

Development of Novel Electrolytes and Catalysts for Li-Air Batteries

P.I.: K. Amine L. Curtiss, Jun Lu Argonne National Laboratory DOE merit review June 10, 2016

Project ID# ES286

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start: 2014
- Finish: 2018
- **60%**

Budget

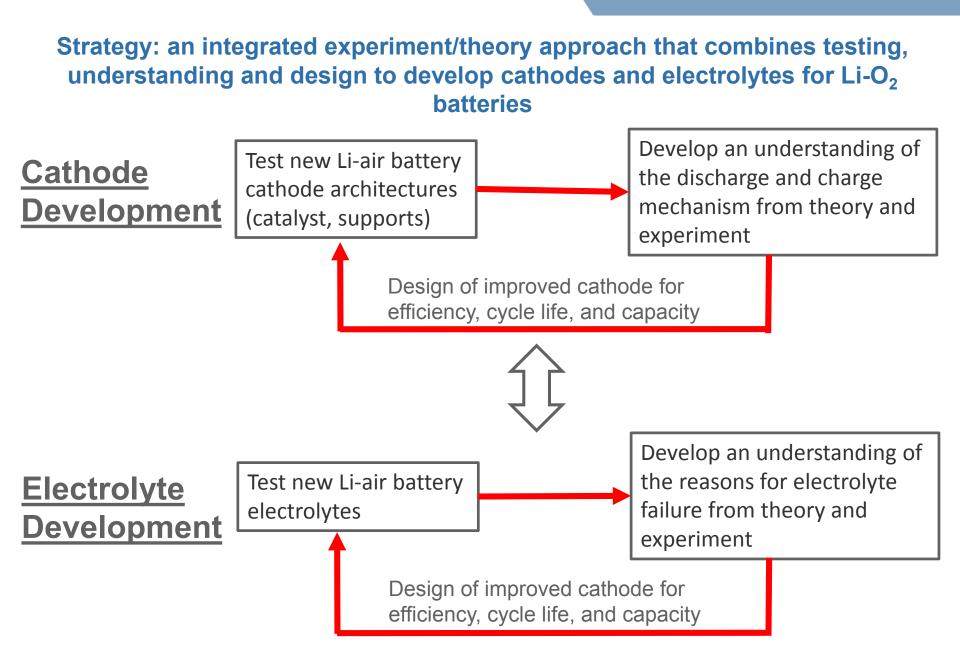
- Total project funding
 - DOE share: 1200
 - Contractor 0
- FY 14: \$ 400 K
- FY 15: \$ 400 K
- FY 16: \$ 400 K

Barriers

- Barriers addressed
 - Cycle life
 - Capacity
 - Efficiency

Partners

- Interactions/ collaborations
 - Y K. Sun, Korea
 - S. Vajda, ANL
 - S. Al-Hallaj, UIC
 - D. Miller, ANL
 - Y. Wu, Ohio State University


Project Objectives and Relevance

- Development of Li-air batteries with increased capacity, efficiency, and cycle life through use of new electrolytes that act in conjunction with new cathode architectures
- Use an integrated approach based on experimental synthesis and state-of-the-art characterization combined with high level computational studies focused on materials design and understanding
- Li-air batteries have the potential for very high energy density and low cost

Milestones

Month/Ye ar	Milestones
Dec/15	Development of new cathode materials based on Pd nanoparticles and ZnO coated carbon that can improve efficiency of Li-O ² batteries through control of morphology and oxygen evolution catalysis. <i>Completed</i> .
Mar/16	Investigation of use of catholytes to control the lithium superoxide content of discharge products of Li-O ² batteries to help improve efficiency and cycling. <i>On schedule</i> .
Jun/16	Computational studies of electrolyte stability with respect to superoxide species and salt concentrations for understanding and guiding experiment. <i>On schedule.</i>
Sep/16	Investigations of mixed K/Li salts and salt concentration on the performance of Li-O ² batteries with goal of increasing cycle life. <i>On schedule</i> .

 Cathode development has been the major priority of the project so far as our strategy is to control charge overpotentials and then work on electrolytes

Experimental methods

<u>Synthesis</u>

- New catalyst materials
- New carbon materials
- Electrolytes

Characterization

- In situ XRD measurement (Advanced Photon Source)
- TEM imaging (ANL Electron Microspopy Center)
- FTIR, Raman
- SEM imaging

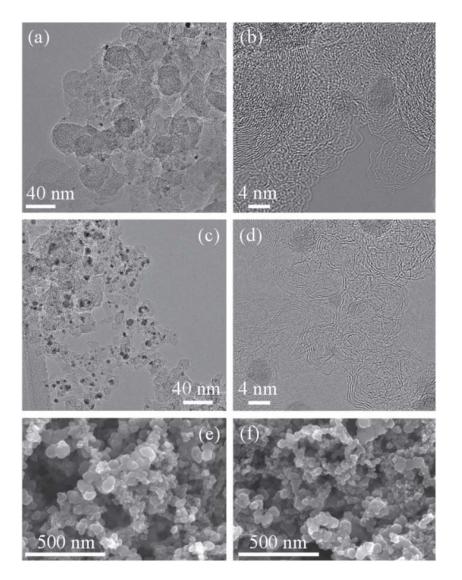
<u>Testing</u>

Swagelock cells

Highly accurate quantum chemical modeling

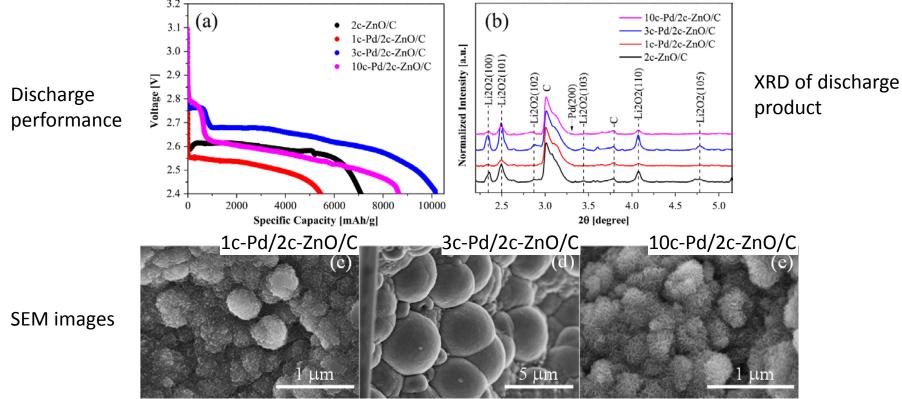
- Periodic, molecular, and cluster calculations using density functional calculations
 - Static calculations
 - Ab initio molecular dynamics simulations
 - Assessment with high level theories (e.g. G4 theory)
- Understanding discharge products
 - Li₂O₂ structure and electronic properties
 - LiO₂ structure and electronic properties
- Design of electrolytes
 - Reaction energies and barriers for stability screening
 - Ion pair formation
 - Electrolyte/surface interface simulations
- Design of oxygen reduction and oxygen evolution catalysts
 - Density of states
 - Adsorption energies

Technical Accomplishments

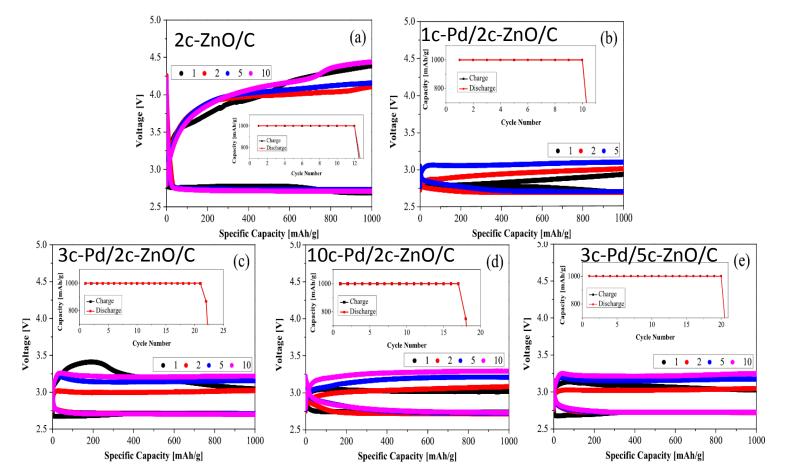

Cathode materials

- Lithium peroxide based discharge products: discovered cathode materials with improved catalysts for Li₂O₂ formation and decomposition with improved efficiency and longer cycle life
- II. <u>Lithium peroxide/superoxide discharge products</u>: Discharge product characterization has led to cathode materials that stabilize LiO_2 in the discharge product, which provides a new way to reduce charge overpotential
 - > Has led to the first lithium superoxide based battery

Electrolytes


- III. Screening methods for finding electrolytes with greater stability that will be used in future electrolyte development
- IV. Enhanced Li anode lifetime in Li-O2 batteries through mixed K/Li salts

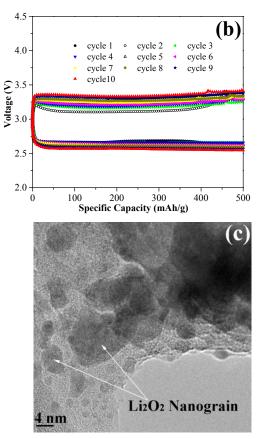
<u>New cathode materials:</u> Characterization of Pd nanoparticles on ZnO-passivated carbon


- Transmission electron microscopy (TEM) show crystalline
 nanoparticles decorating the surface of the ZnO-passivated
 porous carbon support in which
 the size can be controlled in the
 range of 3–6 nm, depending on
 the number of Pd Atomic Layer
 Deposition (ALD) cycles.
- The ZnO-passivated layer effectively blocks the defect sites on the carbon surface, minimizing the electrolyte decomposition

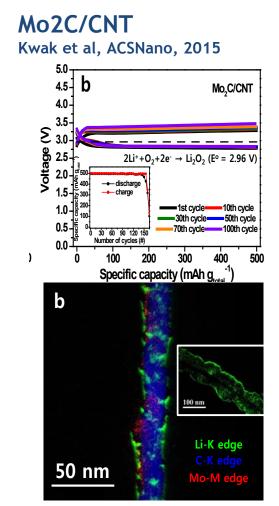
New cathode materials: Discharge results for Pd nanoparticles on ZnO-passivated carbon

- Oxygen reduction reaction during discharge in the Li-O₂ cell is significantly altered when Pd nanoparticles on ZnO-passivated carbon are used as the electrocatalyst as evidenced by the higher capacity in the case of 3c and 10c ALD-Pd samples
- Also leads to a different morphology of the discharge products

New cathode materials: Voltage profile of Pd nanoparticles on ZnO-passivated carbon

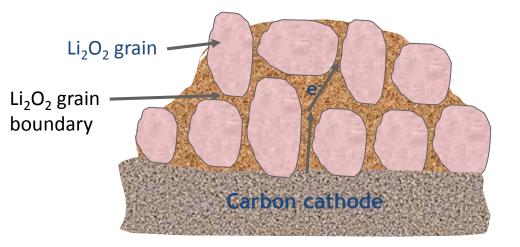


 Compared to the ZnO/C cathode, the ZnO-passivated greratly reduces the charge overpotential!

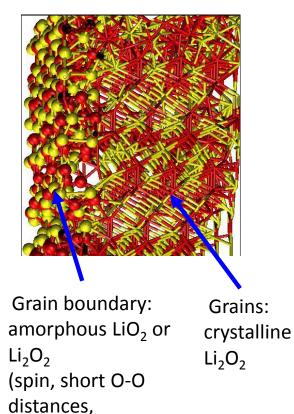

New cathode materials: Other cathode materials we have found that give low charge potentials

Pd/Al2O3/C

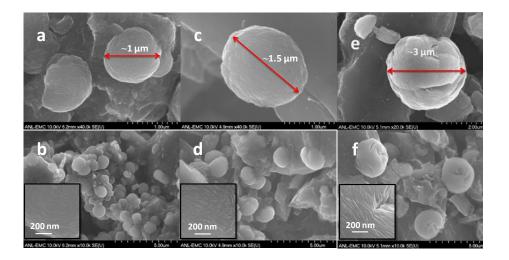
Lu et al, Nature Communications, 2013



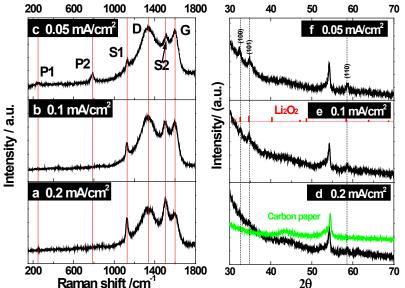
Nanocrystalline discharge products promotes electronic conductivity and lower charge overpotentials


Small Li2O2 particles promotes • low charge potentials, longer cycle life

New cathode materials: Explanation for Pd results

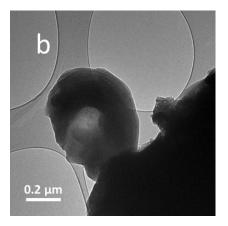

- Nanocrystalline lithium peroxide discharge product may provide good electronic conductivity for charge
- Can LiO₂ be incorporated into discharge product to increase electronic conductivity?

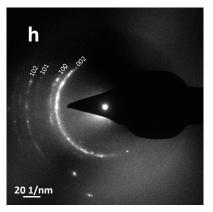
DFT calculations for a model of nanocrystalline Li₂O₂



conducting)

Stabilization of LiO₂: Background

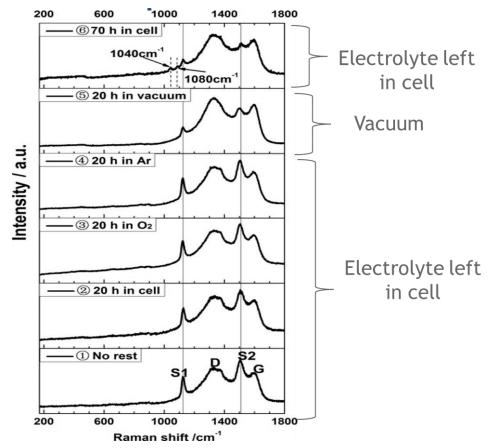

- In a series of papers¹⁻³ we have shown that a Li-O₂ battery based on an activated carbon cathode can result in a discharge product containing both lithium peroxide and lithium superoxide.
- **Faster discharge rate and slow** disproportionation kinetics \rightarrow more LiO2component (lower charge overpotential)


Raman peak at 1125 cm⁻¹ (S1) is evidence for more LiO₂-like component at faster discharge current densities

- Zhai, D. et al., J. Phys. Chem. Lett. (2014). 1.
- 2.
- Zhai, D. et al., J. Am. Chem. Soc. (2013). Yang, J. et al., Phys. Chem. Chem. Phys. 3. (2013)

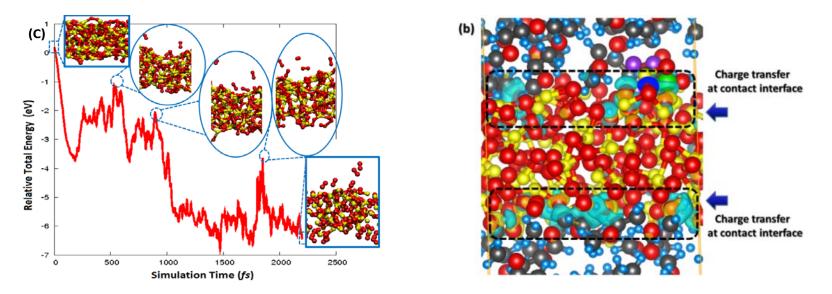
Stabilization of LiO₂: Evidence for LiO2 in discharge product

TEM image of toroid from activated carbon cathode



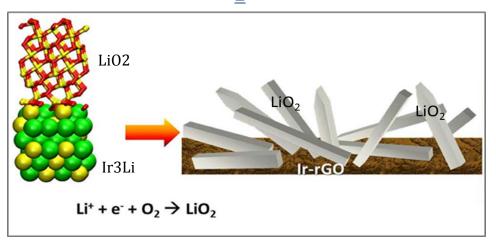
Electron diffraction pattern of toroid showing LiO₂ crystal structure

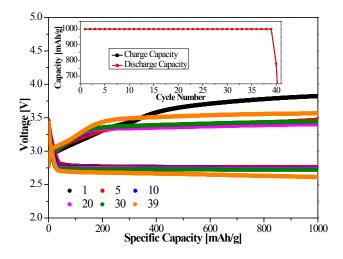
- In our latest paper¹ on this topic we have found that interfacial effects can suppress disproportionation of a LiO₂ component in the discharge product.
- High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO₂ component along with Li₂O₂ in the discharge product


Stabilization of LiO₂: Ageing of discharge product from activated

- 20 hrs in cell under Ar, O2 no change in 1125 cm- peak
- 20 hrs in cell under vacuum 1125 peak significantly decreases
- 70 hr in cell 1125 cm-1 peak decreases (electrolyte decomposes?

- The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time.
- The results indicate that the LiO₂ component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode

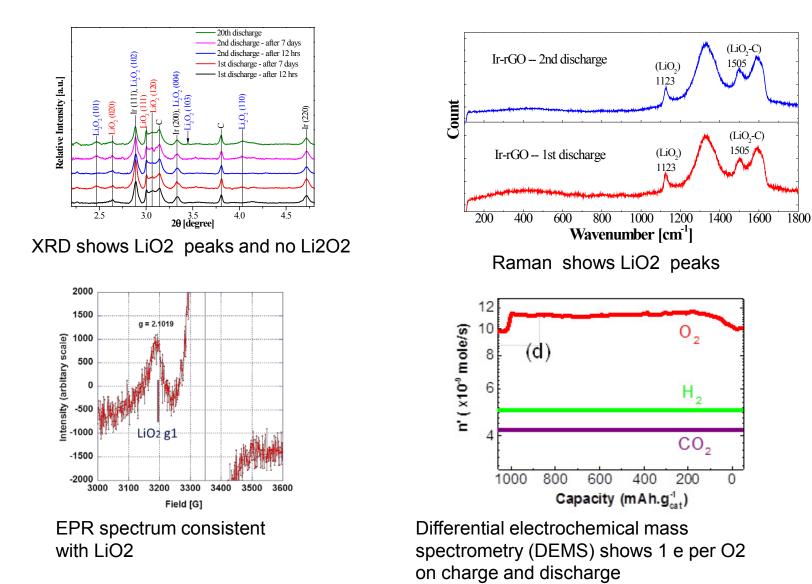

Stabilization of LiO₂: Effect of electrolyte from DFT calculations



Ab initio molecular dynamics simulations: fast desorption of O_2 occurs from amorphous surface in vacuum (left); presence of electrolyte slows down desorption of O_2 (right)

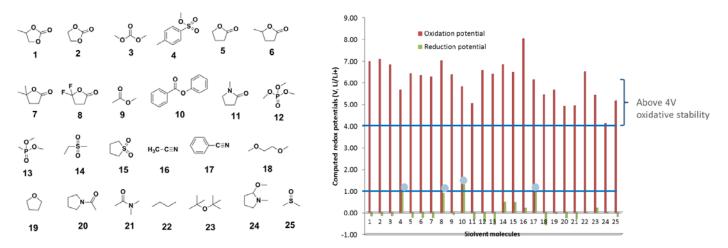
 Density functional calculations on amorphous LiO₂ reveal that the disproportionation process will be slower at an electrolyte/LiO₂ interface compared to a vacuum/LiO₂ interface.

Stabilization of LiO₂: Templated growth

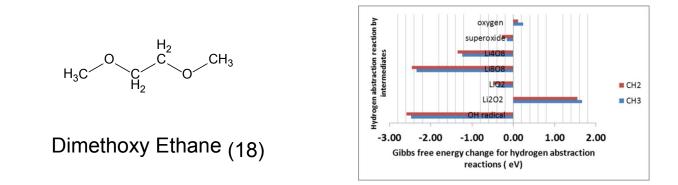

Templated nucleation and growth of crystalline LiO₂

Voltage profile for Ir-rGO cathode

- Our studies¹ have revealed an approach to electrochemically synthesize LiO₂
 - The lattice match of crystalline LiO₂ with a Ir₃Li intermetallic component of the cathode can act as a template for electrochemical nucleation/growth of crystalline LiO₂
 - Stabilization of the LiO₂ is due to formation of crystalline LiO₂ and the presence of an electrolyte at the interface
- Performance of LiO₂ in a Li-O₂ battery was as good (efficiency, cycle life) as Li₂O₂ based Li-O₂ batteries and opens up new opportunities


1. Lu et al, Nature, 2016, **529** 377-382.

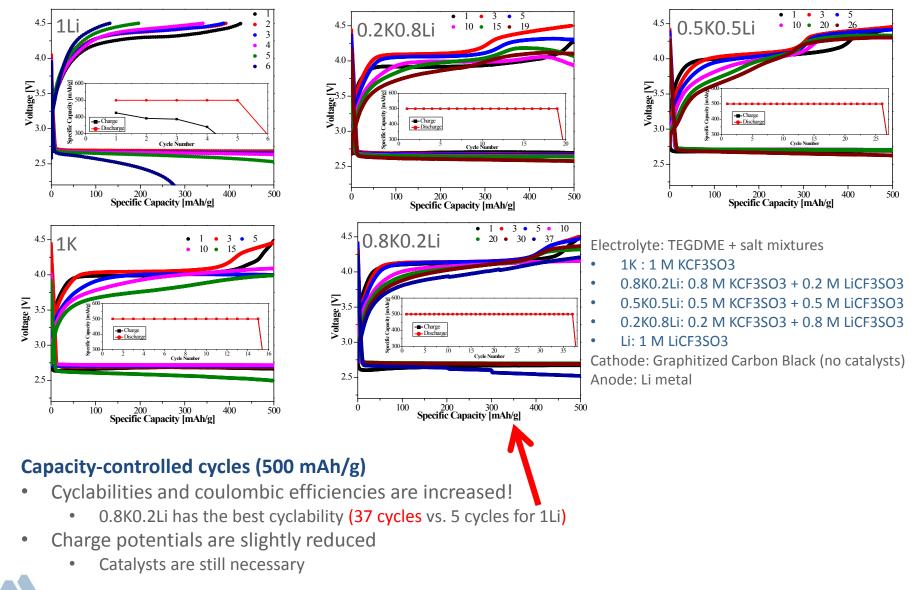
Characterization of Ir-rGO discharge product from experiment and theory



• Much evidence for LiO2 (and no Li2O2) for the Ir-rGO cathode

<u>Predictions of electrolyte stability:</u> examples of computational screening

• Solvent molecules require ~4.5 V oxidative stability and ~1.0 V reductive stability



 Hydrogen abstraction reactions by OH radical, (Li₂O₂)₄, (LiO₂)₄, and superoxide are thermodynamically favorable in solution

Rajeev Assary

Mixed K/Li salts: The effect of salts on the performance of a Li-O₂

battery

Response to last year reviewer's comments

The comments needing responses are listed below:

Comment: "Palladium (Pd) and molybdenum carbide (Mo2C) catalysts are expensive, the reviewer observed, recommending that cheaper alternatives be developed and the result be demonstrated in a full cell configuration."

Response: Once we have achieved cathodes materials with good cycle life and low charge potential we will work on cheaper alternative

Comment: "Noting that development of new electrolytes and cathodes was proposed, the reviewer saw no strategy explained for developing materials nor what sort of materials were envisioned."

Response: Our strategy might not have been well explained in the previous review. On slide 5 we have clarified our strategy. We note that this strategy has resulted in new cathode materials with reduced charge overpotentials and longer cycle life.

Collaborations with other institutions and companies

- S. Vajda, ANL
 - Development of new cathode materials based on supported size-selected metal cluster
- S. Al-Hallaj, UIC
 - Characterization of discharge products and cathode materials
- D. Miller, ANL
 - TEM characterization of discharge products and catalysts
- Y. Wu, Ohio State University
 - Development of electrolytes for Li-air batteries.
- Y K. Sun, Korea

Development of new cathode materials based on metal nanoparticles and novel carbons

Proposed Future Work

New catalysts developed in this project provide the basis for improvement of efficiency, cycle life, and capacity of Li-air batteries using a combined experiment/theory approach

- Determine the cause of degradation of the electrolytes and catalysts in these cathode materials that seems to limit performance
- Design new electrolytes that are more stable in the Li-O₂ batteries
- Synthesize, test, and evaluate new electrolytes and catalysts for Li-air batteries
- Design new cathode materials that do not degrade in the Li-O₂ batteries

Summary

Cathode materials

- Lithium peroxide based discharge products: discovered cathode materials with improved catalysts for Li₂O₂ formation and decomposition with improved efficiency and longer cycle life
- II. <u>Lithium peroxide/superoxide discharge products</u>: Discharge product characterization has led to cathode materials that stabilize LiO_2 in the discharge product, which provides a new way to reduce charge overpotential
 - > Has led to the first lithium superoxide based battery

Electrolytes

- III. Screening methods for finding electrolytes with greater stability that will be used in future electrolyte development
- IV. Enhanced Li anode lifetime in Li-O2 batteries through mixed K/Li salts