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• Total project funding
– DOE share 100%

• Funding received in FY15: $430k
• Funding for FY16: $540k

Timeline

Budget

Barriers addressed

• University of Pittsburgh 
(subcontract)

• Florida State University
• Oregon State University
• General Motors
• Stanford University

Partners

Overview

 Project start date: Oct. 2014
 Project end date: Sep. 2016
 Percent complete: 75%

• Low energy density
• High cost
• Limited cycle life
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Relevance/Objectives
Develop high-capacity and low-cost Si/graphite composite 

anodes with good cycle stability and rate capability to 
replace graphite in Li-ion batteries. 

Modify the electrode structures to enable high utilization of 
thick electrodes.

Use solid state synthesis techniques to generate active-
inactive composite of Si based anode with high capacities.  



4

Milestones
FY16
 Identify and synthesize the active-inactive Si based 

nanocomposite with a specific capacity ~800 mAh/g 
(Dec. 2016). Completed

 Achieve 80% capacity retention over 200 cycles for 
graphite supported nano Si-carbon shell composite 
(March 2016). Completed

 Optimize the cost effective scalable HEMM and solid 
state synthesis techniques for generation of active-
inactive composite with capacities ~1000-1200 mAh/g, 
first cycle irreversible loss <20% and columbic efficiency 
>99.99% for 300 cycles at a current rate of 0.5A/g (July 
2016). Ongoing

 Further improve the cycling life of nanostructured silicon 
flakes and nanorods to achieve 500 cycles with a 
specific capacity >1000 mAh/g and areal capacity > 1.5 
mAh/cm2 (September 2016). Ongoing

 Achieve >80% capacity retention over 300 cycles for
thick electrodes (> 2 mAh/cm2) through optimization of
the Si electrode structure and binder (September
2016). Ongoing

FY15
 Identify the stability window of SEI 

formation on Si based anode (Dec. 2014). 
Completed

 Achieve >80% capacity retention over 200 
cycles of thick electrodes (~3 mAh/m2) 
through optimization of the Si electrode 
structure and binder (Jun. 2015). 
Completed 

 Synthesize nanostructured Si and lithium 
oxide nanocomposites by direct reduction 
of Si sub-oxide to achieve reversible 
capacities > ~1500 mAh/g, first cycle 
irreversible loss < 15%(June 2015). 
Completed.

 Synthesize nanostructured Si and lithium 
oxide nanocomposites by direct reduction 
of silica to achieve reversible capacities > 
~1200 mAh/g, and Coulombic efficiency of 
the anode > 99.99% during subsequent 
cycles. (Sept. 2015). Completed 
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Approach
 Modify the thermite reaction method to prepare mesoporous Si from Lowe cost 

diatom precursors.
 Use a hydrothermal method to synthesize hard-carbon coated nano-Si/graphite 

composite (HC-nSi/G) using low cost precursors.
 Modify the electrode structures to enable high utilization of thick electrodes
 Low cost synthesis of Si nanostructures: 
 Use High energy mechanical milling (HEMM) to develop template of water

soluble abundant and inexpensive precursor material.
 Use low pressure thermal chemical vapor deposition of silane to develop

different silicon nanostructures on this template.
 Reduce SiO using suitable alloy/metallic reducing agents using high energy

mechanical reduction (HEMR) process.
 Generate active-inactive Si nanocomposite by HEMR of metal silicides using

alloy/metallic/salt reducing agents.
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Technical Accomplishments 
High-loading anodes of mesoporous Si from 

thermite reaction 

!! It is a low cost and scalable method to produce porous Si from diatom.  
!! It shows ~1100 mAh/g specific capacity based on the whole electrode weight and 

~80% retention over 150 cycles at a high areal capacity of ~ 3 mAh/cm2. 

X.L. Li et al, Nano Energy, 2016, 20, 68-75 

~ 83.6% retention 
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Technical Accomplishments 
High-loading anodes of mesoporous Si from 

thermite reaction 

X.L. Li et al, Nano Energy, 2016, 20, 68-75 

(c) 

(d) 

!! The Coulombic efficiency is >99% even at a low charge/discharge current density. 
!! Porous Si from the magnesiothermic reaction can be engineered to have better 

performance than electrochemical etched porous Si. 
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Technical Accomplishments 
Porous Si/graphite composite electrode 

!! Porous Si/C-graphite composite electrodes can have doubled specific capacity to 
graphite electrodes and good cycling stability over long term test. 

~680 mAh/g (@ 0.06 mA/cm2)  
~607 mAh/g (@0.3 mA/cm2) 
based on the composite weight  

~750 mAh/g (@ 0.06 mA/cm2)  
~649 mAh/g (@0.4 mA/cm2) 
based on the composite weight  

X.L. Li et al, manuscript under preparation 
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Technical Accomplishments 
The effect of charge cut-off voltage 

!! The capacity retention of Si anodes of similar loading can be improved by 20% by 
lowering the charge cut-off voltage from 1V to 0.6V. 

!! The capacity drops by ~20%.  

Si anode (2.8 mg/cm2) between 5mV to 0.6V 
Capacity: ~2.1 mAh/cm2 (~770 mAh/g) at 
low current density and ~1.71 mAh/cm2 
(~620 mAh/g) at higher rate. 
Capacity retention: ~85% over 100 cycles. 

Si anode (2.4 mg/cm2); 5 mV to 1V  
Capacity: ~2.25 mAh/cm2 (~950 mAh/g) at 
low current density and ~1.85 mAh/cm2 
(~780 mAh/g) at higher current density. 
Capacity retention: ~65% over 100 cycles. 

X.L. Li et al, manuscript under preparation 
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Technical Accomplishments
Hard-carbon coated nano-Si/graphite composite

(HC-nSi/G)

S.K. Jeong et al, submitted for publication

The state of the art:  
• Mechanical mixing of graphite and 

nano-Si 
• Amorphous hard carbon coated 

nano-Si anodes. 
 New Approach: Use hard carbon to bind 

the graphite and nano-Si and form a 
composite.

 A hydrothermal method was developed to 
synthesize graphite/nano-Si/hard carbon 
composite using low cost precursors.

 Graphite provides stable core structure 
and also contributes to capacity.

Graphite
HC-nSi/G

EDX elemental mapping 
(green: carbon and red: silicon)

XRD patterns 

SEM
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Technical Accomplishments 
Hard-carbon coated nano-Si/graphite composite 

!! Hard-carbon coated nano-Si/graphite (HC-nSi/G) composite exhibits much lower 
impedance and better Li intercalation capabilities as compared to mechanically 
blended graphite/nano-Si/hard carbon (BGSH) mixture. 

Comparision of Cyclic 
voltammograms vs. Li/Li+ 

Comparision of 
Impedance spectra   

S.K. Jeong et al, submitted for publication 
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Technical Accomplishments 
Cycling Stability of HC-nSi/G Composite 

!! Specific capacity: ~800 mAh/g based on the weight of Si/C composite 
!! Cycling stability: ~80% retention over 150 cycles 

S.K. Jeong et al, submitted for publication 
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Technical Accomplishments 
Prelithiation of the HC-nSi/G Composite 

!! Prelithiation with SLMP greatly improves the first cycle Coulombic efficiency 
!! HC-nSi/G composite shows long term cycling and rate performance even at high 

areal capacities. 

S.K. Jeong et al, submitted for publication 
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Technical Accomplishments
Synthesis of Si nanoflakes (NF) and nanorods (NR)

Si NanoflakesParticle size < 20µ

Particle size <5µ

LPCVD Si

Water wash
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Template 1

Template 2

Si Nanorods

LPCVD Si

Water wash

HEMM 2 hr

HEMM 20hr

P. N. Kumta, University of Pittsburgh
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Technical Accomplishments
Long Term Cycling: Nanoflakes (NF)/Nanorods (NR)

Testing Conditions:
Voltage range: 0.01V – 1.2V Loading: 1.1mg/cm2 - 1.3 mg/cm2

Electrolyte: 1M LiPF6 in EC:DEC:FEC = 45:45:10 (%vol.)
Current rates: 300mA/g for 5 cycles, other cycles at 1A/g

End of 100 cycles and current rate of 1A/g:
Nanorods: specific capacity ~1050mAh/g, fade rate ~0.05% loss per cycle
Nanoflakes: specific capacity ~1125mAh/g, fade rate ~0.01% loss per cycle
Columbic efficiency of ~99.85 – 99.95 %.

 The capacity fade of nanorods is higher than that of nanoflakes due
to the crystalline nature of Si in nanorods.

P. N. Kumta, University of Pittsburgh
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Technical Accomplishments
Rate Capability/FIR Loss: Nanoflakes (NF)/Nanorods (NR)

Nanorods show drastic decrease in capacity at higher 
current rates of 1A/g (800 mAh/g) and 2A/g (500 mAh/g).

Nanoflakes show better rate capability and higher 
capacity (1300 mAh/g @1A/g and 850 mAh/g @2A/g) as 
compared to nanorods.

Si Nanoflakes (NF):
First cycle capacity: @50mA/g
Discharge: 2790 mAh/g         Charge: 2230 mAh/g
Second cycle capacity: @50mA/g
Discharge: 2445 mAh/g Charge: 2350 mAh/g
FIR Loss ~ 15-20%

Si Nanorods (NR): 
First cycle capacity: @50mA/g
Discharge: 2930 mAh/g          Charge: 2475 mAh/g
Second cycle capacity: @50mA/g
Discharge: 2740 mAh/g Charge: 2620 mAh/g
FIR Loss~ 12-15%

P. N. Kumta, University of Pittsburgh
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Technical Accomplishments 
nc-nano Si: HEMR SiO-Mg2Si system 

TEM nc-Si 

Active Material: nc-Si/C 
Capacity ~ 750 mAh/g @300 mA/g 

2SiO+Mg2Si      3Si+ 2MgO  Si + SiO/SiO2 Nanocrystalline Si 
nanoparticles 

HCl wash HF wash 

SEM nc-Si 

XRD pattern of material at different stages 

SEM and TEM images of nano-Si 

P. N. Kumta, University of Pittsburgh 
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Technical Accomplishments 
HEMR SiO-LiAl system 

Loading: 1.1 mg/cm2 - 1.3 mg/cm2 

1M LiPF6 in EC:DEC:FEC = 45:45:10 (%vol.) 
AM:Super P:PVDF = 80:10:10 

XRD pattern showing evolution 
of nc-Si/metal oxide matrix and 
finally nc-Si on heat treatment 
and acid wash. 

Active Material: SiO/LiAl-20 hr + Graphite composite 

4SiO + 2LiAl             4Si + Li2O + Al2O3 

!! Capacity = 740 mAh/g @50mA/g, 640 mAh/g@300 mA/g 
!! Increase in milling time and heat treatment induces 

complete reduction of SiO to enhance the capacity. 

P. N. Kumta, University of Pittsburgh 



19

Technical Accomplishments
Si-Inactive matrix system

Voltage range: 0.01V – 1.2V
Loading:1.1mg/cm2 - 1.3 mg/cm2

1M LiPF6 in EC:DEC:FEC = 45:45:10 
(%vol.)
AM:SuperP:PVDF = 80:10:10

XRD pattern showing evolution of nc-
Si/inactive matrix on mechanical alloying

Active Material: nc-Si/MB---33 at% Si in AM
 Specific capacity ~800mAh/g
 Theoretical limit =1300mAh/g

Si-B  +  M Si    + M-BHEMR

 The capacity can be further enhanced 
by inducing complete reduction of 
silicide. 

P. N. Kumta, University of Pittsburgh
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Collaboration and Coordination 
with Other Institutions

Partners:
• University of Pittsburgh (subcontract): Synthesis of nc-nano Si.

• Oregon State University: Collaboration on the porous Si from 

magnesiothermic reactions.

• Florida State University: pre-lithiation of silicon anode.

• General Motors: Collaboration on the in-situ measurement of electrode 

thickness change upon lithiation/delithiation.

• Stanford University: Study the failure mechanism of Si.
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Future Work
 Identify and synthesize the active-inactive Si based nanocomposite with 

a specific capacity ~1000 mAh/g for full electrode and good cyclability.
 Develop interface control agents and surface electron conducting 

additives to reduce the first cycle irreversible loss and improve the 
Coulombic efficiency of Si based anode.

 Achieve > 80% capacity retention over 500 cycles for thick electrodes 
(> 2 mAh/cm2) through optimization of the Si electrode structure and 
binder.

 Enhance the specific capacity of nc-Si/metal oxide/Graphite composite 
system derived from HEMR of SiO with alloys/metal reducing agents by 
inducing complete reduction.

 Develop new solution coating techniques to synthesize Si/C based 
nanostructured composites to improve the performance of the 
synthesized materials (NF and NR).
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Summary
 Si based anode prepared by a low cost magnesiothermic method

demonstrated good capacity and cyclability.
 A low cost and scalable approach was developed to prepare hard-

carbon coated nano-Si/graphite composites with a capacity of 800 
mAh/g (based on the weight of composites) and ~80% retention over 
150 cycles.

 Porous Si-graphite composite electrode demonstrated a stable cycling
for more than 500 cycles.

 High performance silicon nanostructures (NF/NR) were developed
from a completely recyclable water soluble template with specific
discharge capacity of ~1100 mAh/g at a current rate of 1 A/g.

 Synthesis of nc-Si and composite systems based on nc-Si using high
energy mechanical reduction of SiO/SiOx/metal silicide by suitable
metals/alloys exhibiting specific capacities of ~ 800 mAh/g.
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Technical Backup Slides
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Technical Accomplishments
Characterization: Nanoflakes (NF)/Nanorods (NR)

XRD pattern of material at various stages

Raman spectra of Si nanoflakes and nanorods

 Nanorods show presence of major crystalline peak (520cm-1) and a minor 
amorphous hump(480cm-1) of Si.

 Nanoflakes show presence of amorphous(480cm-1) and nano crystalline 
(520cm-1) Si peaks.

TEM and SAED pattern of Nanorods showing 
strong nature of crystalline Si

TEM Nanorod SAED Nanorod

P. N. Kumta, University of Pittsburgh
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Technical Accomplishments 

The electrolyte effect 

!! Porous Si electrode in 1M LiFSI in DME with 10 wt% FEC and 1 wt% VC shows a 
capacity of ~3.5 mAh/cm2 (~1150 mAh/g) at low current density and a capacity of 
~2.9 mAh/cm2 (~930 mAh/g) at high rate. 

!! The capacity retention is ~79% over 100 cycles. 




