuF_2 Cu + 2LiF$ chosen
 - Higher potential than other fluorides

• Why the choice of CuF₂ and VOPO₄?

• CuF₂

- High theoretical energy density of 1874 Wh/kg
 - Compare 1000 Wh/kg and 587 Wh/kg theoretical for complete reaction of LiCoO₂ and LiFePO₄ respectively.
 - Theoretical specific capacity exceeding 500 mAh/g
 - Theoretical potential, 3.5 V, highest amongst the 3d transition metals

• VOPO₄

- Intercalation cathode
- High energy densities of 1080 Wh/kg and 3.5 kWh/L
 - > 1.5 times that of $LiFePO_4$
 - Theoretical capacity of ~ 320 Ah/kg (double that of $LiFePO_4$)
 - Redox potentials at 3.9 V for $V^{5+}\!/V^{4+}$ and ~ 2.5 V for $V^{4+}\!/V^{3+}$

- Low Volumetric Energy Density of Li batteries
 - Volumetric capacity of today's Li-ion batteries limited by carbon anode and less than 1 Li/transition metal
 - Find anode material with double the volumetric capacity of carbon
 - Find cathode material that reacts with approaching 2 Li
- Cyclability of conversion electrodes
 - Efficiency of known conversion reactions too low

• High cost of lithium batteries

- Reduction of Materials and manufacturing costs
- Find anode material with double the volumetric capacity of carbon

• Low Safety and Abuse-tolerance

- Find an anode that reacts with lithium faster
- Find thermally stable electrodes under all states of charge

Milestone 1.1: CuF_2 synthesized and characterized: it forms a solid solution with FeF_2

Stan Whittingham SUNY at Binghamton

Synthesis of $Cu_{1-y}Fe_{y}F_{2}$, y= 0, 0.2, 0.5;

Carbon or MoO_3 composite synthesized by high energy ball-milling of CuF_2 and FeF_2

XRD Characterization:

- Fe is soluble in CuF₂ forming a solid solution:
 - Shift in the diffraction peak position
 - Change in lattice parameters
 - Both have similar structures.
 - CuF₂ distorted rutile structure
 - FeF₂ rutile structure
 - MoO_3 forms a composite: No solid solution.

	a (Å)	b(Å)	<i>c</i> (Å)	β(°)	<i>V</i> (Å ³)
CuF ₂	4.595(3)	4.560(3)	3.295(1)	95.76(1)	68.71(3)
$Cu_{0.5}Fe_{0.5}F_2$	4.675(3)	4.642(3)	3.285(1)	90.62((1)	71.39(3)

Milestone 1.2: Discharge products of CuF_2/C and $Cu_{0.8}Fe_{0.2}F_2/C$ identified

Stan Whittingham SUNY at Binghamton

CuF₂

- Reaction complete at 1.8 V
- CuF_2 converted to Cu and LiF

Cu_{0.5}Fe_{0.5}F₂

- Not complete at 1.8V
- Forms LiF and Cu
 - Peaks of Fe phase overlap with LiF phase, so cannot be identified

Milestone 1.3: CuF₂ delivers near theoretical discharge capacity; Fe substitution improves reversibility

Stan Whittingham SUNY at Binghamton

Initial discharge capacity:

- CuF_2 delivers close to the theoretical capacity of 528 mAh/g
 - Best first cycle recharge reported
 - But, fast capacity fade thereafter
 - Around 150 mAh/g in the 2^{nd} cycle
- Fe substitution, $Cu_{1-y}Fe_yF_2$ improves the electrochemical performance
 - Improved reversibility
 - Around 300 mAh/g in the 5th cycle

Go/NoGo: Demonstrate cyclability of CuF₂ Capacity of over 200 mAh/g over 10 cycles achieved

Stan Whittingham SUNY at Binghamton

- Effort focused on the solid solution $Cu_{1-v}Fe_vF_2$ composite with carbon
 - Capacity is 290 mAh/g, exceeding the Go/No-Go target of 200 mAh/g
 - Best reported in literature
- Much superior to pure CuF_2 or CuF_2 /oxide mixtures

- Proof of principle test underway
 - Can a solid electrolyte allow the extended cycling of CuF₂ systems?
 - If yes, then we will search for an appropriate liquid electrolyte
 - PEO based electrolyte chosen
 - Initial discharge capacity comparable to organic liquid electrolytes
 - However stability issues at copper redox charging voltage
 - Now looking at other alternative solid/liquid electrolytes

Reaction: SnO ground together with Ti powder and carbon at RT

- Ratio of components and grinding time critical
 - Carbon
 - Source of carbon not important, carbon black or graphite
 - Graphite leads to slightly higher capacities
 - Need 10:1 carbon:tin atom ratio
 - 5:1 carbon:tin leads to larger amounts and greater crystallinity of tin metal
 - Results in lower capacity retention and lower Coulombic efficiency
 - Titanium
 - Optimum is a Ti/Sn ratio of 0.25
 - Lower amounts lead to an increased 1st cycle excess capacity
 - Grinding time and media
 - 8 hours was the optimal ball-milling time
 - Hard steel balls are needed as soft balls lead to chromium contamination
 - Carbon is needed to prevent the melting of the tin

Full details: Zhixin Dong et al, Advanced Science, 3_1500229_2016

Milestones 1.4 and 2.3: Sn-Fe-C anode showed excellent cycling for 140+ cycles at both C/10 and C rates

Stan Whittingham SUNY at Binghamton

Zhixin Dong et al, Advanced Science, 3_1500229_2016

Milestone 2.3: Other Sn-Fe anode compositions, synthesis approaches and 1st cycle excess capacity

Stan Whittingham SUNY at Binghamton

Synthesis approaches beyond mechanical grinding

- Modified polyol approach
 - Carbon free Sn₂Fe and Sn₅Fe
 - By controlling temperature and reactants ratio
- Sn₂Fe and Sn₅Fe
 - Good capacity retention
 - Capacity exceeds graphite
 - Excess 1st cycle capacity

Milestone 2.1: Determine the optimum composition of Li_xVOPO_4

Stan Whittingham SUNY at Binghamton

- Hydrothermal synthesis provides diffraction pure material
 - However, this material contains protons.
- Solid State reactions at 700 800° C
 - Provides pure ε-LiVOPO₄ phase*
 - Higher capacity than ε -VOPO₄ phase
 - Contains a source of lithium
 - Stable in air
 - Grinding with carbon
 - Gives a conductive coating
 - Reduces particle size to around 200 nm
 - Characterized by broad diffraction peaks

Stan Whittingham SUNY at Binghamton

- LiVOPO₄ ball milled with carbon:
 - Gives improved electronic conductivity
 - Gives smaller particle size of around 200 nm
 - Leads to higher cycling capacity
 - Achieved milestone of 50 cycles above 200 mAh/g

Milestones 2.2: Demonstrate rate capability of LiVOPO₄

- LiVOPO₄ ball milling with carbon:
 - Leads to higher cycling capacity
 - Improves the rate capability
 - 80% of the practical capacity at 0.1 C can be retained at 1 C
 - Capacity is recovered after high rate
 - Good reversibility
 - Rate capability milestone achieved
 - Extended cycling underway

Response to 2015 Reviewers' Comments

Stan Whittingham SUNY at Binghamton

AMR 2015 reviewer comments were overall very positive and supportive of this step-out project. They recognized that the project was in its very early stages and noted several challenges that should be addressed:

- **Cathode CuF₂**. The dissolution/migration and aggregation of copper species from the CuF₂ cathode that effect the cyclability of CuF₂, also suggest that structural changes should be investigated:
 - The cyclability of CuF_2 has been determined and is reported here.
 - Proof of concept experiments are underway to determine if complete cyclability is obtained if dissolution of Cu⁺ is eliminated. This is being done using a solid electrolyte. Initial results are reported here.
- Anode Sn_2Fe/C . Here more data was requested to show full cycling curve, dissolution of the SEI, and high irreversible capacity.
 - The full cycling curve is shown now in the presentation. The coulombic efficiency of this anode is over 99.9% after the first few cycles. The initial excess capacity is being investigated.

Figure 2-48 High Energy Density Lithium Battery: Stanley Whittingham (Binghamton University) - Electrochemical Energy Storage

Brookhaven and Argonne National Laboratories

- Synchroton: Ex-situ and in-situ synchrotron X-ray diffraction, PDF (pair distribution function) and XAS (X-ray absorption) studies
- Center for Functional Nanomaterials @ BNL: TEM studies

• Academia

- Working with DOE funded electrolyte efforts (will use their improvements)
 - U. Colorado and U. Michigan on solid electrolytes
 - U. Rhode Island and Army on liquid electrolytes and electrolyte additives

• Industry

- As this is a new project working through NYBEST to disseminate information
- NYBEST (New York Battery and Energy Storage Technology Consortium)
 - Building collaborations between Industry, Academia, and Government

• CuF₂ conversion cathode

- Cyclability of electrode
 - Dissolution of copper species

VOPO₄ intercalation cathode

- Long-term stability of structures when two Li are intercalated

• Nano-Sn₂Fe

- Long term cycling
- Cost effective synthesis methods
 - Mechanochemical method
 - Find collaborator to determine viability of mechanochemical manufacturing
 - Find alternative synthesis approaches

• Lithium incorporation in full cell (3rd year)

- Neither electrode presently contains Li

Proposed Future Work

- Copper Fluoride, CuF₂
 - Cyclability
 - Determine impact of electrolyte
 - Is solubility of copper species a solvable issue?
 - Determine rates of reaction
 - Determine optimum composition of CuF₂ composite
- Vanadyl Phosphate, LiVOPO₄
 - Determine long-term cyclability over both redox plateaus
- Anode: Tin-Iron-Carbon Composite, Sn₂Fe
 - Increase cycling performance to 500 cycles
 - Incorporate into full cells with cathode

Summary

• Sn-Fe Conversion Anodes

- Sn_2Fe has more than 50% higher volumetric capacity than carbon
 - Carbon plays a critical and active role in mechanochemical material
 - Chemically synthesized Sn_2Fe cycles, but with lower capacity
 - Found good cycling for Sn₅Fe

• CuF₂ Conversion Cathodes

- Synthesized and characterized copper fluoride material
 - Pure CuF_2 formed, as well as solid solution $Cu_{1-v}Fe_vF_2$
 - Substituted retains capacity much better
 - Working on alternative electrolytes
 - Will work with other CuF₂ efforts

• LiVOPO₄ Intercalation Cathodes

- $LiVOPO_4$ cycles well over V⁴⁺/V⁵⁺ and V⁴⁺/V³⁺ redox couples
 - Initial capacities exceed 200 Ah/kg

Technical Back-Up Slides

Calculation of capacity of Sn-Fe-C composite: Volumetric energy density exceeds carbon

- Gravimetric capacity:
 - Measured reversible capacity of 600 Ah/kg of total composite
 - Sn₂Fe contributes 804 Ah/kg
 - Remainder contributed by carbon
 - Must be C_2Li
 - 1100 Ah/kg
 - Theoretical capacity of 760 Ah/kg for total composite
 - If C_6Li then theoretical capacity is 490 Ah/kg
- Volumetric capacity:
 - Approaches 1.6 Ah/cc, based on above value of 600 Ah/kg

- Free energy of formation of oxide:
 - -394.36 kJ/mole for C to CO₂
 - -519.6 kJ/mole for Sn to SnO₂
 - -371.1 kJ/mole for Fe to $\frac{1}{2}$ Fe₂O₃
 - -705.5 kJ/mole for oxidation of Sn₂Fe to SnO₂ and Fe₂O₃
 - -850.7 kJ/mole for oxidation of Si to SiO₂
- Free energy of oxidation per lithium stored:
 - -2366 kJ/Li for a carbon anode
 - -160 kJ/Li for a Sn₂Fe anode
 - -193 kJ/mole for a Si anode

Assumptions: 6 C/Li and 4.4 Li/Sn or Si

Even if substantial amounts of carbon are used with the Sn and Si anodes, they will still generate less heat than graphite alone