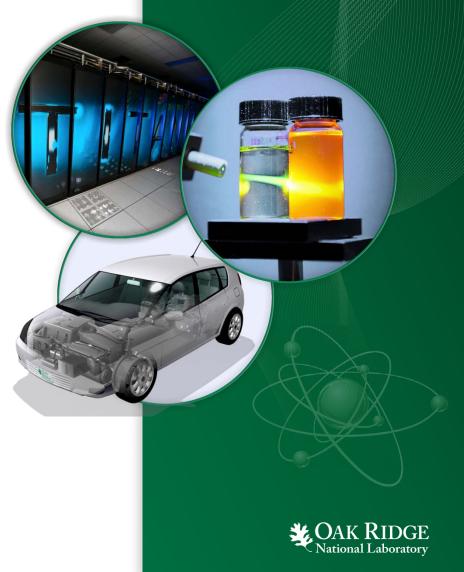
Cummins-ORNL Combustion CRADA: Characterization & Reduction of Combustion Variations

W.P. Partridge (PI), G. Jatana Oak Ridge National Laboratory

Sam Geckler (PI), Anthony Perfetto Cummins Inc.


Presenter: Bill Partridge Oak Ridge National Laboratory

DOE Vehicle Technologies Office Annual Merit Review & Peer Evaluation Meeting June 7, 2016 Washington, DC

DOE Managers: Gurpreet Singh, Ken Howden, Leo Breton

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

- Year 1 of 3-year program
- New 3-year CRADA extension
- Builds on FY13-FY15 R&D

<u>Budget</u>

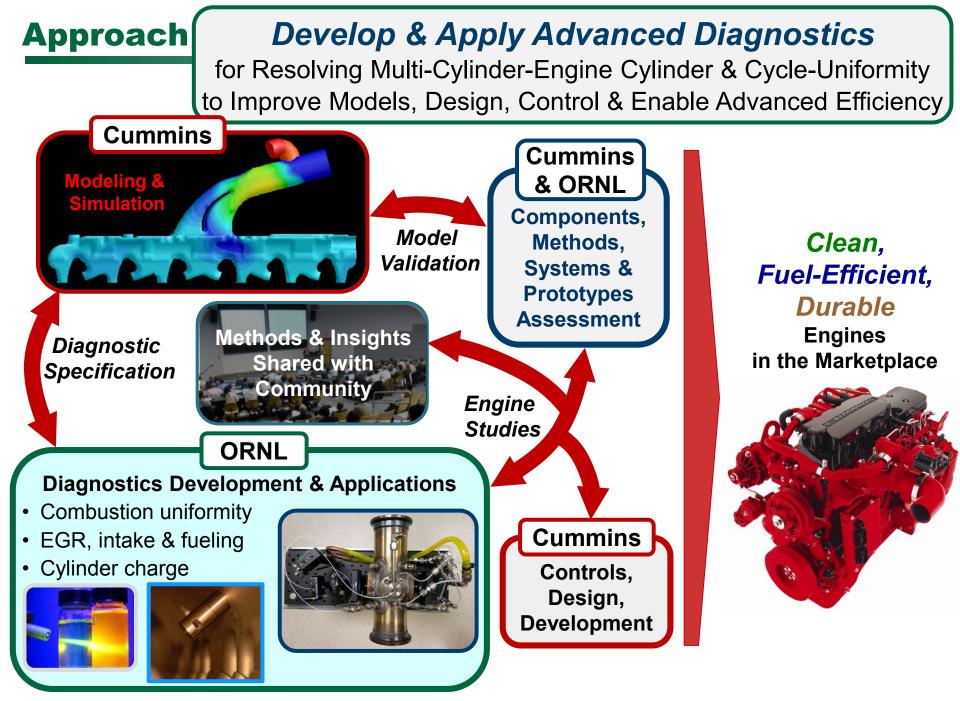
- 1:1 DOE:Cummins cost share
 - In-kind Cummins contribution
- FY16 DOE Funding: \$250k

Partners

ORNL & Cummins Inc.

Barriers

- From DOE VT MYPP:
 - 2.3.1.A: Advanced engine combustion knowledge
 - 2.3.1.C: Modeling for combustion control
 - 2.3.1.D: Effective engine controls
- General
 - Engine combustion
 - Intake-charge uniformity
 - Combustion uniformity & completeness
 - Engine controls
 - Variability & diagnostics
 - Lower-penalty control methods
 - Diagnostics for methods demonstrations
 - Durability
 - Combustion instabilities
 - Instability induced corrosion, erosion, etc.


Objectives & Relevance

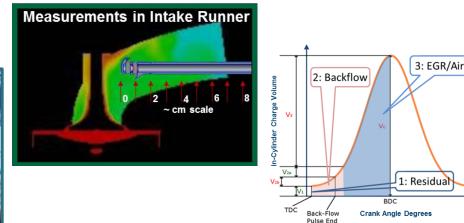
Objectives

- Measure combustion-uniformity parameters & improve related knowledge
 - Develop diagnostics for parameters we can't currently measure
 - Measure both intake & exhaust parameters
 - Develop measurement-based models of cylinder-charge fluctuations
- Apply data & insights to improve engine-system development process
 - Validate & tune Cummins' 1-D & 3-D design models
 - Assess specific hardware, configurations, & control strategies
- Improve inter-cylinder & inter-cycle combustion uniformity
 - Enable advanced powertrain hardware configurations
 - Enable reliable higher-efficiency operation

Relevance

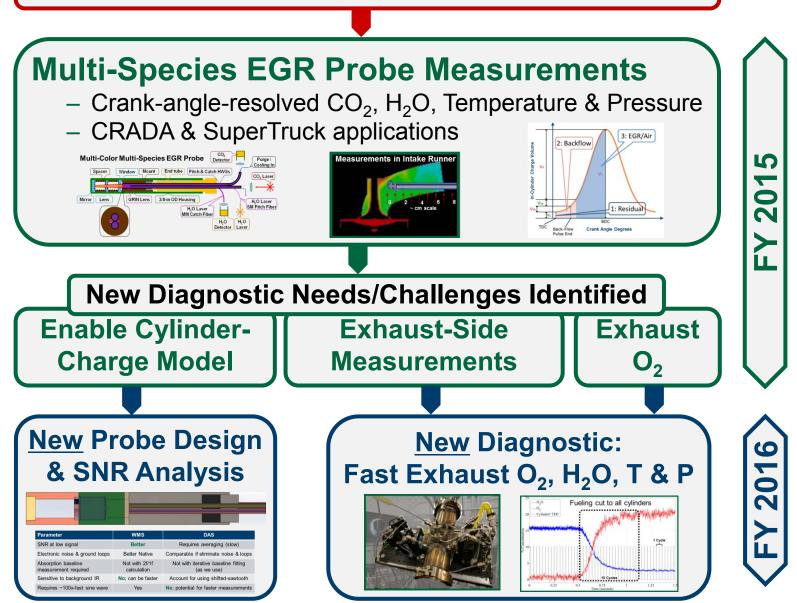
- Improved design models for better analysis-led design
- Increased combustion uniformity has broad performance benefits
 - Lower required engineering margins (efficiency penalty, fuel economy)
 - Improved durability & ultimate efficiency limits across all cylinders
- Advances DOE goals re. combustion knowledge, modeling, & controls

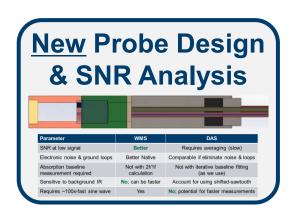
Completed all 2015 Milestones :


- Q1: Analyze cylinder charge components using advanced EGR Probe
- ✓ Q4: Compare analysis methods for determining cylinder charge from charge-component measurements

2016 Milestone (on schedule for timely completion):

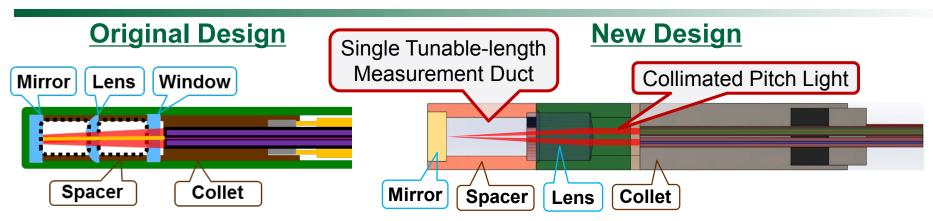
- **Q2:** Assess methods for improving EGR Probe signal-to-noise ratio (SNR)
 - Q3: Specify method for integrating CO measurement in EGR probe





Technical Progress: <u>Overview</u>

Improving Combustion Uniformity



Tech.Prog.: New EGR Probe Design for Better Signal-to-Noise

Measurement-Based Cylinder-Charge Model		EGR Probe Uncertainty Analysis:			
In Exh C age 2: Backflow 3: EGR/Air		Charge	Uncertainty Analysis		Measured Charge
External EGR Residual backflow Cylinder residual 1 TDC Back-Flow Pulse End Crank Angle Degrees	Vs Ve	@ IVC	w/ Etalons	w/o Etalons	Noise
	%CO ₂	10%	1.5%	9%	
	TDC Back-Flow Crank Angle Degrees	T (K)	10%	1%	3%

- Need better SNR to enable Cylinder-Charge Model (cf. Tech. Backup slides)
 - Need to resolve 0.5% fluctuations in concentration & temperature
 - Proposed pathway: eliminate etalons, increase absorption length, WMS

Tech.Prog.: New EGR Probe Design for Better Signal-to-Noise

- Need better SNR to enable Cylinder-Charge Model (cf. Tech. Backup slides)
 - Need to resolve 0.5% fluctuations in concentration & temperature
 - Proposed pathway: eliminate etalons, increase absorption length, WMS

New probe design both increases signal & reduces noise

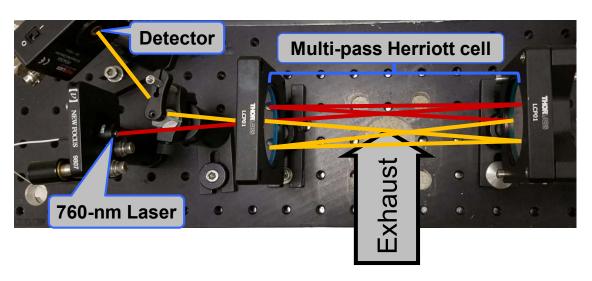
- No parallel optical surfaces eliminates etalon & vibration noise (10% →1.5%)
- Single tunable-length measurement duct
 - 50% more signal in same housing longer possible for more signal (1.5% →1%)
 - Enables balancing application-specific signal vs. spatial-resolution tradeoff
- Optical fibers replace hollow waveguides eliminates vibration noise
- Manufacturing of required lensed-fiber currently limiting implementation
 - Other pathways being investigated (e.g., separate micro lenses)

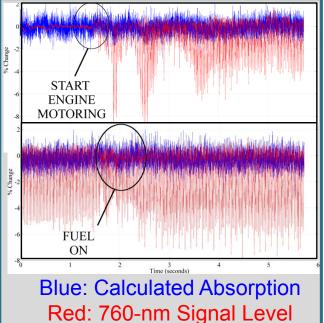
New EGR Probe design could enable Cylinder-Charge Model

Tech.Prog.: Instrument & Method Studies to Improve SNR

- Focus on Wavelength-Modulation Spectroscopy (WMS)
 - Some practical tradeoffs relative to Direct-Absorption Spectroscopy (DAS)

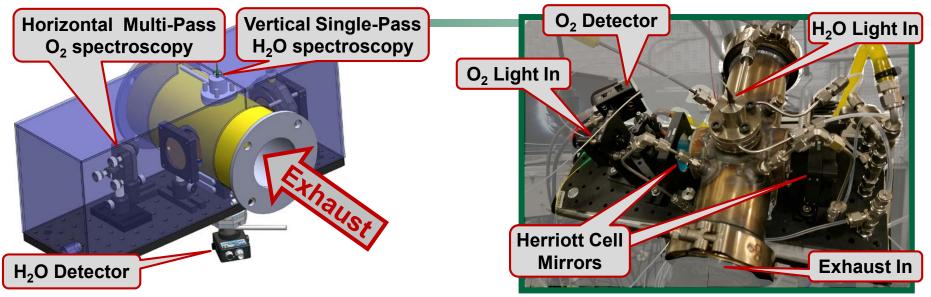
Parameter	WMS	DAS	
SNR at low signal	Better	Requires averaging (slow)	
Electronic noise & ground loops	Better Native	Comparable if eliminate noise & loops	
Absorption baseline measurement required	Not with 2f/1f calculation	Not with iterative baseline fitting (as we use)	
Sensitive to background IR	No; can be faster	Account for using shifted-sawtooth	
Requires ~100x-fast sine wave	Yes	No; potential for faster measurements	


- WMS-DAS tradeoffs depend on specific application & optical arrangement
- DAS is best for CRADA applications performance equivalent to WMS when electronic noise is minimized & ground loops are eliminated
- Pathways to reduce electronic noise
 - Operate system on UPS batteries (>2x SNR gain)
 - Optimize driver & laser dynamic ranges (0-0.2 vs 0-1mA) (5x SNR gain)
 - Experiment-specific hardware selection (SNR gain can be significant)


Study provides insights for optimizing existing & future diagnostics

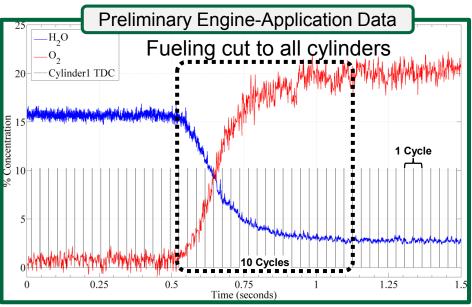
Tech.Prog.: CRADA Delivers on Cummins Request to Measure

Fast Exhaust O₂ Fluctuations



Studying AFR Dynamics in Advanced Spark-Ignited Engines

- Focus on resolving inter-cylinder & inter-cycle exhaust O₂ uniformity
- 760nm O₂ absorption is very weak
 - 100 times less than H₂O line strengths
 - requires ca. 1-m absorption path at exhaust conditions (ca. 1atm, 900K)
- Multi-pass Herriott cell provides measurement solution
 - 4.5-m pathlength across ~76-mm diameter exhaust duct (~30 passes)
 - Stable & robust to engine vibrations (no cell mode hopping)
 - Vibrations impact 760-nm signal level but not calculated absorption


Tech.Prog.: New Diagnostic Measures Fast Exhaust Transients

- Instrumented exhaust section (10-in long x 3-in ID)
 - Optics contained in purged housing (18-in long x 6-in wide x 6-in tall)
 - Includes various cooling, purge and guard flows
 - Lasers, drivers, data-acquisition remotely located
- Measures exhaust O₂ & H₂O concentration, Temperature, Pressure
 - Single-pass H₂O, T & P measurement based on EGR Probe technology
 - Other species can be added; e.g., CO₂, CO, PM
- Capable of resolving intra-cycle transients (5kHz rate: 200us, 1.2 CAD at 1k RPM)
- 0.4% O₂ detection limit
 - Quantifies residual O₂ (catalyst applications) & combustion uniformity

Tech.Prog.: On-Engine Exhaust Transient Measurements

Diagnostic demonstrated on engine to resolve exhaust transients

- GM LNF 2.0L gasoline engine (as used by Kaul, ACE090)
- Not limited to demonstration position shown in picture
 - Applicable upstream of turbocharger
- Fueling-cut transient significantly broadened by exhaust hardware
 - Native instrument response can resolve 1.2CAD transients (at 1k RPM)
- Multi-pass sensitivity to window deposits limit experiments to ~20min
 - Need in-situ cleaning (e.g., liquid spray, wiper), and/or guard flow
 - Can tune Herriott-cell mode for best signal vs. PM-sensitivity tradeoff
- SI-engine uniformity application at Cummins Technical Center in May

Responses to 2015 Review Comments

FY2015 AMR Review (4 Reviewers: max score: 4)

	Category	Score
Numerous Positive Comments:	Approach	3.50
 "key linkage between project and goals to reduce petroleum usage" "practical applications tied to real product improvements" 	Tech Progress	2.90
 "very good work, enhancing understanding" 	Collaboration	3.30
 "a well-run CRADA," "quite well coordinated" 	Future Research	3.00
Recommendations:	Weighted Average	3.11

Questions re. sufficiency of the EGR Probe vis-à-vis 'noninvasive' diagnostics for spatial mapping

- Both the measurement method and access methodology impact a diagnostic's invasive nature
- Many light-based diagnostics have invasive access, or access is not practically possible (2012 AMR)
- A probe was developed to access points not practically accessible via other methods, and to require minimal modification of the base engine hardware (2012 AMR)
- Impact of the probe on proximal flow filed has been discussed in past AMR presentations (2014 AMR)
- Uncertainty analysis was presented, and used to define required measurement SNR (2015 AMR)
- Spatial mapping was realized by probe translation and orientation (2015 AMR)
- Desire to see expansion of the CRADA diagnostics to other DOE projects and national labs
 - EGR Probe applied to Brian Kaul's High-Dilution SGDI (ACE090) & SuperTruck
 - CRADA-developed SpaciMS is broadly applied for catalysis, combustion & engine development
 - Other applications across DOE, national labs and industry are welcome
- Desire to see more development of new diagnostics
 - The Multi-Species EGR Probe was a major effort that significantly expanded capabilities, and resulted in new capabilities; (CO₂, H₂O, T & P, vs. CO₂ at ambient temperature only)
 - A new diagnostic for resolving inter-cylinder & -cycle exhaust variations was developed
- Suggest including engine OEM's in the CRADA
 - Such valuable broader input is received and incorporated via the AMR and ACEC Tech Team
 - The CRADA is s formal partnership between ORNL and Cummins

Collaborations & Coordination with Other Institutions

• Cummins

- CRADA Partner, Sam Geckler (Co-PI)

• High-Dilution SGDI (ACE090, Tue 1:45-2:15pm)

- Brian Kaul, ORNL (PI)
 - Applying EGR Probe to monitor cyclic-dispersion
 - Publications

• University of Central Florida

- Professor Subith S. Vasu & students
 - Advancing MIR LED CRADA technology
 - New light sources for advanced diagnostics
 - Joint presentations & publications

Publications, Presentations and Patents United States Patent Parks, II et al.

- Patent: Laser-based Multiplex EGR Probe
- Archival journal publication & presentations
- EGR Probe highlighted on Sept. 2015 Applied Spectroscopy cover

FUITITIT

55% EGI

17.5 18

18.5

16.5 17

Absorption Cel

S(3.6

DISTRIBUTION AND FLUCTUATION

ROBE BASED ON CO2 MEASUREMENTS

16

é CO,

ED 4.

LED 4.2

EGR Cooler Exit Compressor Exit Intake Manifold

19.5

applied

 \bigcirc

SOL

ctroscop

Remaining Challenges & Barriers, and Proposed Future Work

Major Challenge: Improved combustion uniformity, configurations & design models **Solution:** Develop & apply diagnostics to resolve what we can't currently measure

- Measurement campaigns at Cummins
- Assess performance of hardware, systems, control & design models

	<u>Challenges</u>	→ <u>Approach\Future Work (FY16-18):</u>	
	Implement cylinder-charge model – Resolve 0.5% cylinder-charge fluctuations	Implement new EGR Probe design Develop solution for collimated fiber output 	
	 High-temperature exhaust measurements Faster & direct vs. via EGR loop More complete cylinder uniformity assessment 	 Develop solution for commated liber output Improve line-of-sight exhaust instrument Develop in-operation cleaning of multi-pass windows Develop high-temperature probe Modify cooling, surface contacts & coatings 	
	CO combustion uniformity measure	Modify instruments to incorporate CO EGR Probe & line-of-sight exhaust instrument FY16-17 milestones 	
Inc	Measure other significant parameters influencing combustion uniformity	Develop stretch diagnostic technologies – Candidates: mass flux & cylinder-head temperature	

Work supports improving combustion uniformity to allow advanced powertrain arrangements, which can reliably deliver higher-efficiency operation

Summary

Relevance

- CRADA work enables improved cylinder-to-cylinder & cycle-to-cycle uniformity
- Enables DOE goals for improved combustion knowledge, modeling, efficiency and durability

• Approach

- Develop diagnostics to measure multi-cylinder-engine spatial & temporal uniformity
- Apply diagnostics to advance engine technology
 - Assess specific hardware configurations
 - Tune, validate & improve design simulation tools (models)

Technical Accomplishments

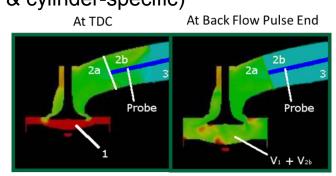
- New EGR Probe design for improved signal-to-noise performance
 - Provides pathway to implementing measurement-based cylinder-charge model
- Identified additional SNR improvements via instrument & methods studies
- New diagnostic for crank-angle-resolved exhaust O₂, H₂O, T & P measurements

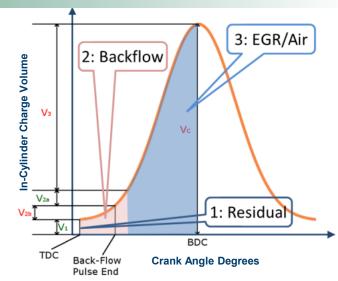
Collaborations

- EGR Probe application to DOE High-Dilution SGDI project & U. Central Florida partnership
- Archival publication, patent, publication, & cover feature of Applied Spectroscopy journal
- CRADA-developed diagnostics available to users outside the CRADA

• Future Work

- Application campaigns at CTC on advanced development engine platforms
 - Assess hardware, design models and advanced closed-loop control strategies
- Improve SNR and applicability of diagnostics
- Add CO measurement capability in intake and exhaust diagnostics
- Develop new measurements for parameters relevant to combustion uniformity


Technical Back-Up Slides

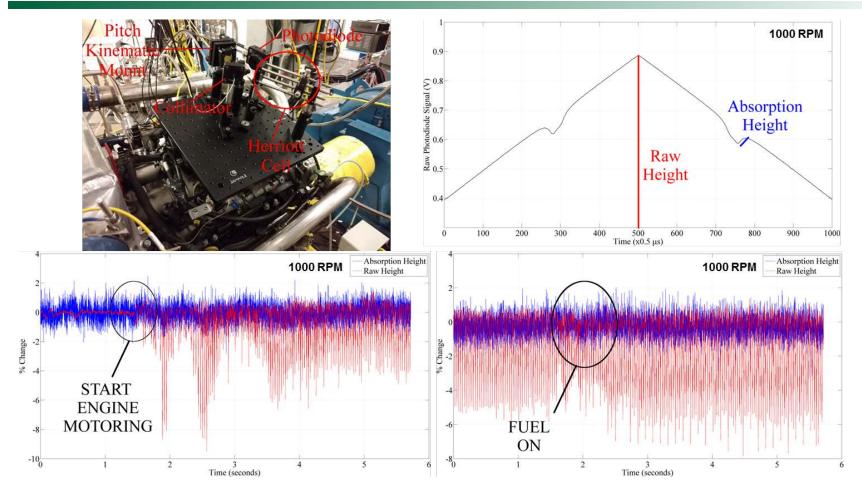

Tech.Prog.: Real-Time Predictions of Cylinder-Charge Parameters

Measurements & Modeling to predict Cylinder Charge

- Composition & Temperature
- Fluctuations (cycle- & cylinder-specific)

Model Results:

Charge @ IVC	30% EGR w/ Backflow	30% EGR w/o Backflow	
%CO ₂	2	1.8	
T (K)	370	362	


EGR Probe Uncertainty Analysis:

Charge @ IVC	Uncertain	Measured	
	w/ Etalons	w/o Etalons	Charge Noise
%CO ₂	10%	1.5%	9%
T (K)	10%	1%	3%

Backflow variations reflect system stability

- Use backflow as a direct uniformity indicator
- Backflow accounts for 10% of Charge CO₂
- Currently limited by sensor uncertainty
 - 0.5% fluctuations impact engine performance
 - Varying etalons are a major noise source
 - Sensor noise dominates measurements
- Pathway to resolving 0.5% fluctuations:
 - Eliminate etalons
 - Increase absorption length
 - Modulation spectroscopy

Tech.Prog.: Herriott Cell Robust to Engine Vibrations

- Stable Herriott-cell operation
 - Mounted on motoring & running diesel engine
 - No cell mode hopping
 - Absolute height varies, but not absorbance