

Electrode Materials Design and Failure Prediction

Venkat Srinivasan Lawrence Berkeley National Laboratory June 9, 2016

ES234

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: October 2013
- Project end date: September 2016
- Percent complete: 87%

Barriers

- Barriers addressed
 - Low power capability
 - Low energy
 - Low calendar/cycle life

Budget

- \$430k/year
 - 0.1 FTE Staff Scientist
 - > 1.5 FTE Postdoc

Partners

- Vince Battaglia
- Gao Liu
- Phil Ross
- Nitash Balsara
- CD Adapco
- Lawrencium computing cluster
- Advanced Light Source (Dula Parkinson)

Relevance

Objectives:

- Develop methodology to understand microstructure effects using direct numerical simulations
 - Combine x-ray microtomography with electrochemical simulations on 3D microstructural domains
 - Compare with optimized macroscale models
- Guide the development of controlled dissolution/precipitation in the sulfur cathode
 - Focus on the precipitation and film formation process

Milestones

Sept 2014

- Develop a model of a Li-S cell using concentration solution framework (Dec 2014)
 Completed
- **Go/no-go**: Develop custom Li-S cell with small (~200um) catholyte layer incorporating ceramic separator (March 2015)

Completed

• Use custom cell for experimental data for model comparison (June 2015

Completed

• Compare microscale and macroscale simulation results and experimental data to determine the importance of microstructural detail (Sept 2015)

Completed

Sept 2016

- Replace parameters (porosity gradient and tortuosity) in macroscale NMC model with corresponding values or functions obtained from tomography data (Dec 2015)
 Completed
- Measure the relationship of film growth to electrochemical response and develop a model to interpret the relationship (June 2016)
- **Go/no-go**: Measure transport properties of polysulfide solutions using electrochemical methods. If unsuccessful at obtaining concentration-dependent diffusion coefficient, use fixed diffusion coefficient value in upcoming simulations (Sept 2016)

Sept 2015

Approach

New Battery Developed for use in a PHEV

Technical Accomplishments-Model comparison

- Macroscale porous electrode model previously developed within this project, unknown parameters tuned to fit experimental data (Yanbao Fu and Vince Battaglia, LBNL)
- Macroscale model averages electrode geometry—how does loss of spatial detail affect predictions?

 Compare with microscale models on spatial domains constructed from electrode microstructure

From electrodes to microscale simulation

- Electrode microstructure obtained from X-ray microtomography (ALS beamline 8.3.2, Dula Parkinson)
- Electrode samples imaged while immersed in electrolyte solution
- Volume reconstructions transformed into meshed domains
 - Assignment of phase identities based on porosity used in macroscale simulations
 - Direct use of microstructure eliminates macroscale geometric parameters such as porosity, tortuosity, electrode thickness from equations
 - All other parameters taken from macroscale model
 - No fitting parameters in microscale model

Microscale and macroscale models

- Microscale and macroscale models show discrepancy
 - Spatial information distinguishes microscale and macroscale models
- Present discrepancy due primarily to limited microscale domain size
- Two macroscale model changes explored to reduce discrepancy
 - Steady-state diffusion problem solved in microscale pore network to obtain tortuosity
 - Replaces Bruggeman's relationship between porosity and tortuosity
 - Porosity gradient obtained by leastsquares fit to porosity of individual voxel slices
 - Determined by thresholding and voxel counting

Larger microscale domains needed

Lithium-sulfur: Next-generation storage device?

Rate performance of Li-S batteries

Difference in rate capacity largely due to second plateau

Identifying the resistance sources

Performance limitations in the sulfur cathode

passivation process with critical layer thickness

Relaxation behavior of Li-S cells

The relaxation kinetics clearly depend on rate of discharge

Relaxation behavior: same film thickness

The relaxation behavior is rate-dependent, even with same film thickness

Relaxation behavior: at different SOC

Relaxation kinetics become sluggish only for the lowest SOC ("step4")

Extract relaxation kinetics

Simulation based on extracted parameters

- $D_{eff} = D\epsilon^{Brugg} = 10^{-10} \cdot (2.5 \times 10^{-3})^3 = 1 \times 10^{-18} \text{ m}^2/\text{s}$
- L=100 nm with C₀=0.3 M

Available capacity limited by slow transport; relaxation behavior is rate-dependent.

Li metal: dendrite growth

- Collaboration with Katherine Harry, Nitash Balsara (UCB and LBNL)
- Li-Li symmetric cells with polymer electrolyte
- In situ imaging by hard X-ray microtomography (LBNL ALS beamline 8.3.2, Dula Parkinson)
 - Dendrite growth observed as function of charge passed
 - Dendrites approximately axisymmetric
 - Electrolyte experiences severe deformation
 - Dendrites push through electrolyte and eventually short cell

Harry and Balsara (UCB and LBNL)

Dendrite growth experimentally monitored

Li metal: current density

- Continued dendrite stress suggests non-uniform current density distribution
 - Time-resolved tomography data allows estimation of spatial distribution of current density (Harry and Balsara)

Harry and Balsara (UCB and LBNL)

What factors influence current density/dendrite growth?

Li metal: mechanical stress

- Electrolyte deformation due to dendrite growth suggests stress buildup
 - Strain energy expected to influence reaction rates
 - Dendrite/electrolyte interface locations extracted
 - Electrolyte shear modulus measured experimentally (Harry and Balsara)

Initial control volume

Z

z=Z

r=R

 Dendrites approximately axisymmetric

 Adapted from our large-deformation silicon/binder model (Higa and Srinivasan, 2015), using open-source PyGDH software package <u>https://sites.google.com/a/lbl.gov/pygdh/</u>

Dendrite growth

Deformed control volume

zΙΖ

Dendrite

Stresses appear to influence dendrite growth

The project received uniformly positive responses

- The reviewer said that the PI has an excellent approach where relevant problems are attacked in a number of areas important to advanced battery development. The reviewer noted that approach has a good marriage between modeling and experimental work
- The reviewer stated that the simulation work at cell level for the Li-S battery is inspiring
- The reviewer commented that good collaboration is that best blend of theoreticians and practitioners.
- The reviewer said that future work includes broad selections of systems and tools.
- The reviewer noted that the project provides a deep understanding and guidance for the potentially high-energy systems.

Collaboration and Coordination

- CD-Adapco
 - 3D simulation software
- DOE User Facilities (Outside VT Program)
 - Advanced Light Source (Dula Parkinson)
 - Lawrencium computing cluster
- Within VT Program
 - Nitash Balsara
 - Vince Battaglia
 - Gao Liu
 - Phil Ross

Remaining Challenges and Barriers

- Microstructure model:
 - Need more accurate resolution of phase identity
 - Need to consider much larger problem domains requiring much more computational time
- Li-S system:
 - Experiments to date are on low sulfur/electrolyte (S/E) ratio.
 - Failure modes at high S/E need to be captured in model (kinetics of deposition, pore clogging etc.)

Proposed Future Work

- Li-S system: Provide guidance on preventing shuttles and controlling dissolution/precipitation
 - Extract properties at high S/E ratio
 - Compare data at high S/E ratio to mathematical model

Summary

- Microstructure models may allow better predictions compared to the macro-homogeneous approach
 - Sufficient spatial resolution eliminates need for porosity and tortuosity
 - Larger simulation domains needed for accurate results
- Mathematical models for sulfur cathodes do not predict experimental features, even qualitatively.
 - Deposition of insulating Li₂S layer plays a large role in controlling end-of-discharge of the sulfur cathode
 - Right properties needed especially at high S/E ratio