

Advanced Solutions Group 4880 Venture Drive, Suite 100 Ann Arbor, MI 48108

Commercially Scalable Process to Fabricate Porous Silicon

Peter Aurora June 9, 2016 Project ID: ES267

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start date: January 1, 2016
- Project end date: June 30, 2017
- Percent complete: 30%

Budget

- Total project funding: \$1,406,787
 - DOE share: \$1,125,430
 - Navitas cost share: \$281,357
- Funding for FY16: \$883,344
- Funding for FY17: 523,443

Barriers

- Scalable process, from lab to pilot scale (>10kg/batch)
- Control impurity level and nature of the product throughout the manufacturing process
- Achieve low cost
- Low environmental footprint

Partners

- Argonne National Laboratory
 - Subcontract, material characterization and cost modeling
- Nexceris (formerly NexTech)
 - Subcontract, scale up demonstration

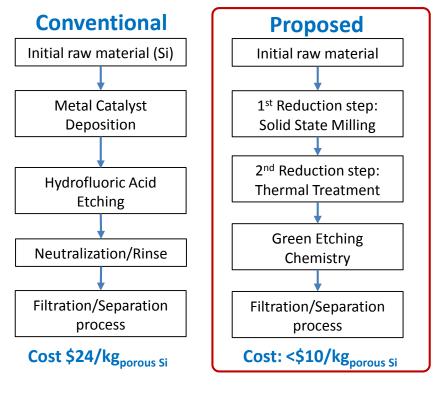
- Project Goal:
 - Develop a novel, commercially scalable approach to produce microporous silicon (μpSi)

• **Project Objectives:**

- + Bench scale optimization of the 3 processes to fabricate μ pSi powder
- + Qualify low-cost precursor materials and transfer technology to establish pilot scale production (>10kg/batch)
- + Validate materials performance in an open-source baseline prototype cell design
- + Establish the economic feasibility of µpSi manufacturing process

• Relevance:

- + Eliminate the use of hazardous materials such as silane and hydrofluoric acid
- + Reduce process cost through higher intensity and throughput and retain desired electrode powder morphology
- Provide/deliver μpSi in adequate quantities to support pilot scale electrode coating by EV battery OEM's


Milestones

		Months ARO											%								
Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14	۱5	16	17	18	19	20	Effort
Performance Period 1																					
Task 1. Lab Scale Process Optimization- Powder Milling																					15%
Task 2. Lab scale process optimization-thermal process																					15%
Task 3. Lab scale process optimization-etching																					15%
Task 4. Lithium ion battery material grade demonstration								(15%
Task 5. Process Review and Cost Estimation													G	o/No	G	0					5%
Performance Period 2																					
Task 6. Pilot scale demonstration																					30%
Task 7. Process modeling/cost estimate																					5%
Final Report																					100%

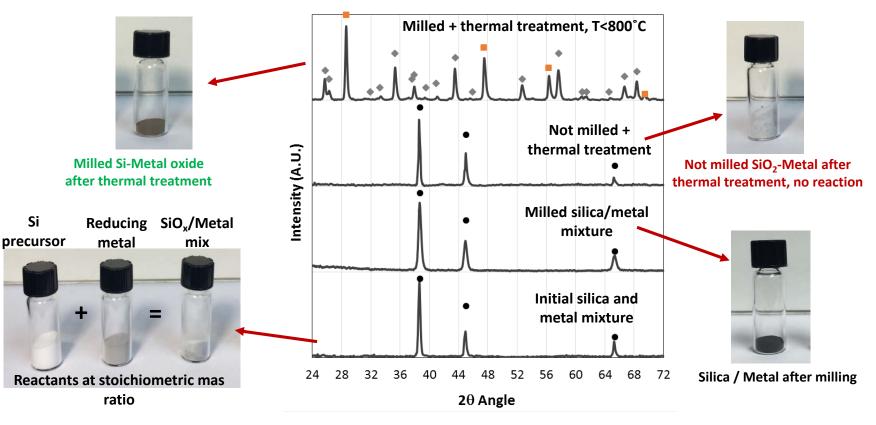
	First Year Milestones	Date	Status
M1.1	1.1 Down-select powder milling parameters		On track
M2.1 Down-select thermal process parameters		08/2016	On track
M3.1	Down-select etching process parameter	08/2016	On track
M4.1	Demonstrate an optimized process for µpSi powder fabrication	11/2016	
M5.1	Complete preliminary cost model	12/2016	
M5.2	Go/No-Go decision based on technical and economic feasibility	12/2016	4

• Microporous Si fabrication:

• Material properties targets for Go/No Go

Properties	Target Values
Secondary particle size (µm)	1 - 10
Average pore size (µm)	50 - 200
BET surface area (m2/g)	20 - 50
Tap density (g/mL)	0.8 – 1.2
Si content (wt%)	> 90
μpSi capacity (mAh/g)	> 2500
μpSi/Carbon composite capacity (mAh/g)	> 800

Desirable anode active material capacity

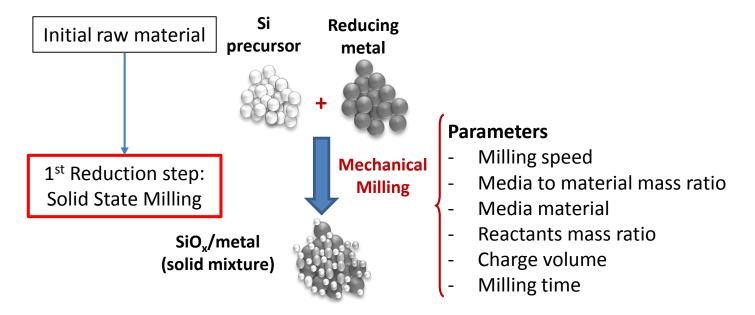

Technical Progress: First year

Objectives		Barriers being Addressed	Status					
1	Down-select powder milling parameters	 Optimize process parameters with guidelines for scalability (identify noise and control factors) 	 Baseline parameters have been chosen Parameter design initiated 	60%				
2	Down-select thermal process parameters	 Optimize process parameters with guidelines for scalability (identify noise and control factors) 	 Baseline parameters have been chosen Parameter design initiated 	50%				
3	Down-select etching process parameter	 Optimize process parameters with guidelines for scalability (identify noise and control factors) Greener manufacturing etching approach 	 Baseline parameters have been chosen Parameter design initiated 	40%				
4	Demonstrate an optimized process for µpSi powder fabrication	 Current high cost materials and non-scalable processes are barrier to adoption Optimize process parameters to control impurities and μpSi structure 	 Preliminary experiments (half coin cells) 	On track				
5	Complete preliminary cost model	 Usage of low cost raw materials and manage the waste etching solution and the wash effluent Reduce operating process cost (i.e. processing time, temperature, etc.) 	• Gathering of initial data will start in 07/2016	On track				

Task 1. Powder Milling Optimization

Mechanical milling as reduction pretreatment

- Effective pretreatment for the reduction Si oxide precursor at low temperatures
- Full reduction of silica at T < 800°C, which otherwise requires T > 1000°C

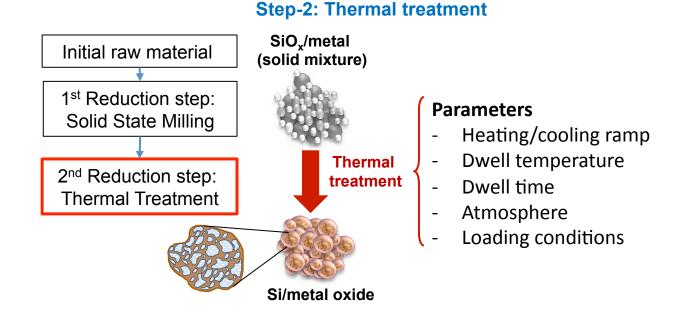

Thermal treatments @ same conditions, XRD patterns (●) reducing metal, (■) silicon, (♦) metal oxide

Task 1. Powder Milling Optimization

Process optimization: parameters design

- Robust engineering will be used to optimize mechanical milling process parameters
 - + Control milling parameters have been selected
 - + Next identification of control and noise factors

Step-1: Mechanical milling pretreatment

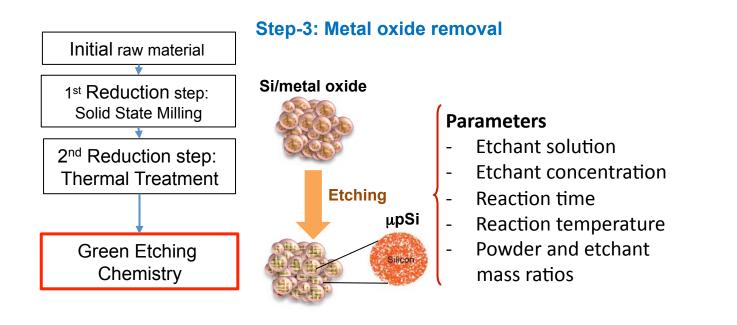

Task 2. Thermal Treatment Optimization

Down-select thermal treatment parameters

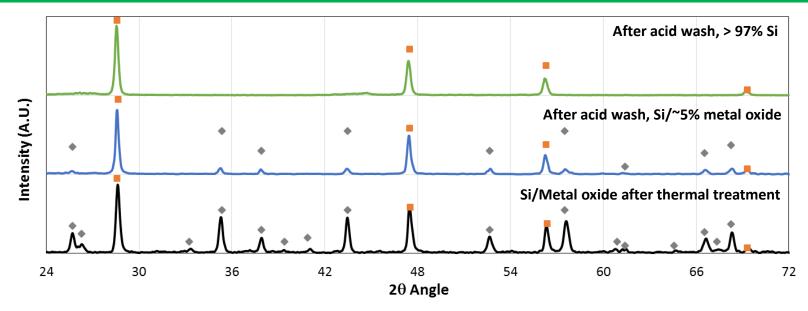
- Parameters influence composite (Si/metal oxide) morphology and oxide phase
- Composite particle morphology crucial to obtain high porosity

Process optimization

- Robust engineering to optimize process parameters targeting adequate powder morphology and composition
- Baseline chosen, control and noise factors will be identify towards desirable pre-etch particle properties and aiming cost reduction



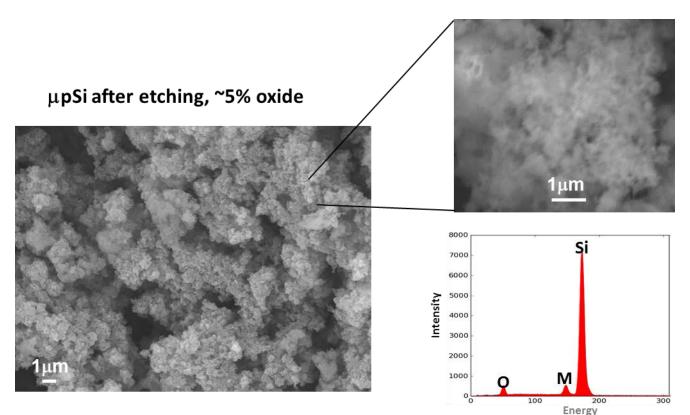
9


Oxide etching process

- Mechanical milling and thermal treatment conditions affect composition of preetched material
- Etching agent and process conditions depend on oxide phases and concentration

Task 3. Metal Oxide Removal

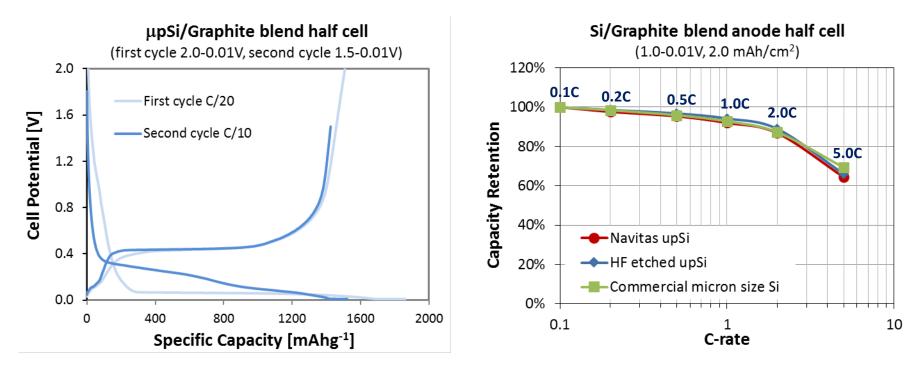
XRD patterns, after oxide etching step: (
) silicon and (
) metal oxide


• Navitas has reduced residual metal oxides to < 3%

Property	Commercial Si	μΡSi with (>97% Si)
Total Pore Area (m ² /g)	8.6	11.5
Average Pore Diameter (nm)	310	150
Bulk Density (g/mL)	0.81	0.84
Skeletal density (g/mL)	1.78	1.34
BET surface area (m ² /g)	4.3	36.2

Etching process optimization

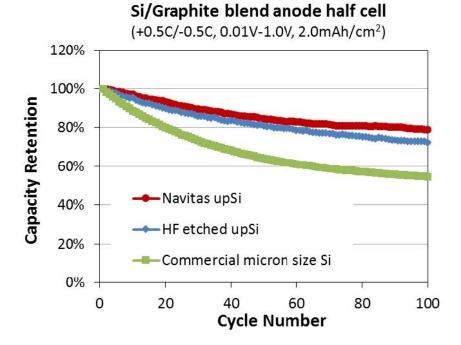
- Robust engineering to tune etching parameters to fully or partially remove amounts of metal oxide
- Baseline control and noise factors will be identified towards scale up and usage of environmentally friendly solvents and targeting low cost



Task 4. Preliminary Anode Evaluation: Half Cell

• Formation cycle

• Rate Capability



- Si powders were blended with graphite to form (Si:Graphite 1:1 mass ratio, 92% active material, 6.5% binder) with 2.0 mAh/cm² loading
- Fist cycle reversible capacity and ICL were ~1500mAh/g and 18% in all cells
- Commercial non-porous Si was used as baseline, and it was the precursor to make hydrofluoric acid etched μpSi

Task 4. Preliminary Anode Evaluation: Half Cell

• Cycle life @ 0.5C charge/discharge

- Porous Si materials show improved cycle life over the non-porous Si, confirming the advantage of porous structure of Si
- Electrodes used in this experiment were not optimized
- Attaining longer cycle life will require additional approaches: artificial SEI, electrolyte additive, higher binder content, etc.

New Project – No Comments

- ✓ Nexceris, LLC., scale-up partner
 - Input for process scale up (>1.0kg/batch)
 - Transfer process parameters to pilot scale
 - Demonstration of 10-100kg pilot scale
- Argonne National Lab, Material characterization and cost modeling
 - Material characterization: physical, chemical and electrochemical properties, together with morphological study
 - Cost modeling using ANL BatPac
- Navitas will collaborate with Li ion battery OEMs (A123) and battery material manufacturers (XG-Sciences) for anode evaluation
- Collaboration with Prof. Raj Rajamani (University of Utah) to scale up powder milling process

Remaining Challenges and Barriers

This Project has only completed the first 5 months

- Further reduce precursor material cost
 - + Reduced amounts of excess reducing metal (closer to stoichiometric)
 - + Qualify low-cost precursor materials
- Process optimization
 - Process parameters need to be optimized targeting lower cost without affecting final product properties
- Green etching process
 - + Currently low concentration inorganic acids have been used
 - + Need for more environmentally friendly methods
- Process to reach MRL-6 (2nd year)
 - Demonstrate pilot scale manufacturing of porous silicon with adequate properties for lithium ion application, at a scale to support pilot scale coating

- Finalize lab scale process optimization (mechanical milling, thermal treatment, and oxide removal)
- Investigate alternative etching chemistries to reduce cost with reduced environmental footprint
- Validate electrochemical properties of μpSi powder in lithium ion battery cells
- Review µpSi synthesis process to identify opportunities for cost reduction using initial economic assessment and to manage potential hazards associated with scaling-up the processes
- Go/No Go: verify if µpSi material and manufacturing process have technical and economic advantages over current battery material manufacturing processes (12/2016)

Summary

Relevance

Develop a novel, commercially scalable approach to produce microporous silicon

- Usage of low cost precursor materials
- Eliminate the use of hazardous materials
- Reduce process cost through higher intensity and throughput and retain desired electrode powder morphology
- Provide µpSi in adequate quantities to EV battery OEM's

Approach

Navitas' proposed synthesis process:

- Mechanical milling: pre treatment/reduction step
- Thermal treatment: fully reduce silicon precursor to obtain Si/oxide mix
- Etching: removes oxide to attain μpSi
- Final μpSi powder cost estimated < \$10/kg

Technical Accomplishments

- Lab scale process optimization initiated
- Mechanical milling allows thermal reduction to happen at T < 800°C
- Milling parameters affect properties of Si/metal oxide powder properties
- Thermal reduction conditions to achieve desirable particle structure and composition
- Etching parameters can be altered to fully remove metal oxide
- Half cell cycle life testing confirmed advantage of porous structure over nonporous Si

Future Work

- Finalize lab scale process optimization
- Electrochemical validation of μpSi powder in lithium ion cells
- Conduct cost analysis
- Review synthesis process to identify opportunities for cost reduction and potential scale-up risks