Biofuel Impacts on Aftertreatment Devices

Michael J. Lance (PI) and Todd J. Toops Oak Ridge National Laboratory June 9th, 2016

Project ID # PM055

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ORNL is managed by UT-Battelle for the US Department of Energy

tional Laboratory

Overview

Timeline

- Start: August 2013
- End: September 2018
- 52% complete

Budget

- Total Project Funding
 - DOE: \$400K
- Funding Received:
 - FY15: \$130K
 - FY16: \$165K

Barriers

- Multi-Year Program Plan: Evaluate the impact of at least one renewable fuel blend on at least one heavy-duty emission after-treatment device.
- 2013 LD Materials Workshop Report: "Reduce petroleum dependence by developing propulsion materials that are compatible with advanced fuels."

Partners

- Cummins
- Ford
- National Renewable Energy Laboratory (NREL)
- Manufacturers of Emission Controls Association (MECA)
- Truck and Engine Manufacturers Association (EMA)
- National Biodiesel Board (NBB)
- MIT-Sloan Automotive Laboratory CAK RIDGI National Laborator

Relevance

- US Renewable Fuel Standards call for increased biodiesel utilization
- Biodiesel contains Na & K metal impurities from production
- Impurities may impact catalyst system performance & durability
- Objective: investigate impact of Na on commercial catalyst system
 Use full-useful-life rapid-aging protocol based on ASTM Standard Na limit
- Determine if ASTM-Standard limits are sufficient or need tightening

Relevant US Regulatory Standards			
Renewable Fuel Standard	1.9 billion gallons in 2017		
ASTM D6751	5 ppm Na + K in 100% Biodiesel (B100)		
Catalyst end-of-life NO _x Limit	0.33 g/bhp-hr		
Catalyst end-of-life mileage	435,000 miles		
Drive cycle	FTP: Federal Test Procedure		

NREL Biodiesel Fuel Quality Survey – (Na + K)

- 2011 B100 survey results
- Over 90% of samples below detection limit for both metals
 - Lower limit of detection was 1 ppm for Na and K, so much of the data was reported as <1 ppm.
 - Each result was assigned a value of 1 ppm for purposes of illustration, resulting in a combined value of 2 ppm.

Alleman, T.L., Fouts, L., Chupka, G. "Quality Parameters and Chemical Analysis for Biodiesel Produced in the United States in 2011" Technical Report, NREL/TP-5400-57662, March 2013.

Milestones

Date	Milestones	Status
June 2015	Identify deactivation mechanisms in heavy- duty SCR and DOC samples aged with Na- doped fuel provided by NREL.	Complete
September 2015	Submit annual report.	Complete.
March 2016	Replicate thermal conditions and dopant levels used for NREL engine tests using the Genset at ORNL, to enable lower cost accelerated testing of after treatment devices.	Complete.

Approach/Strategy

- Aged a full production exhaust system from a heavy-duty Cummins ISL engine (via NREL) using exhaust generated by a Cat C9 engine.
- 1000-hour rapid-aging protocol
 - 435,000 miles/14,000 hrs equivalent
 - 65 minute, three-mode, aging cycle with 923 cycles.
- <u>Na impurity aging</u>: B20 + 14 ppm Na.
 - 14x ASTM Standard per SAE 2014-01-1500.
- <u>Thermal aging</u>: 179 hrs \geq 550 °C.
- Performance Assessment
 - Emissions evaluation conducted on Cummins ISL

Engine

- Bench reactor
- Microscopy, electron probe microanalysis (EPMA), mechanical properties.
- Accelerated aging with diesel genset.

Technical Accomplishment: Cummins ISL tailpipe NOx emissions increased from 0.25 to 0.40 g/bhp-hr over the course of the test

- End-of-life NO_x limit (0.33 g/bhp-hr) was reached before the 435,000 mile end-of-life requirement.
- Hot-start FTP was used to assess component contributions by systematically swapping aged for degreened components.

DOC, DPF & SCR all contribute to aging degradation

Cummins-Developed Protocols Applied to Identify Individual Contaminant Impacts

Purpose	Protocol Conditions
Remove HC, H ₂ O, etc.	High-temperature oxidation 500°C, 1h, 60k/h, 10%O ₂ +7%H ₂ O+Ar
Remove S	DeSulfation (2 cycles) 600°C; 5min:5min rich:lean cycling Lean: $10\%O_2+7\%H_2O+Ar$ Rich: 1% H ₂ +7%H ₂ O-Ar
Remove Na	DI water washing (4 cycles) Ultrasound, 70°C 15min each cycle
Remove P	Acid washing (1 cycle) organic acid mixture, ultrasound, 70°C 1h. (SAE 2012-01-1094)
	NO Ovidation
Performance evaluation	NO Oxidation 200ppm NO+ 10%O ₂ +7%H ₂ O+Ar, 60k/h SV; 150°C→450°C; 50°C steps

- Na and P both deposit on the DOC.
- Performance evaluation after each cleaning step.

Effect of Treatments on NO to NO₂ Conversion Efficiency

Acid washing removed significant amounts of P and led to significant recovery of NO oxidation. This indicates that engine oil P was the primary source of deactivation, not Na.

National Laboratory

DPF:

Filter: Cordierite

Washcoat: Pt/Pd:Al₂O₃

• ~5 μ m layer on inlet & outlet channels

Technical Accomplishment: Little to No Aging Impact on Mechanical Properties of the DPF

- During Phase 1, Na diffusion into cordierite occurred and degraded the DPF thermal shock resistance.
 - Regeneration temperature was 850 °C in previous study compared to 550 °C here.
- Aging increases the DPF strength possibly due to ash present in the cordierite pores.
 - A second flaw type may be present following aging.
- No change in thermal expansion coefficient with aging.

Pt/Pd Coarsening & Ash Buildup Observed in Aged DPF Washcoat

Elemental Maps in Aged DPF Washcoat

Collected with FEI Talos F200X S/TEM

- Pt particles in the DPF washcoat coarsened following aging which is indicative of thermal aging.
- Na is evenly distributed throughout the wash coat and not coating the Pt/Pd particles.
- 857 g (45g/L) of ash during full aging with \sim 79% coming from the biodiesel.
 - For this particular system test, it is estimated that B20 fuel at the Na spec limit would have resulted in 25% more ash into the DPF

This research was performed, in part, using instrumentation provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program, and the Nuclear Science User Facilities

SCR:

Catalyst: Cu/SAPO-34 Monolith support: Cordierite

Technical Accomplishment: Na Does Not Cause Aged-SCR Performance Loss

ICP-MS

Sample	Na (µg/g)
Fresh SCR Washcoat (Inlet)	309
Aged SCR Washcoat (Inlet)	486
Aged SCR Washcoat (Outlet)	640

- The DPF shields the SCR from Na. Only S increased after aging
- Inductively coupled plasma mass spectrometry (ICP-MS) of SCR showed little increase in Na following aging.
- Measurements at Cummins revealed a slight decrease in surface area but not enough to account for the reduced performance.

Technical Accomplishment: The signatures of performance evaluations on the aged sample are consistent with Pt contamination of the SCR

Aged inlet core showed below features compared with lab reference:

- Increase in NH₃ oxidation activity
- Decrease in NO_x conversion across the temperature range, especially at high temperature
- All above effects can be suppressed by high temperature treatment (700°C or so)

It is speculated that vapor migration from the DPF during an atypical thermal event caused the Pt contamination

New stationary generator was operated with Na-doped B20 and the same SCR degradation mechanism observed on the LD Phase 2 full-scale test occurred

Full-scale test on Dyno

CuO_x Particles

Genset Test

- Testing with a genset will greatly reduce the expense of accelerated engine testing.
- Targeted testing will be performed to isolate the effects of different elements and heat treatments on emission controls.

Responses to Previous Year Reviewers' Comments

Comment: One reviewer expressed concerns regarding the lack of replicate tests. Another said that various engine duty cycles that better represent real operation would be of interest. Response: The genset will allow us to test under different conditions at much lower costs.

Comment: One reviewer wondered about the solubility of sodium sulfate and the possibility of its migrating through the filter and causing downstream impacts.

Response: As shown above, we observed no increase in Na in the SCR. The degradation of the SCR was probably associated with Pt migration.

Comment: Separating the impacts of Na and K, apart from the demonstrated impacts of P, also needs to be addressed. The well-known influence of P on aftertreatment devices seems to cloud the assessment of Na and K in this work.

Response: Using the Cummins cleaning protocols, we were able to separate the effect of Na from P and show that P is the primary source of degradation of the DOC.

Collaborations and Coordination with Other Institutions

- Cummins: Richard Ancimer, Hongmei An and Leigh Rogoski
 - Conducted emissions testing on aged samples, conducted cleaning of aged samples to isolate the impact of contaminants and helped devise the testing protocol.
- Ford Motor Company
 - Provided in kind work on LD aftertreatment device characterization (FY14).
- National Renewable Energy Laboratory (NREL): Robert McCormick, Aaron Williams and Adam Ragatz
 - Performed accelerated engine tests.
- Manufacturers of Emission Controls Association (MECA)
 - Advised the project.
- Truck and Engine Manufacturers Association (EMA)
 - Advised the project.
- National Biodiesel Board (NBB)
 - Funded engine testing and helped devise testing protocol.
- MIT Sloan Automotive Laboratory: Justin Kamp
- ^{19 PM055} Conducted AFM and X-ray CT measurements on DPFs.

A) <u>2015 Biodiesel</u> Researcher of the Year

Remaining Challenges and Barriers

- Due to cost, only the accelerated Na test was performed which limited our ability to separate Na effects from the thermal and lubeoil effects.
- The accelerated aging protocols do not accurately simulate changes that would occur in the real-world.

Proposed Future Work

• Using the genset, we will test fresh sets of samples with and without fuel dopant in order to isolate the effect of Na.

• A used catalyst system from a truck that uses mainly B20 will be acquired and compared to our acceleratedaging samples.

Summary

Relevance

Will biodiesel negatively impact catalyst materials in aftertreatment systems?

Approach/Strategy

- Accelerated aging with NREL/Cummins and materials characterization at ORNL.
- Low cost accelerated aging at ORNL using a genset.

Technical Accomplishments and Progress

- The main effect of Na metal appears to be on the DPF through increased ash loading (with a secondary effect on NO oxidation in the DPF).
- The Na metal contamination is not a key factor in the degradation of NO oxidation of the DOC.
- When the SCR is downstream of a DPF, there is little or no Na contamination.

Collaborations with Cummins, Ford, NREL, MECA, EMA, NBB, and MIT.

Proposed Future Work

- Genset will be used to conduct accelerated biodiesel aging in order to determine the effect of metal additives on emissions control devices.
- Field-aged aftertreatment devices will be compared to our laboratory-tested samples.
 OAK I

Technical Back-Up Slides

Technical Accomplishment: The DOC NO oxidation declined with aging (Cummins)

- Decline in NO_x oxidation is most likely related to the accumulation and stabilization of chemical contamination.
- Could be from Na or lube oil metals.

Technical Accomplishment: EPMA maps show Na present at the same concentration along the entire length of DOC following aging.

1 cm from inlet

1 cm from outlet

Technical Accomplishment: EPMA maps show Na present at the same concentration along the entire length of DOC following aging.

1 cm from inlet

Technical Accomplishment: EPMA maps show Na present at the same concentration along the entire length of DOC following aging.

Middle

- Phosphorous from the lube oil is also present on the surface and may be contributing to the degradation.
- Aged samples treated at Cummins through desulfation, water washing and acid washing will be used to separate the effect of Na and P on the DOC.

Effect of Treatments on NO to NO₂ Conversion Efficiency

27 PM055

Technical Accomplishment: BET Surface Area Unchanged with Aging (from Cummins)

- BET surface area is spatially uniform and unchanged by aging.
- Other high-temperature impacts are possible.

