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Overview

• Start Date: October 2013
• End Date: September 2015
• Percent Complete: 75% • Limited Multiphysics Integrity

• Wide-varied Time & Length Scales
• Instability Caused by Nonlinearity

• Total Project Funding: $1,218K
o DOE Share : $718K
o TARDEC Share: $500K

• Funding Received in FY13: $718K
• Funding Received in FY14: $500K

Timeline

Budget

Barriers in Battery CAE

Partners
• ANSYS

o Physics Business Unit
o Electronics Business Unit

• Project Lead: National Renewable 
Energy Laboratory (NREL) 

CAE accelerates product development cycle,  
reduce cost and improve performance  

CAE = computer-aided engineering
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Relevance
Background and Motivation

• Physicochemical processes in lithium-ion batteries occur in intricate geometries over a wide 
range of time and length scales.

• There have been strong needs in the industry to use predictive physics-based models for design, 
evaluation, and control of batteries and systems. 

• In the pursuit of providing such models, 
NREL pioneered the Multi-Scale Multi-
Domain (MSMD) model, overcoming 
challenges in modeling the highly 
nonlinear multi-scale response of battery 
systems. 

• However, further improvement in 
computational efficiency is greatly desired 
for practical application of the model to 
variety engineering problems, while the 
intrinsic nonlinearity of battery physics is 
resolved properly.

Inhomogeneity In Nature: Local equilibria are significantly 
separated from system equilibrium during the energy 
conversion process. Therefore, kinetic response of a battery 
system is intrinsically inhomogeneous. 
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Relevance

• Finalize GH-MSMD framework formulation 
• Define GH-constituent model communication protocol 
• Identify MSMD baseline sub-models
• Reformulate the baseline models and convert them into GH-constituent models
• Implement GH-MSMD baseline models both in MATLAB and C++ platform
• Perform benchmark test for the GH-MSMD implementation on standard vehicle driving profile
• Develop adaptive reduced order models (ROMs) based on the state variable model (SVM) 

approach, capturing the dynamic of lithium diffusion and migration and impact on cell 
response

• Establish an application programming interface (API) to integrate NREL’s newly developed 
model libraries in third party commercial software

Project Goal

To improve computation speed of state-of-
the-art nonlinear multiscale battery model by 
a factor of 100 while maintaining its solution 
accuracy

Objectives during the Past Year

Impact Anticipated   Successful completion of the project is expected to shift the paradigm to using a model for 
electric-drive vehicle battery system design and evaluation, potentially revolutionizing the standard 
development process for the entire industry, accelerating the breakthroughs necessary for industry to meet the 
nation’s EV Everywhere Grand Challenge and related targets for the vehicle electrification.
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FY15 Milestones

Month/Year Description Status

01/2015 Adaptive ROM Demonstration met

04/2015 Submission of AMR Presentation met

08/2015 Model Demonstration Running on ANSYS Platform on
track

09/2015 Annual Milestone Report on 
track

Go/No-Go Achieving 100-fold computation speed met
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Approach/Strategy	
  
MSMD	
  Baseline	
  Model	
  Iden<fica<on	
  

Discrete	
  Diffusion	
  ParNcle	
  Model	
  (DDPM)	
  :	
  The	
  model	
  solves	
  solid-­‐
phase	
  lithium	
  diffusion	
  dynamics	
  and	
  transfer	
  kineNcs	
  in	
  a	
  discrete	
  
diffusion	
  parNcle	
  system.	
  The	
  parNcles	
  are	
  considered	
  electronically	
  
conNnuous,	
  but	
  ionically	
  discrete.	
  	
  An	
  arbitrary	
  number	
  of	
  quanNzed	
  
discrete	
  parNcles	
  can	
  be	
  given	
  as	
  a	
  user	
  input.	
  KineNc,	
  transport,	
  and	
  
thermodynamic	
  model	
  parameters	
  of	
  each	
  discrete	
  parNcle	
  can	
  be	
  
independently	
  determined.	
  

Par<cle	
  Domain	
  Model	
  (PDM)	
  	
  

1D	
  Porous	
  Electrode	
  Model	
  :	
  The	
  model	
  assumes	
  existence	
  of	
  in-­‐plane	
  
ensemble	
  average.	
  Porous	
  media	
  theory	
  is	
  introduced.	
  The	
  ionic,	
  
electronic,	
  and	
  species	
  transport	
  properNes	
  are	
  modeled	
  with	
  porous	
  
media	
  parameters.	
  	
  

Electrode	
  Domain	
  Model	
  (EDM)	
  	
  

Single	
  PotenNal-­‐Pair	
  ConNnuum	
  (SPPC)	
  Model	
  :	
  The	
  model	
  treats	
  the	
  
straNfied	
  cell	
  composite	
  as	
  a	
  homogeneous	
  conNnuum	
  with	
  
orthotropic	
  transport	
  properNes	
  and	
  resolves	
  temperature	
  and	
  a	
  pair	
  
of	
  current	
  collector	
  phase	
  potenNals	
  in	
  the	
  volume	
  of	
  the	
  conNnuum	
  
with	
  disNnguished	
  in-­‐plane	
  and	
  transverse	
  conducNviNes	
  for	
  heat	
  
diffusion	
  and	
  electrical	
  current	
  conducNon.	
  

Cell	
  Domain	
  Model	
  (CDM)	
  	
  

SPPC	
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Approach/Strategy
Inefficiency Builds up with Inhomogeneity at Each Scale

Polarization caused by kinetic barrier, solid transport limitation, 
ohmic resistances, and micro-scale inhomogeneity

+ Polarization through electrolyte and composite matrices, and 
meso-scale inhomogeneity

Polarization caused by non-uniform temperature and electric 
potential fields, and macro-scale inhomogeneity

• We suggest a sequential optimization procedure to break the under-
determined parameter estimation problem of the whole system into a 
sequence of fully determined fits to subsets of the parameters.  

• This sequential procedure is developed from the fact that the 
physicochemical processes in batteries occur in significant time scale 
segregation.

[APPROCH] Bottom-Up Sequential Identification  

PDM Characterization

+

EDM Characterization

CDM Characterization
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Approach/Strategy
Standard Input File Structure Facilitating Multiscale Simulation 

PDM EDM CDM

Define Battery

posptcltbl.inp, negptcltbl.inp o o o

edparm.inp o o

cdparm.inp o

Define Usage 

ELprofl.inp o o o

Setup Model

setup.inp o o o

• Standard input files define the battery, the usage, and the numeric conditions for model setup.
• The input file structure reflects the MSMD modularity. For example, if you keep the materials 

and the electrode design the same and only want to change the cell form factor, the 
“cdparm.inp” needs to be replaced. If you change “edparm.inp” while keeping the others the 
same, you change the electrode design of a battery. “posptcltbl.inp” and “negptcltbl.inp” define 
the positive and negative active materials, respectively.
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Approach/Strategy
MSMD GH-MSMD

The diagrams above summarize the model solution variables in each computational domain and the coupling 
variables exchanged between the adjacent length scale domains in MSMD (left) and in GH-MSMD (right). Even 
though the solution algorithms are significantly different between the two, the model structures are similar. This 
comparison signifies the modularity of model framework that the GH-MSMD inherited from the MSMD. 
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Approach/Strategy
Adaptive-SVM (A-SVM) Development

• Develop a fast, efficient 1D electrochemical 
model (a.k.a. Newman model) capturing physics 
of Li-ion battery electrochemical transport and 
reaction kinetics

• Model should be extensible to any Li-ion porous 
electrode design and state-of-health parameter 
set. Eliminate preprocessing step to re-identify 
SVM for new designs and during aging.

SVMA-SVM

Approach
• Extend previous work[Smith et al. 2007] that developed a 

ROM in SVM form by fitting frequency response of 
transfer functions representing distributed 
electrochemical dynamics

• Use numerical and/or analytical approaches to 
eliminate the cumbersome pre-processing step 
required to fit frequency responses and compile 
results into look-up tables usable only for one 
battery design at one state of health

Goals 
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Approach/Strategy
EDM Extension and Multiphysics Integration for MSMD-Safety

Integrity
or

Accuracy

Convenience  or Speed

High 
Accuracy

&
High 

Speed

objectives

Applicability : The 3rd dimension of model efficiency improvement
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Technical	
  Accomplishments	
  and	
  Progress	
  
Benchmark	
  Result	
  of	
  GH-­‐MSMD	
  Implementa<on	
  at	
  EDM	
  Level	
  	
  

Model	
   Time	
  [sec]	
  

GH-­‐MSMD	
  
Ed-­‐LPD	
  

0.74	
  

GH-­‐MSMD	
  
Ed-­‐PLM	
  

6.48	
  

MSMD	
  
Segregated	
  

651	
  

PHEV10,	
  US06	
  
Mid-­‐size	
  Sedan	
  
20	
  min	
  (1,200	
  sec)	
  Drive	
  

Figures	
  above	
  present	
  the	
  comparison	
  of	
  electrical	
  and	
  thermal	
  response	
  of	
  a	
  baOery	
  for	
  mid-­‐size	
  sedan	
  plug-­‐in	
  
hybrid	
  electric	
  vehicle	
  (PHEV10)	
  US06	
  20	
  minutes	
  driving	
  power	
  profile	
  from	
  the	
  GH-­‐MSMD	
  and	
  the	
  original	
  MSMD.	
  
The	
  model	
  outputs	
  are	
  shown	
  very	
  close	
  to	
  each	
  other.	
  The	
  most	
  efficient	
  GH-­‐MSMD	
  model	
  opNon	
  runs	
  the	
  1,200-­‐
second	
  simulaNon	
  only	
  in	
  0.74	
  seconds	
  using	
  a	
  personal	
  computer,	
  while	
  the	
  original	
  MSMD	
  runs	
  the	
  same	
  case	
  in	
  
654	
  seconds.	
  A	
  100~1,000	
  fold	
  speed	
  up	
  was	
  demonstrated	
  while	
  maintaining	
  solu4on	
  accuracy.	
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Technical Accomplishments and Progress
A-SVM : Analytical Approach – Summary of Algorithm

M. Jun, K. Smith, P. Graf, “State-space Representation of Li-ion Battery Porous Electrode Impedance Model with Balanced Model 
Reduction.” J. Power Sources, Vol. 273,  2015

Obtain a state-space form of SDF via 
VECFIT

Derive a state-space form 
of       by system interconnection 

formulae

Derive a state-space form 
of a electrode impedance by system 

interconnection formulae

Model order reduction by balanced 
truncation
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Technical Accomplishments and Progress
Error-Corrected Time-Domain Series Solution (ETS)
Recursive Expression
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Error Comparison vs. SVM: 5C discharge with 40C-max random 1 sec pulses, N=10
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Technical Accomplishments and Progress
NREL Custom EDM Library Integration in ANSYS Fluent MSMD Battery Module

Linking Protocol
• NREL EDM – Fluent API

CDM
• The SPPC CDM-electrothermal 

model in ANSYS Fluent MSMD-
module

EDM – Electrochemical : SVM

EDM – Abuse Reaction Kinetics

EDM – ISC

NREL Multiphysics EDM Library
for Safety Simulation
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Technical Accomplishments and Progress
Fault Evolution Study

2P1S Subset Configuration with Fins and Cooling Plate

Case 1 : 222-mΩ Initial Short 
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Technical Accomplishments and Progress
Fault Evolution Study Short Propagation for Separator Breakdown

Surface Temperature

Case 1 : 222-mΩ Initial Short 

Electrochemical Reaction Current Density
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Technical Accomplishments and Progress
Fault Evolution Study Temperature

Case 2 : 444-mΩ Initial Short t  = 25 s
DOD = 0.08%

t  = 595 s
DOD = 1.9%

t  = 1645 s
DOD = 5.2%

Effective heat transfer may lower the maximum 
steady-state temperature when a latent defect exists 
and prevents or slows down the further growth for a 
fault for thermal breakdown. 

DOD = depth of discharge
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Response to Previous Year Reviewers’ Comments

Q: Reviewer 3 indicated that we suggested the target (i.e., 100 times improvement in 
computational time), but no discussion of the degree to which progress has been 
made. 

A: The project was in a relatively early stage last year and didn’t yet identify the metric 
to evaluate relative enhancement of the model’s computation speed against the 
baseline full-order model. This year’s review includes the benchmark results of GH-
MSMD EDM implementation, indicating that we substantially exceeded a 100 times 
computational speed improvement over the full order model.  

Q: Reviewer 3 suggested that it would be nice to have more academic contributions, 
and Reviewer 1 stated that the project should enable collaboration with universities. 

A: The project was originally planned to have a university partner. Later, the university 
performer, which has dual affiliation in ANSYS, decided to participate through the 
company for administrative convenience. We will keep looking for opportunities to 
work with academia in current and future projects. 
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Collaboration and Coordination with Other Institutions

• The project team will demonstrate intergradation of the outcome models on ANSYS’s battery 
simulation platform. ANSYS developers will support NREL researchers with required software 
engineering. 

• With the ANSYS battery simulation software as a platform for the MSMD research, appropriate 
source code access, prototype versions of ANSYS’ tools, developer-level technical support, and 
advisory consultation on NREL’s use will be provided. 

• From the previous collaboration, ANSYS developers participating in the project have established a 
profound understanding of the MSMD architecture.

To bring immediate benefits to industries, the outcome model should be numerically 
robust and usable in an engineering environment 

To leverage what has been accomplished through the previous efforts in the program 

Partner: ANSYS
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Remaining Challenges and Barriers

• Recent benchmark tests for the baseline GH-implementation demonstrated 100 to 
1,000 times speed-up. The remaining challenge, however, is to enhance the 
applicability of the model to various battery engineering problems.

• In order to address varied problems in the industry, interdisciplinary constituent 
models relating material, design, process, and operational parameters with 
physicochemical parameters of the GH- baseline models are needed.

• EIS is one of the frequently used methods for battery characterization and 
diagnostics. Because the current GH-MSMD has been developed in the time 
domain, it is difficult to utilize the information produced in the frequency domain. 

• The modular architecture of GH-MSMD facilitates participation of external 
expertise across the battery community. Independently developed sub-models can 
be plugged in the framework to extend the simulation capability. However, unlike 
the original MSMD, the GH-MSMD protocol is not intuitively understandable.

• Identification of a physics-based battery model is known to be difficult. This 
anticipated difficulty for development of a physics-based constituent model comes 
from the fact that characterization of a battery is intrinsically solving an under-
determined problem.
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Proposed Future Work

• Complete A-SVM development and implementation
• Continue work on stand-alone C++ code and Fluent-API
• Development of POD-DEIM on electrolyte diffusion equation
• Demonstrate viability of GH-MSMD implementation in Fluent

Rest of FY15

• There have been strong needs in the industry to use purely predictive physics-
based models for design, evaluation, and control of batteries and systems. In the 
pursuit of providing such models, we will develop physics-based interdisciplinary 
constituent models working in the GH-MSMD framework.

• Frequency-domain GH-MSMD will be developed from the identical governing 
equation sets used in the time-domain model, running with the standard input 
files.

• We will deliberately summarize the GH-MSMD principles and implementation and 
publicize them to encourage contributions from outside experts.

• We will develop a sequential optimization procedure to break the under-
determined parameter estimation problem of the whole system into a sequence 
of fully determined fits to subsets of the parameters; advanced model-based 
battery characterization

Future Project
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Summary

• The GH-MSMD framework formulation was completed. 

• MSMD baseline models were identified.

• Baseline MSMD sub-models were reformulated and converted into the GH-
constituent model following a specific protocol required in the GH-MSMD 
framework. 

• The model codes were implemented both in MATLAB and C++.

• A recent benchmark test for the baseline GH-implementation demonstrated 100 
to 1,000 times speed-up. 

• A-SVM has been developed based on the SVM approach, capturing the dynamic 
of Li diffusion and migration and impact on cell response.

• We established an application programming interface (API) to integrate NREL’s 
newly developed model libraries in the third-party commercial software, ANSYS 
Fluent.
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