AMR 2016 NETL/DOE Award No. DE-EE0005981

High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology

June 9, 2016

Charles Mendler, ENVERA David Genise, EATON Austin Zurface, EATON PD/PI Program Manager & PI Valvetrain

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

ENVERA LLC Mill Valley, California Tel. 415 381-0560

Project ID ACE092

Overview

Timeline

Start date April 11, 2013 End date September 30, 2017 Percent complete¹ Time 62% Budget 52%

Barriers & Targets

Vehicle-Technology Office Multi-Year Program Plan

Relevant Barriers from VT-Office Program Plan:

- Lack of effective engine controls to improve MPG
- Consumer appeal (MPG + Performance)

Relevant Targets from VT-Office Program Plan:

- Part-load brake thermal efficiency of 31%
- Over 25% fuel economy improvement SI Engines
- (Future R&D: Enhanced alternative fuel capability)

Budget

Total funding	\$ 2,784,127
Government	\$ 2,212,469
Contractor share	\$ 571,658

Expenditure of Government funds Year ending 12/31/15 \$ 1,085,483

Partners

Eaton Corporation Contributing relevant advanced technology R&D as a cost-share partner

Project Lead ENVERA LLC

1. Thru December 31, 2015

Relevance

Research and Development Focus Areas:

Variable Compression Ratio (VCR) Variable Valve Actuation (VVA) Advanced Supercharging Systems integration Approx. 8.5:1 to 18:1 Atkinson cycle and Supercharging settings High "launch" torque & low "stand-by" losses

Objectives

40% better mileage than V8 powered van or pickup truck without compromising performance. *GMC Sierra 1500 baseline.*

Relevance to the VT-Office Program Plan:

Advanced engine controls are being developed including VCR, VVA and boosting to attain high part-load brake thermal efficiency, and exceed VT-Office Program Plan mileage targets, while concurrently providing power and torque values needed for consumer appeal.

Milestones: Budget Period 1

Description	Milestone/ Go/No-go	Month/year	Status:
Feasibility analysis			
VCR	Milestone	Q2/2013	Complete
Valvetrain	Milestone	Q2/2013	Complete
Boosting			
Preliminary	Milestone	Q2/2013	Complete
GTPower modeling	Go/No-go	Q4/2014	Complete
Base engine specifications	Milestone	Q2/2013	Complete
Crankcase CAD and FEA	Go/No-go	Q3/2015	Complete
Durability testing, PTO	Go/No-go	Q2/2016	
Crankcase castings	Milestone	Q4/2015	Complete
Crankcase Machining	Milestone	Q2/2016	
Engine assembly	Go/No-go	Q2/2016	

Technological Approach

Approach for attaining high mileage

Combine aggressive engine down-sizing with high-efficiency Atkinson cycle technology.

Approach for maximizing power and torque, e.g., Enabling technologies for aggressive engine down-sizing

- VCR
- Cam profile switching
- Advanced boosting

Compression Ratio Values

High CR needed for Atkinson Cycle efficiency

Low CR needed for multiple reasons:

Minimum compression ratio 8.2:1

A low compression ratio is needed for:

- Preventing detonation (knock)
- Limiting the rate of pressure rise to minimize combustion harshness
- Reducing turbocharger lag (Time-to-torque)
- Increasing boost pressure and engine torque at low engine rpm

Introduction

Approach for attaining low criteria emissions

• Lambda 1 fuel/air mixtures used with 3-way catalytic converter technology for low HC, CO and NOx emissions.

Proven strategies to be employed. Gasoline & alternative spark-ignition fuels.

AMR Presentations 2014 & 2015	Chrysler [*]	Ford ^{**}	Envera								
Light load BSFC											
5.25 bar bmep @ 2000 rpm	~250	~245	234 est.								
Power											
Maximum kW/L	56.3	80	118 est.								
*AMR 2014/15: Results - Performance, pg. 6. En	gine Efficiency, bsfc, p	g. 9									
**AMR 2014/15: Attributes and Architecture, pg. 7. Fuel consumption, pg. 13. Ford data interpolated by Envera.											

Development Strategy

Phase 1

Feasibility analysis, including:

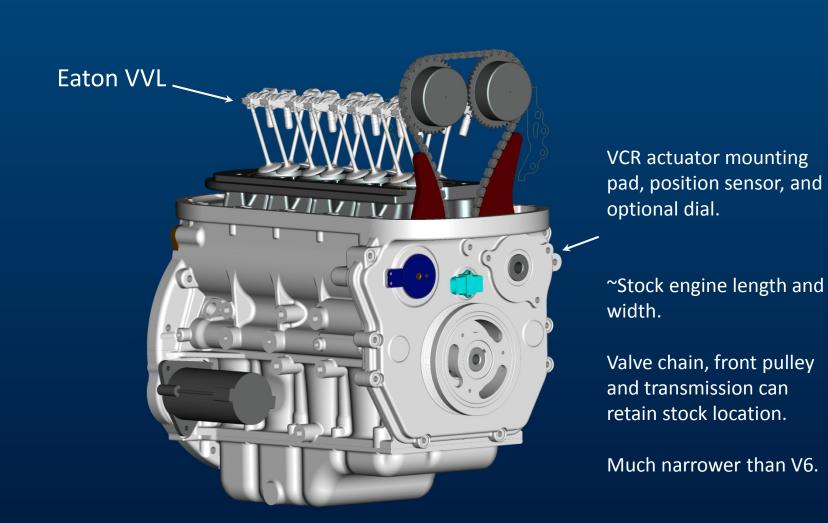
- Variable compression ratio, VCR
- Variable valve actuation, VVA
- Advanced boosting feasibility
- GTPower computer modeling

Phase 2

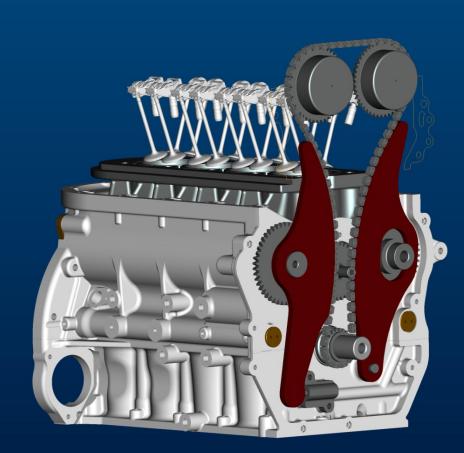
Engine design / analysis / build

- VCR crankcase
- VVA, cylinder head, pressure sensing
- Supercharging
- Engine assembly

Phase 3


Engine Calibration / Milestone Testing

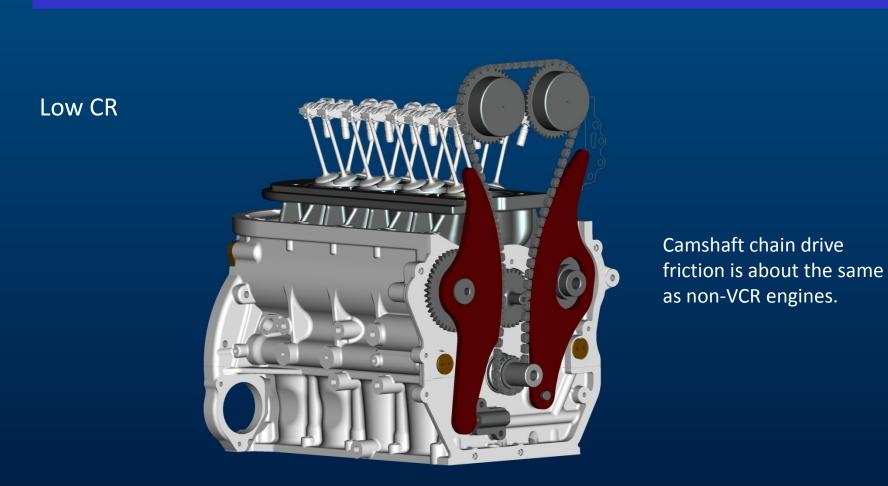
- ECU / Engine testing and development
- Mechanical systems validation assessment / reporting
- GT-Power / GT-Suite: BSFC & MPG projections
- "Value engineering" as needed for achieving Targets

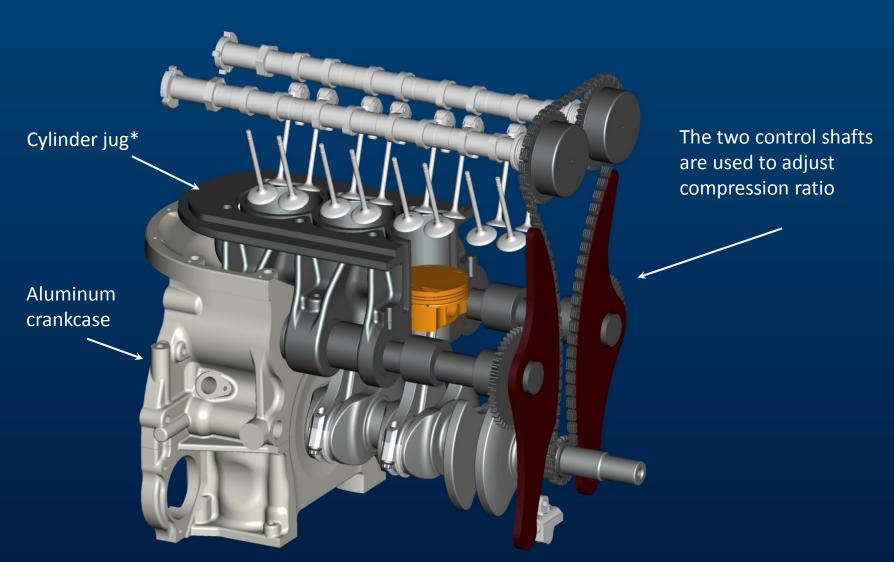

Envera Envera/Eaton Envera/Eaton Envera

Envera Eaton Eaton Envera

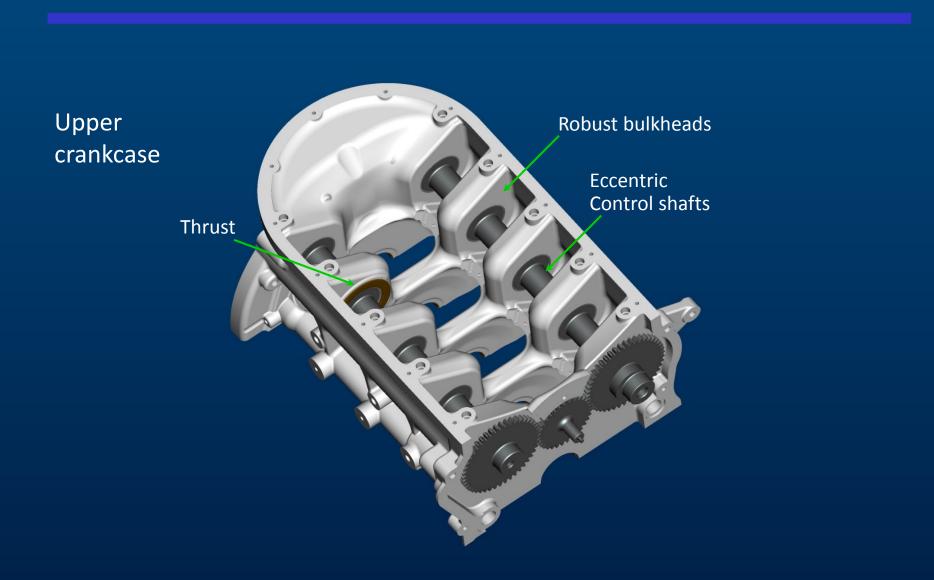
Envera VCR Engine 2.0 2.4L Engine Build

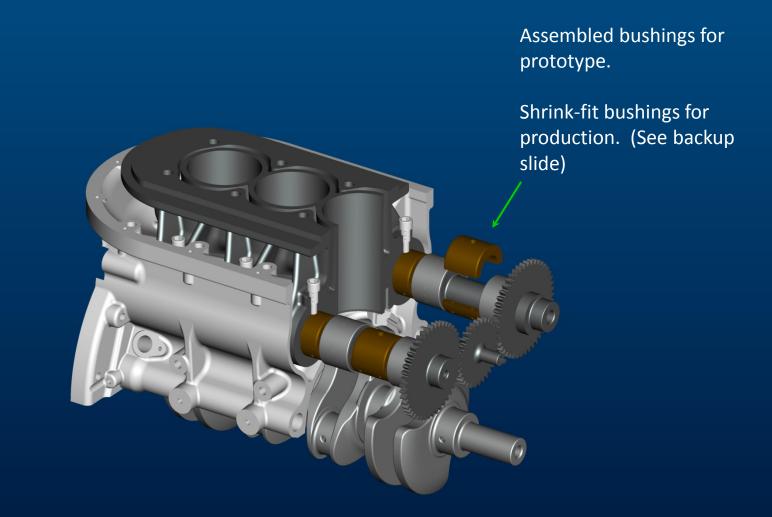
Scheduled build completion date for all parts shown: Mid 2016




High CR

The control shafts position the chain guides


The cam timing can change with change of CR. OE options include:


- Advance of timing
- Retard of timing or
- No change at all.

*Aluminum cylinder jug with cast in place liners for production. Iron jug for first prototype.

Internal engine friction loss:

- No change in valve chain friction.
- VCR actuator power is minimal. Combustion forces are used for a rapid reduction in compression ratio. Compression ratio is increased "slowly" (over a number of seconds) to minimize actuator power.

Internal engine friction is about the same as a non-VCR engine.

Combustion chamber design:

- A small bore to stroke ratio is used to achieve a thicker, more compact combustion chamber volume.
- Deep valve pockets are not required, because the VCR lowers the piston at times when a large valve overlap is needed. *Only small pockets needed.*

Combustion chamber form looks good for the GM 2.5L Ecotec engine build.

Compression Ratio Values

High compression ratio:

Maximum compre	ession ratio
Bore/Stroke ratio	
BSFC projection	100 Nm 2000 rpm

17.5:1 0.9 ~235 g/kWh*

High compression ratio engines need a small bore to stroke ratio for minimizing combustion chamber surface area and minimizing heat loss.

Increasing CR from 16.5 to 17.5 requires an additional VCR travel of only 0.38mm (0.015 inch). The higher CR value will be used because it will return higher efficiency with no real down side to the engine design.

Compression Ratio Values

VCR Mechanical Travel:

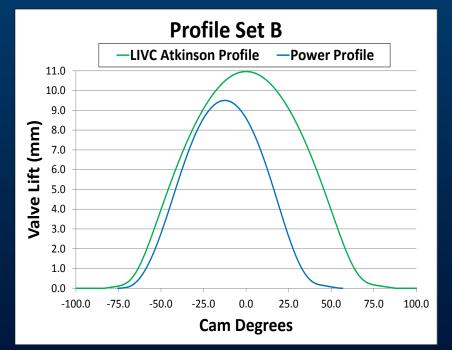
The VCR mechanism needs to provide a mechanical travel range of about 8.0 mm.

ENVERA 2.4L VCR Engine			
VCR Travel Needed		Build 1	Build 2
Bore	mm	88.50	88.50
Stroke, S	mm	97.50	97.50
Bore/Stroke		0.908	0.908
Cylinder displacement	cc	599.8	599.8
Cylinders		4	4
Engine displacement	L	2399	2399
CR			
Max		17.50	17.50
Min		8.22	8.00
Chamber volume, d			
Max CR	СС	36.35	36.35
Min CR	сс	83.07	85.68
Change in volume	сс	46.72	49.33
VCR Travel, T	mm	7.6	8.0

Eaton Variable Valve Lift

Eaton VVL Rocker Arm

Optimized

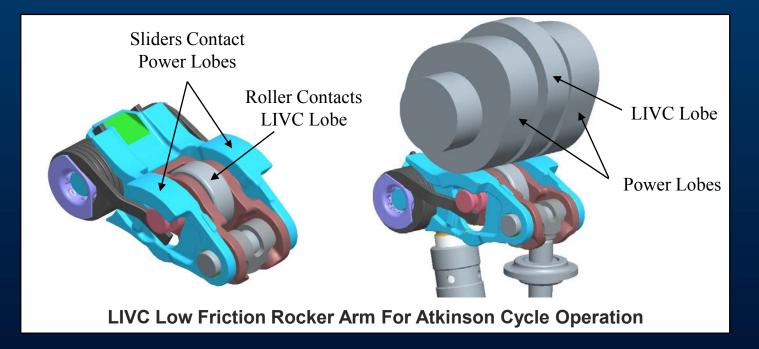

Multiple valve lift profiles The VVL rocker arm to 6800rpm

Results

VVL performance meets requirements Exhaust SRFF meets requirements

Status

Fabricating cylinder head, cams, and VVL rocker arm hardware



Eaton Variable Valve Lift

Phase 3 Optimization – Under review

Over-all fuel economy can be increased by using the roller follower for the Atkinson Cycle, and the slider contacts only for power and torque.

The current build uses sliding contact for the Atkinson Cycle. The roller follower Atkinson design is shown below.

Development Progress

Development Progress for VCR 2.0

E	VERA VCR PROT	OTYPE ENGINE	I PHASE II						PHASE III															
Т	ME LINE		BUDGET PERIOD 1						2		1													
C	ALANDAR TIMELI	NE	2013 2014										16	6			17	1						
Ti	ming dependent o	on DOE/NETL award and kick-off meeting	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4			01 02 03 04			4 01 02			Q3	Q4	01	0	2 03	3							
	HASE II	VCR PROTOTYPE ENGINE BUILD		IT	IT		T			TT	TT	III				T	TT	TT	T	T		TP		٦
	Task 8	VCR Crankcase Design and Engineering			HI			Ħ	H			Ħ			Ħ	Ħ						117		Π
	Subtask 8.1	CAD/FEA: Cranktrain and VCR Cradle						Ħ				111				Ħ		111				111		П
	Subtask 8.2	CAD/FEA: Crankcase with Bedplate					11		Ċ	Com	elar	ete		+++		Ħ		Ħ				117		П
	Subtask 8.3	Thermal-CFD: Cooling circuit		HT			11	Π	Ш	Π	İТ	Ш	Π		Ħ			Ħ				Ħ		ſ
	Subtask 8.4	CAD: Front Cover, Oil pan, remaining Components		ĦŦ	H			Ħ	H			Ħ			Ħ	Ħ						Ħ		ſ
	Task 9	Engine Build			Ħ			Π								Π						TT		1
	Subtask 9.1	Procure Crankshaft, Pistons and Connecting Rods			Ш			Π	Ш			Ш			Ш	Π	\square					Π		1
	Subtask 9.2	Rapid Prototype Castings						Π	\square							Π						Π		1
	Subtask 9.3	Machine Castings and Other Components																				\square		1
	Subtask 9.4	Purchase Components																				\square		1
	Subtask 9.5	Engine Pre/Assembly and Functionality Checks														Π						Π		1
	Task 10	Advanced Supercharger		Π	Ш			Π	Π			Ш			Ш	Π						\square		Π
	Subtask 10.1	Design and Engineering						Π				Ш				Π						\square		
	Subtask 10.2	Hardware Prototyped																				\square		
	Subtask 10.3	I/O Controls Specification																						
	Task 11	Valve actuation																						
	Subtask 11.1	Design and Engineering																				\square		
	Subtask 11.2	Hardware Prototyped																						
	Subtask 11.3	Sensor installation																				\square		
	Subtask 11.4	I/O Controls Specification																						
	Task 12	Engine Management Advanced Set-up																						
	Task 13	Required DOE Reporting, meetings, presentations																				\square		
Pł	HASE III	ENGINE AND VEHICLE VALIDATION TESTING																						
	Task 14	Engine Management and CV Calibration																						
	Subtask 14.1	Engine Management and Base Calibration																						
	Subtask 14.2	GTPower development / New Cams		Ш	Ш			Ш	Ш		Ш	Ш			Ш	Ш								
	Subtask 14.3	Calibration / Engine BSFC Map Produced																						
	Task 15	Test Vehicle Simulation																						
	Task 16	Cylinderhead Advanced Development																						
	Task 17	Valve actuation development																						
	Task 18	Value Engineering																						
	Task 19	Required DOE Reporting, meetings, presentations																				Ш		

Progress for VCR 2.0

Development Status Summary:

- General design of the VCR 2.0 Engine has been completed.
- Completion of crankcase and cylinder jug general machining, crankshaft connecting rods and other major components scheduled for June 2016.
- Engine assembly with Envera and Eaton components is scheduled for mid 2016.

Progress for VCR 2.0

Outstanding Progress for VCR 2.0:

- DOE Grants authorization to proceed with VCR 2.0 August 2015
- Crankcase casting release December 2015

Casting release within 6 months of VCR 2.0 receiving DOE green light!

Progress for VCR 2.0

Phase III

- The VCR engine will undergo engine dynamometer testing in Phase III.
- Engine testing will focus on selected rpm/bmep load points. A leading goal is to establish calibration settings for minimum bsfc at 100 Nm load 2000 rpm. GTPower will be used for optimizing engine efficiency during real time engine dynamometer testing, and for post-testing optimization.
- Eaton will develop a second set of cams for its switchable rocker arms. These cams will be developed using the combustion data and GTPower modeling. The VCR engine will then be retested with the new cams.
- High-load testing will also be conducted to validate the VCR 2.0 mechanism.

Collaboration

Collaboration:

Eaton is currently collaborating with ENVERA on the project as a subcontractor. Eaton is contributing relevant advanced technology R&D as a cost-share partner. Eaton R&D development areas include the VVA and boosting.

Future Directions:

A key area where collaboration will be pursued in the future is the engine management system. ENVERA is currently discussing collaboration opportunities in this and other areas.

We welcome interest from the OEs, component manufacturers, and other R&D organizations.

Patent references

Companies sighting Envera / Mendler patents – Partial listing:

BorgWarner Caterpillar Cummins Daimler Chrysler DENSO FEV Ford GE GM Hitachi Honda INA MTU Izuzu Nissan Pinnacle / Cleeves Polaris Suzuki Toyota Visteon VW Yamaha

There's interest in what we're doing

Previous Reviewer Comments

AMR Reviewer comments from 2015

- 1. "VCR is a very relevant efficiency technology concept"
- 2. Mechanism and actuator friction needs to be considered.

Low friction is a key selling point for the Envera VCR 2.0. Valve chain and FEAD friction is essentially unchanged from stock, and rapid reduction of CR is actuated by combustion forces.

3. The combustion chamber shape will be poor due to the high CR requirement.

Deep valve pockets are not required because a large valve overlap is only required during low CR conditions. VCR lowers the piston 7.6 mm, and eliminates the possibility of piston to valve strike.

Previous Reviewer Comments

AMR Reviewer comments from 2015

Continued

4. Data is needed to support efficiency and performance projections

Testing as planned in Phase 3 of the program.

5. There is no OE or Tier 1 involvement.

The Eaton Corporation is a major Tier 1

6. A combustion controls partner is needed.

Down-selection of the Phase 3 testing location and technical support will take place in Q4 2016.

Summary

Summary:

- Large reductions in CO₂ can be attained with VCR technology.
- Criteria emission standards (HC, NOx, CO, Particulate) for gasoline VCR engines are attainable using proven 3-way catalytic converter technology.
- The Envera VCR mechanism has several benefits:
 - A large enough VCR travel distance (+7.6mm)
 - Robust structure for supporting ~30 bar bmep loads
 - Minimal friction loss penalty
 - Approximately stock engine size (can fit into existing engine bays)
 - Stock cylinder heads can be used with the Envera VCR crankcase
 - Low cost high-volume production
 - Good match with production transmissions. 7000 rpm design speed.
 "Down-speeding" not required.

Thank you

US Department of Energy National Energy Technology Laboratory

Cost share Partners and Program Donors:

- Envera LLC
- Eaton Corporation
- Gamma Technologies
- EngSim Corporation
- ADEM LLC
- BHJ Dynamics, Inc.

Charles Mendler ENVERA LLC Tel. 415-381-0560 <u>CMendler@VCREngine.com</u>

Technical Backup Slides

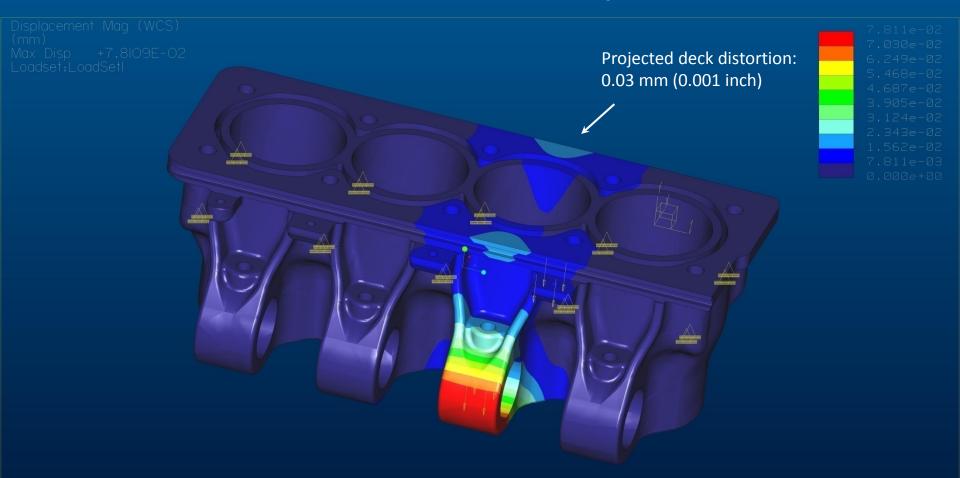
Envera VCR 2.0 – Backup Slide

Earlier version shown

Nitrile gasket:

The Nitrile curtain is bonded to steel flanges. The bond is stronger than the curtain.

Affordable: Low-volume production quote of \$42 each on order of 10,000 pieces.


~Stock engine length:

Stock bedplate and crankshaft. Stock starter motor and bell housing flange. Rotating the control shafts adjusts compression ratio from 8.5:1 to 18:1

Stock cylinder head with Eaton VVL & Atkinson cycle cams

The VCR mechanism doesn't add mass to the cranktrain. High engine speeds and loads attainable with conventional and reliable cranktrain technology.

Finite Element Analysis

FEA analysis of the preliminary jug design ndowl" - Analysisl4 - Analysisl4

Use of iron provides a stiff deck and sturdy cylinder walls for highly boosted engines.

Use of aluminum with cast in place liners under development.