

Proudly Operated by Battelle Since 1965

Enhancing Sheared Edge Stretchability of AHSS/UHSS

XIN SUN X HU, KS CHOI, G CHENG

PACIFIC NORTHWEST NATIONAL LABORATORY RICHLAND, WA, USA

PROJECT ID# LM106

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY15
- Project end date: FY18
- Percent complete: 30%

Budget

- Total project funding
 - DOE share: \$1,800k
 - Industry in-kind: \$1,200k
- Funding received in FY 2015:
 - DOE: \$400k
 - In-kind: \$300k
- Funding for FY 2016:
 - DOE: \$400k
 - In-kind: \$300k

Barriers

- Edge stretchability is a key barrier for the increasing application of AHSS/UHSS into vehicle structures for weight reduction and crash performances
- Edge stretchability is highly influenced by a number of factors including material microstructures, blank preparation processes, die wear, and edge loading conditions.
- Lack of a quantitative and predictive understanding linking microstructural characteristics to edge stretchability under different conditions.

Partners

- Oakland Univ: SF Golovashchenko
- Ford: C Chiriac, R Sohmshetty
- US Steel: B Hance, MF Shi
- AK Steel: KS Raghavan, YW Wang

AHSS/UHSS Edge Preparation and Stretchability

- Edge stretchability of AHSS is grade- and microstructure- dependent.
- Same grade AHSS from different producers can have quite different local formabilities, i.e., stretchability and hole expansion ratio.
- Trimmed surface quality is very sensitive to the alignment accuracy of the upper and lower dies.
 - Burrs and edge damages are typical defects encountered in trimming.
 - Insufficient die stiffness poses a problem due to the increased trimming forces necessary for AHSS steel.
 - Tooling alignment is especially difficult in curved areas of the trim line.

Examples of edge fractures in AHSS stamped parts

Relevance and Project Objectives

Enhance the sheared edge stretchability of AHSS/UHSS by

- Developing quantitative and predictive understanding of the role of microstructure on sheared edge fracture and stretchability
- Building validated predictive capabilities to quantify relationships between microstructures and trimming condition to trimmed edge quality and to subsequent stretchability:

Accelerate the development of next generation advanced high strength steels (steel companies) and enable a rapid and cost-effective deployment of AHSS/UHSS in vehicle structures (auto OEMs) for substantial mass savings that will result in vehicle lightweighting to reduce greenhouse gas emissions and dependency on foreign oil

Milestones and Go/No Go Decision Points

- SMART goal Complete macroscopic shearing/piercing process simulation with experimental validation – Regular goal, and estimated completion date: 9/30/2015. 12/31/2015 (actual)
- Three quarterly progress measurement goals
 - 12/31/2014: Regular goal: Acquire materials and complete literature review on different DP980 hardening behaviors
 - 3/31/2015: Regular goal: Complete experimental characterizations of micro- and macro-scopic properties of DP980
 - 6/30/2015: Regular goal: Complete shearing/piercing experiments on two DP980 steels with different clearances
- Go/No-go decisions– Predicted burr geometry >90% accurate for different DP980 under different clearances

Technical Approaches

- Task 1. Literature review on DP980 hardening behaviors and software capability analysis (PNNL, Ford, OU, USS and AK)
- Task 2. Collect materials and perform macro- and micro- material property characterization (OU, USS, AK, Ford and PNNL)
- Task 3. Macroscopic Shearing/Piercing process simulations (macro-models) and experimental validation (PNNL, Ford, OU, USS and AK)
- Task 4. Microscopic damage characterization and prediction at SAZ (PNNL)
- Task 5. Macroscopic fracture and stretchability prediction with experimental validation (PNNL, OU, USS and AK).
- Task 6. Develop optimized process parameters and microstructures for sheared edge stretchability (PNNL, OU, USS, AK and Ford)

Progress Summary: Task 2: Materials and macro- & micro- characterization of Baterials and macro- & micro- characterization of Bateria Since 1965

- Two DP980 steels (1 & 2) were provided by steel companies
- Microstructures were characterized and tensile test were performed by the steel companies
- Accumulated rolling were conducted on both steels and subsequent tensile tests were performed on rolled sheets of DP980-2 for different reductions to obtain flow behaviors at large strains.
- In-situ HEXRD tensile tests were performed to obtain initial texture and lattice strains of two steels where are used to find individual phase properties aided with EPSC modeling.

Task 2: Microstructure characterization

Proudly Operated by Battelle Since 1965

x2000

DP980-1

DP980-1 has larger grain size than DP980-2

DP980-2

Task 2: Tensile properties

With similar strength level, DP980 -1 has much lower uniform elongation compared with DP980-2, but with higher post-necking deformation.

Task 2: Accumulated rolling & tension test

Proudly Operated by Battelle Since 1965

The accumulated rolling & tension tests are used to determine flow behavior of materials at large strains.

Task 2: Characterized phase properties: - Martensite and Ferrite

11

- The HEXRD determined initial texture and phase volume fractions in the two DP980 alloys are used as the input parameters into the EPSC / CPFE models.
- An iterative method is used to determine the individual phase slip system parameters until the calculated lattice strains from the model match those obtained from in-situ HEXRD tension tests at each strain increment.
- The average phase stress-strain relationships are calculated form the EPSC / CPFE models with the phase slip system determined previously.
- The obtained phase properties will be used in microstructure-based models in both the macro-micro or micro-macro approaches.

Progress Summary: Task 3: Trimming Experiments and Model Development Battelle Since 1965

- Performed straight edge trimming and hole punching at different controlled clearances
- Cross sectioned sheared edges and performed quantitative edge characterizations
- Developed trimming/hole punching model and obtained fracture criterion for the trimming model based on sheared edge geometry obtained experimentally for the corresponding steel
- Examined effects of microstructural variability on predicted trimmed edge variability.

Task 3: Trimming Experiments by Ford and Oakland University

Proudly Operated by Battelle Since 1965

Automated press cell

Decoiler

Straightener & feeder

65 ton mechanical press

Trimming die in the press

Cyclic trimming of UHSS from coil Trimmed surface

Task 3: Trimming Experiments by Ford and Oakland University

Studied sheared edge characteristics with respect to clearances and die wear

Burr height Measurement: Mitutoyo MDC-1" SFB Micrometer

Each data point on burr height is based upon 10 measurements along the sheared edge repeated for 10 samples

Task 3: Trimming Model Development and Model Parameter Calibration

- Commercial finite element code
- Large deformation with adaptive meshing
- Input flow stress from accumulative rolling and tensile test
- Damage modeled with Johnson-Cook damage model

$$D = \int_{0}^{\varepsilon_{p}} \frac{d\varepsilon_{p}}{\overline{\varepsilon}_{f}} \qquad \overline{\varepsilon}_{f} = A_{0} + Ae^{-B\eta}$$

Sheared edge profile (c=40%t)

Task 3: Identification of Damage Parameters cific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

May 14, 2016

Task 3: Trimming Simulations vs Experimental Results

17

- The burr height, burnish, fracture and rollover percentages and measured data are quantitatively comparable
- Predicted burr geometry >90% accurate for different DP980 under different clearances
- Very large *burr height variation* for clearance of DP980-1 at 40% clearance

Task 3: Trimming Simulations- Effects of edge microstructure variability Provide United Baltelle Since 1965

• The flow stress of element was determined using the rule of mixtures.

 $\sigma(\varepsilon) = \sigma_F(\varepsilon)f_F + \sigma_M(\varepsilon)f_M$

 For a given MVF value, heterogeneous damage parameters were also assigned to each element through Johnson-Cook damage parameter a₀

$$e^f = a_0 + a_1 e^{-b\eta}$$

Predicted edge variation for DP980-1 with 40% trimming clearance

Task 3: Hole Piercing Experiments and Preliminary Simulation Results

Hole piercing has been performed on DP980-2 steel with different clearances: No burr for clearances <19.4%; partial burr exists around the circumference for clearance of 29.4%; circumferential burr observed for clearance of 43.6%.

Preliminary simulations using the fracture parameters determined for the trimming model shows similar results: No burr predicted for clearances <19.4%; and large burr for 43.6% clearance. Small burr for 29.4% clearance, but the burr variation cannot be captured by the 2D model.

Task 4. Microscopic Damage Characterization of Shear Affected Zone

sheared edge Possible internal 1.5mm Damage due to shearing 5 µm 3D tomography sheared edge performed at **APS Beamline 2**

Est. void fraction along the sheared edge will be used as the input information in the subsequent stretchability simulation.

Progress Summary: Task 5. Macroscopic Fracture and Stretchability **Prediction with Experimental Validation**

Some preliminary hole expansion tests have been performed for DP980-2 steel for hole-pierced with different clearances

Measured HER is found to decrease with increasing hole punching clearances

Responses to Previous Year Reviewers' Comments

- This is the first year the project is being reviewed at AMR.
- No previous year's Reviewers' Comments available yet.

Collaborations

- Experimental materials characterizations at micro- and macro-scales (AK, USS, OU, PNNL)
- Experimentally trimming task with die wear (Ford+OU)
- Phase property and SAZ characterizations (PNNL+APS)
- Experimentally obtain quantitative relationship between edge stretchability and edge quality indicators:
 - Straight edge (Ford+OU)
 - Hole punch (AK+USS)
- Develop predictive modeling capability linking microstructures to trimming conditions to edge stretchability (PNNL)
- Develop optimized microstructure and process parameters based on ability of sheared surface to stretch (PNNL+ AK + USS + Ford).

Remaining Challenges and Barriers -- Future Work

- Task 5. Macroscopic fracture and stretchability prediction with experimental validation
 - Incorporate trimming induced damage as state variables at the edges of the stretchability sample
 - Consider in-plane and through thickness microstructural heterogeneity
 - Predict tensile fracture
 - Validate model
- Task 6. Develop optimized process parameters and microstructures for sheared edge stretchability

