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Barriers
• Develop a better understanding of multi-scale 

structure-property relationships that allow for 
rational design of more robust cathode 
structures

Partners
• Lead PI: Michael Thackeray, Co-PI: Jason R. Croy
• Collaborators:

- CSE, Argonne: Brandon Long, Joong Sun Park, 
Eungje Lee, Roy Benedek, Jeff Elam

- APS: Mali Balasubramanian (XAS)  
- EMC/CNM: Dean Miller, Jianguo Wen (TEM)
- ES: Greg Krumdick, Young-Ho Shin
- Rutherford Appleton (ISIS, UK): Bill David and 

Thomas Wood (ND)
- NUANCE, Northwestern University:  Vinayak Dravid 

(TEM)

Overview

Timeline
• Start: October 1, 2012
• End:   Sept. 30, 2015
• Percent complete:  75%

Budget
• Total project funding

- 100%
• FY15 - $300K
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Layered-Spinel

• Improved stability
• High capacity

LiMO2

+5% spinel

4.6-2.0 V, half-cell

LiMO2

+5% spinel

4.6-2.0 V, half-cell

Relevance
Layered-Layered-Spinel

• High capacity
• Mn-rich
• Good stability

Can we further improve 
capacity and stability?

(See M. Thackeray, ES049)
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Relevance
Unique design opportunities rely on complex structure-property relationships     

Li2MnO3
LiMO2

Li2MnO3 LiM2O4

LiMO2 (M=Mn,Co,Ni)

6c

16c

Stable performance
Low capacity

Low cost, high capacity
Not stable

High power
Low capacity

Unique pathways
& TM migration

+ +

Conceptual Design Space
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LiMn0.5Ni0.5O2

Li2MnO3 LiMn1.5Ni0.5O4

•

•

• Composites of interest are intergrowths of 
prototypical cathode structures

• Structural and elemental composition each
have an impact on performance 

• Control and characterization of elemental
compositions of the different, integrated
motifs is challenging 

Approach “Baseline” pristine materials

• A systematic study of end-member and integrated composite structures is in progress
to create “structural baselines”

• Baseline/model structures will be utilized for studies on cycled and working electrodes 

End-goal:  Structure-property relationships that lead to more robust cathode structures 

Conceptual Design Space
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Approach Powerful techniques  insights materials design

Advanced Photon Source:  Brightest source of X-rays in the Western Hemisphere

ISIS pulsed neutron source: Rutherford Appleton Laboratory, UK 

Electron Microscopy Center:  Electron beam microscopy and spectroscopy

ANL/LBNL:  High performance computing for STEM

• X-ray absorption spectroscopy (XANES, EXAFS) – Element specific local/chemical info
• High resolution X-ray diffraction and PDF (HR-XRD) – short to long-range structures

• Chromatic-aberration corrected TEM – one of only 3 such instruments world-wide
• STEM/HAADF/EELS/EFI…sample prep (FIB-SEM)

• Fusion – 320 node computing cluster within ANL’s Computing Resource Center 
• NERC – The National Energy Research Scientific Computing Center at LBNL

• Polaris – high intensity source, fast acquisition times, small sample volumes, in-situ
• Established international collaboration with leading experts (Prof. Bill David)

Other capabilities:
• ANL: Post-test Facility, MERF, NMR, Raman…Northwestern: NUANCE (Prof. V. Dravid) 
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2θ (λ=0.413227 Å)
6 7 8 9 10 11 12

Li2MnO3 (850°C)

Misfit Stacking Faults       ab

Progress  Li2MnO3 end-member

• Standard Rietveld analysis of Li2MnO3 end-member does not capture stacking faults

• So-called superstructure peaks complicate analysis of integrated materials

• Stacking faults further complicate analysis and a fitting model is being explored

Understanding stacking faults in Li2MnO3 will lead to better models for composite structures
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Progress  Li2MnO3 end-member

Four possible, three-layer fault 
combinations give new unit cells

C2/m

C2/c

P3112

C2/m
(120°)

Simplest model considers layer-to-layer
shifts of +⅓b, 0b, - ⅓b

Fourth possibility returns C2/m with the 
ab plane reoriented by 120° w.r.t. original
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Progress  Li2MnO3 end-member

Random faulting

Random faulting + C2/m

• DIFFaX analysis shows that a randomly faulted
C2/m structure fits diffuse background

• In order to capture C2/m peaks between 5-9, 2θ
~25% of the layers were given pure stacking along 
c axis Peaks not captured

Peaks captured

Model can give an indication of domain size

λ=0.413227Å

λ=0.413227Å
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Progress  Li2MnO3 end-member

P3112C2/c

• C2/c and P3112 models give extra peaks that do not appear in the data

• C2/c and P3112 stacking do not exist over extended length scales

λ=0.413227Å λ=0.413227Å

• Temperature dependence of faults in Li2MnO3 is currently being modeled
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Progress  0.5Li2MnO3•0.5LiMn0.5Ni0.5O2

Random faulting

Peaks not captured

Random faulting + C2/m

Peaks captured

• As in Li2MnO3, composite structure requires some amount of coherent , C2/m
stacking in order to capture peaks between 5-9, 2θ

• Different compositions and synthesis conditions are also under study

λ=0.413227Å λ=0.413227Å
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Progress	
  	
  Composite	
  and	
  end-­‐member	
  HR-­‐XRD/neutron	
  data	
  

•  High	
  resolu,on,	
  synchrotron	
  X-­‐ray	
  and	
  neutron	
  diffrac,on	
  data	
  have	
  also	
  been	
  	
  
	
  	
  	
  	
  	
  	
  acquired	
  for	
  end-­‐member	
  and	
  composite	
  compounds	
  of	
  interest	
  

•  Analysis	
  and	
  modeling	
  are	
  ongoing	
  

x[yLi2MnO3•(1-­‐y)LiMO2]•(1−x)[LiM2O4]	
  (M=Mn,	
  Ni,	
  Co)	
  0≤x≥1,	
  0≤y≥1	
  	
  

λ=0.413227Å	
  



Progress  Composite and end-member XAS
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• Complementary XAS data have been collected and analyzed on composite and 
end-member compounds of interest (Advanced Photon Source, Argonne)

• Complementary neutron data have been collected at Rutherford Appleton Lab
(ISIS, UK) on same set of compounds
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Sample ID Layered notation Li:M (ICP)

140411 Li0.5Mn0.75Ni0.25O2 0.49

140409 LiMn0.5Ni0.5O2 1.00

140502 Li1.15Mn0.58Ni0.27O2 1.33

140501 Li1.16Mn0.58Ni0.26O2 1.34

140410 Li1.2Mn0.6Ni0.2O2 1.47

140507 Li2Mn0.65Ni0.35O3 1.66

140506 Li2MnO3 2.02
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Progress  Composite and end-member XAS

• ICP and XAS analysis give Metal-M/O coordination 
and bond distances as a function of Li:TM ratios

• Local information from XAS can be coupled with 
PDF and XRD for a more complete description of 
composite structures
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Progress: Microscopy from NUANCE at Northwestern University

• Intergrowth of two phases in Li2-xMnOy (x=1) is observed determined by HRTEM

Spinel: [-12-1]

Overlapped 
region

Spinel phaseOverlapped 
interface

Faulted 
Layer 
structure

• Synthesis, electrochemistry, and microscopy combined to understand performance
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Progress:	
  Ac,ve	
  vs.	
  non-­‐ac,ve	
  ca,on	
  migra,on	
  

•  Ga	
  migrates	
  to	
  tetrahedral	
  sites	
  immediately	
  on	
  charge,	
  60%	
  at	
  ~10%	
  delithia,on	
  (30	
  mAh/g)	
  	
  

•  Ga	
  is	
  not	
  redox	
  ac,ve	
  but	
  clearly	
  alters	
  electrochemical	
  profiles	
  during	
  migra,on	
  

•  Varia,on	
  in	
  Metal-­‐oxygen	
  bonding	
  may	
  play	
  a	
  role?	
  

•  Others	
  systems	
  (ac,ve	
  and	
  non-­‐ac,ve)	
  currently	
  under	
  study	
  by	
  theory	
  and	
  experiment	
  



in-situ resonance Raman spectroscopy: 
• High detection sensitivity
• Vibrational-electronic information
Battery research: 
• Structural variation at the molecular level, 

Crystalline structure, Local disorder
• Change in bond length and angle
• In-situ study of electrode and electrolyte

Weakening of 
Mn-O bonding

LMR-NMC with Cr doping

In-situ Raman cell

electrode,
electrolyte

V

J Mater Chem. A, in press

Progress:  In-situ UV-vis tunable resonance Raman spectroscopy
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Progress: Collaboration with Argonne’s MERF

Bench-scale material  1st disch. capacity =  193 mAh/g

Pre-pilot (scale-up) material 1st disch. capacity =  218 mAh/g

• Promising composite materials have been scaled up for further testing and analysis

• Argonne’s MERF facility is engineering improved materials based on bench-scale designs

Target composition: 0.85 [0.25 Li2MnO3●0.75 LiMn0.375Ni0.375Co0.25O2]● 0.15 Li0.5M’O2

(See M. Thackeray, ES049)
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Progress: Outreach and Education

• Using the Advanced Photon Source, local high school 
students and teachers work with Argonne scientists to:
• Prepare a proposal
• Design an experiment
• Set up the experiment, gather and analyze data
• Present results at the annual User Meeting

Exemplary Student Research Project

• Students designed an experiment to look at various TM species under certain 
electrochemical conditions – results to be presented at the 2015 User Meeting

In-situ XAS
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Future work planned

• Continue to provide comprehensive analytical and characterization support 
for materials synthesis and design initiatives, with a prime focus on layered-
layered-spinel electrode systems

• Complete stacking fault modeling on end-member and composite electrode 
structures

• Use theory and modeling to support experimental observations of transition 
metal migration in lithium-metal-oxide electrodes, and find ways to suppress 
or eliminate the migration

• Design improved high capacity cathode materials through knowledge gained 
from characterization/diagnostic studies
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Summary

• Integrated, composite structures show promise for near-term advancements
with respect to lithium-ion cathodes – design space is large and complex

• Expert personnel and Advanced characterization techniques have been brought
together for the purpose of a better understanding of design considerations 

• End-member and composite compositions within this complex space are being
thoroughly studied in concert by:

• High Resolution Synchrotron X-ray Diffraction
• Neutron Diffraction
• X-ray Absorption Spectroscopy
• Electron Microscopy
• UV-vis Tunable Resonance Raman
• Theory and Modeling

• This “baseline” knowledge of pristine structures will be used to understand the 
structure-property relationships of complex, integrated electrode materials
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