

# RCM Studies to Enable Gasoline-Relevant Low Temperature Combustion

S. Scott Goldsborough (PI), Aleksandr Fridlyand, Colin Banyon Argonne National Laboratory

Project ID # ACE054 FY2015 DOE Vehicle Technologies Program Annual Merit Review Advanced Combustion Engine R&D / Combustion Research Wednesday, June 10, 2015 Program Managers: Gurpreet Singh, Leo Breton

This presentation does not contain any proprietary, confidential or otherwise restricted information



# **Overview**

## Timeline

- Project started FY 2011
- Project directions and continuation are evaluated annually

## Budget

- Project funded by DOE / VTP
  - → FY13 funding: \$320 k
  - → FY14 funding: \$325 k
  - → FY15 funding: \$500 k

#### **Barriers**

- Lack of fundamental knowledge of advanced engine combustion regimes
- Lack of modeling capability for combustion and emission control

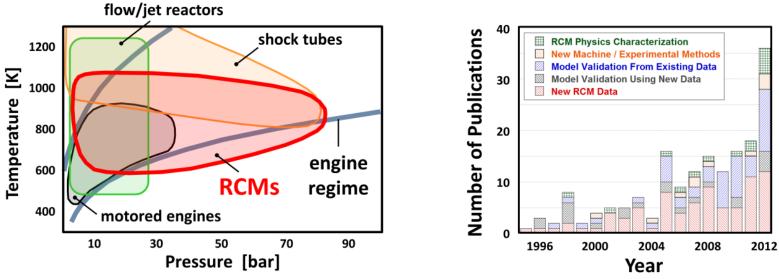
#### **Partners**

- ANL UQ/GSA tools, chemical analysis, gasoline LTC engine
- LLNL gasoline surrogate model, simulation tools
- KAUST, Chevron fuels, fuel models
- Northeastern U. mechanism diagnostics
- International RCM Workshop

# **Objectives and Relevance to DOE**

- Acquire fundamental data, and help develop / validate / refine chemical kinetic and relevant models for transportation-relevant fuels (conventional and future gasolines, diesels and additives) at conditions representative of advanced combustion regimes, leveraging collaborations with BES-funded groups, and researchers across the broader community.
- Predictive simulations with these models, which require low associated uncertainties, could be utilized to overcome technical barriers to low temperature combustion (LTC), and achieve required gains in engine efficiency and pollutant reductions.

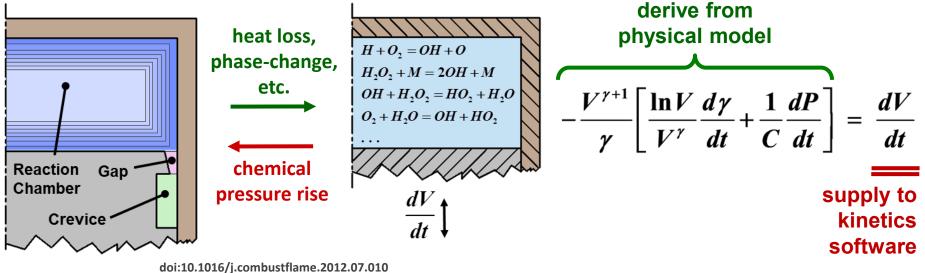



#### Project Milestones FY2015 Budget – \$500 к

| Task | Milestone                                                                                                                            | Status         |
|------|--------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1    | Acquire ignition delay measurements for gasoline fuels + reactivity modifiers. [FY2014]                                              |                |
|      | a) 2-ethyl-hexyl nitrate (2EHN) (C <sub>8</sub> H <sub>17</sub> NO <sub>3</sub> );                                                   |                |
|      | b) di-tert-butyl-peroxide (DTBP) (C <sub>8</sub> H <sub>18</sub> O <sub>2</sub> ).                                                   | Postponed      |
| 2    | Develop, validate chemical kinetic model for gasoline fuels + reactivity modifiers. (model complete, comparisons with 2EHN) [FY2014] | -              |
| 3    | Acquire ignition measurements for gasoline surrogate components: 5-<br>member ring naphthenes (cyclopentane, methyl cyclopentane)    | MCP<br>FY15-Q4 |
| 4    | Acquire ignition measurements for blends of gasoline + ethanol:<br>FACE-F (E0, E10, E20, E30)                                        | -              |
| 5    | Acquire ignition measurements for multi-component surrogate blends mimicking undoped, and ethanol-blended gasoline                   | FY15-Q4        |
| 6    | Implement UQ/GSA for LLNL gasoline surrogate model, using multiple targets (e.g., ignition delay time, heat release rate).           | -              |

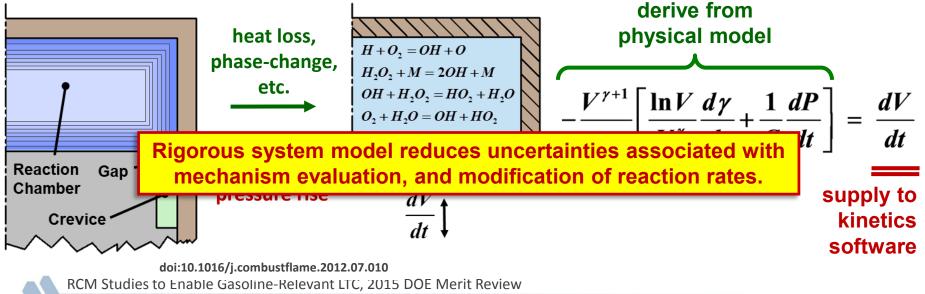
## Project Approach RAPID COMPRESSION MACHINE




Utilize ANL's twin-piston RCM to acquire autoignition data



- Employ novel data analysis tools and advanced diagnostics
  - Physics-based, reduced-order system model
  - Developing new diagnostics capabilities to better probe chemistry
- Synergistically improve kinetic models using novel analysis techniques (e.g., UQ/GSA) and detailed calculations of sensitive processes (e.g., individual reaction rates)


#### Project Approach RCM SYSTEM MODEL

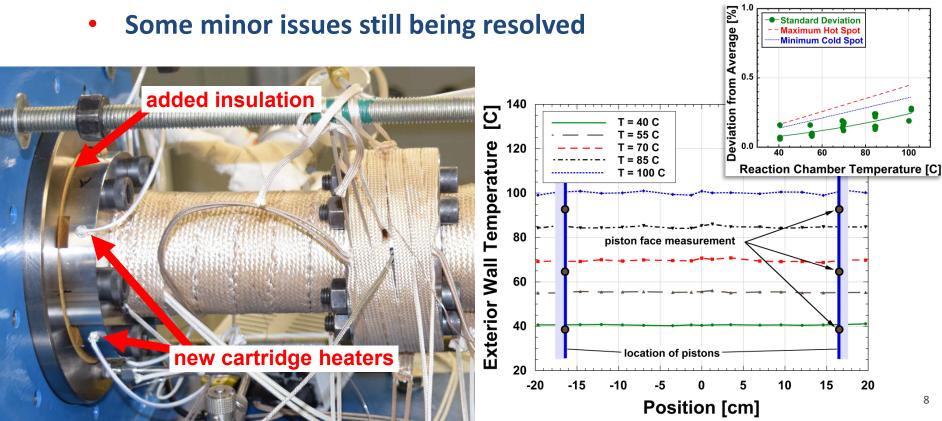
- Physics-based, reduced-order model coupled with chemical kinetics software – accounting for physical-chemical interactions during experiments (e.g., LTHR + crevice flows)
  - Computationally-efficient approach improves simulation fidelity
  - Facilitates utilization of additional metrics for mechanism validation / refinement (e.g., ROHR (1<sup>st</sup>, 2<sup>nd</sup> stages))



#### Project Approach RCM SYSTEM MODEL

- Physics-based, reduced-order model coupled with chemical kinetics software – accounting for physical-chemical interactions during experiments (e.g., LTHR + crevice flows)
  - Computationally-efficient approach improves simulation fidelity
  - Facilitates utilization of additional metrics for mechanism validation / refinement (e.g., ROHR (1<sup>st</sup>, 2<sup>nd</sup> stages))

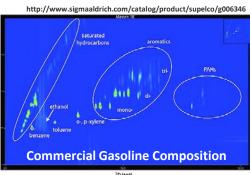


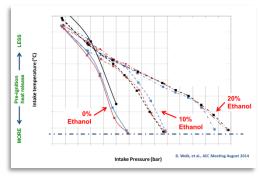

#### **Technical Accomplishments / Progress** MODIFICATIONS TO TWIN-PISTON RCM IN FY2014/15

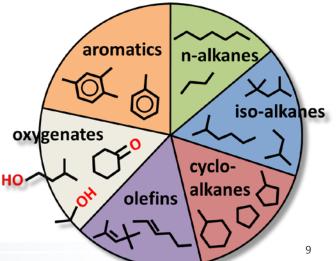
- Unplanned redesign and fabrication of several components for RCM resulted in several months of downtime
  - Hydraulic chamber pistons and seals damaged during operation




#### **Technical Accomplishments / Progress** MODIFICATIONS TO TWIN-PISTON RCM IN FY2014/15


- Unplanned redesign and fabrication of several components for RCM resulted in several months of downtime
  - Hydraulic chamber pistons and seals damaged during operation
  - Reaction chamber heating system also improved for uniformity

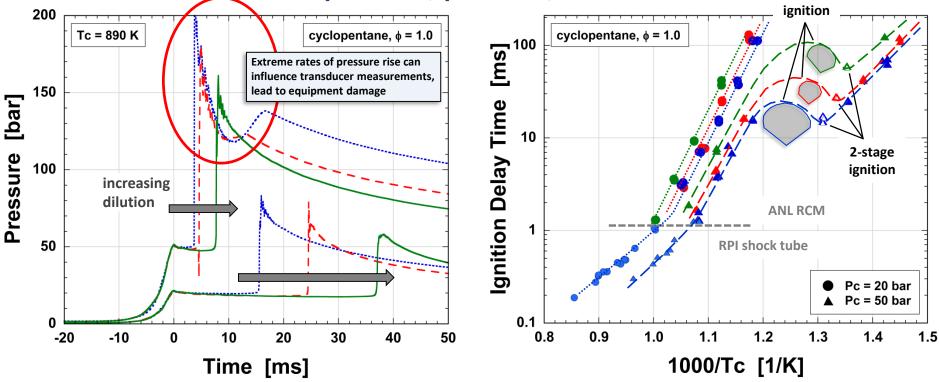




#### Technical Accomplishments / Progress GASOLINE AND SURROGATES

- Predictive modeling of LTC to guide design
  - Gasoline is complex, compositionally variant
    - → How do various features affect LTC behavior, especially autoignition phenomena at low and intermediate temperature?
    - How can real fuels be represented by low order (4-10) component surrogates?
    - Data needed to compare ignition behavior of real fuels with surrogates.
    - Data needed for surrogate components and blends, and blends of fuels with ethanol









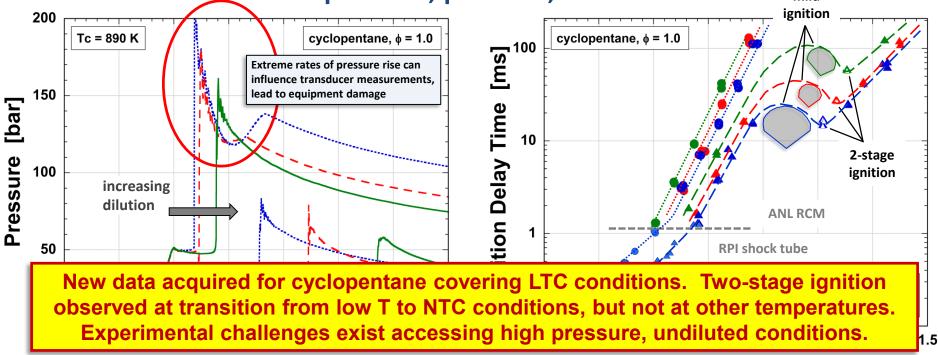

# **Technical Accomplishments / Progress Octane Ratin**

# **SURROGATE COMPONENTS**

- **5-member ring naphthenes** 
  - **Carbon Ring Size** Providing necessary combustion data for representative hydrocarbons at LTC conditions. FY2015 tests with CP, MCP.
  - Influence of temperature, pressure, dilution



RCM Studies to Enable Gasoline-Relevant LTC, 2015 DOE Merit Review


25 RON

MON

mild

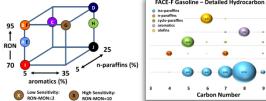
# Technical Accomplishments / Progress

- 5-member ring naphthenes
  - Providing necessary combustion data for representative hydrocarbons at LTC conditions. FY2015 tests with CP, MCP.
  - Influence of temperature, pressure, dilution

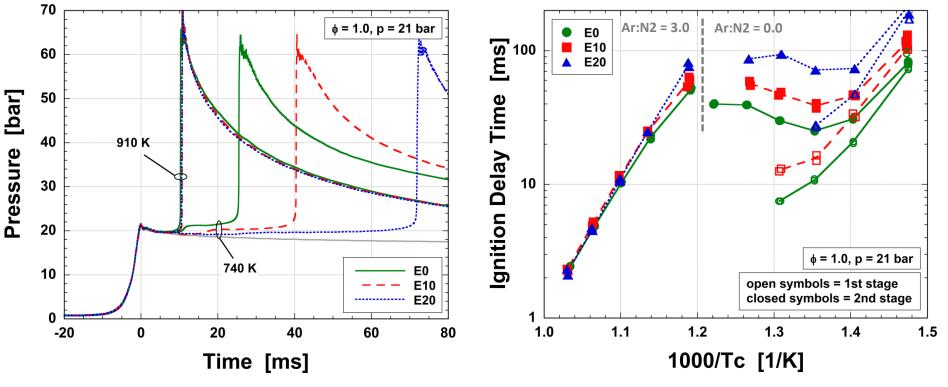


1000/Tc [1/K]

Octane


RON

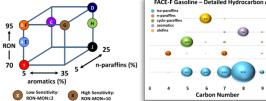
MON


mild

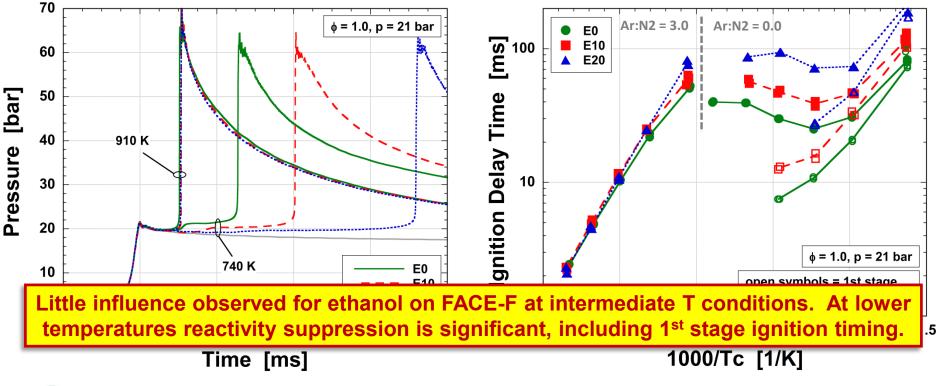
#### Technical Accomplishments / Progress GASOLINE / ETHANOL BLENDS

- FACE-F used as representative gasoline
  - Composition, properties well-characterized



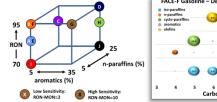

• Investigating influence of blending levels (E0, E10, E20, E30) on ignition chemistry, suppression of reactivity

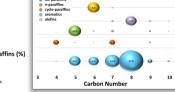



RCM Studies to Enable Gasoline-Relevant LTC, 2015 DOE Merit Review

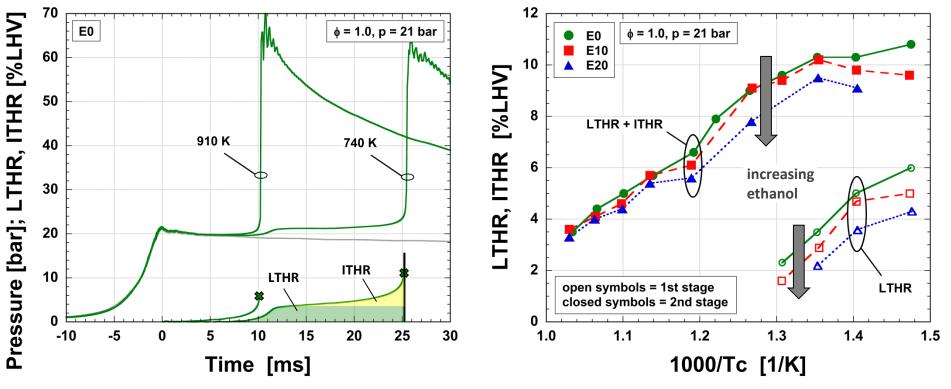
#### Technical Accomplishments / Progress GASOLINE / ETHANOL BLENDS

- FACE-F used as representative gasoline
  - Composition, properties well-characterized



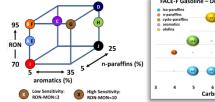


• Investigating influence of blending levels (E0, E10, E20, E30) on ignition chemistry, suppression of reactivity

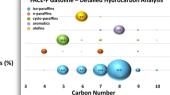



#### **Technical Accomplishments / Progress GASOLINE / ETHANOL BLENDS** Detailed Hydrocarbon Analysis

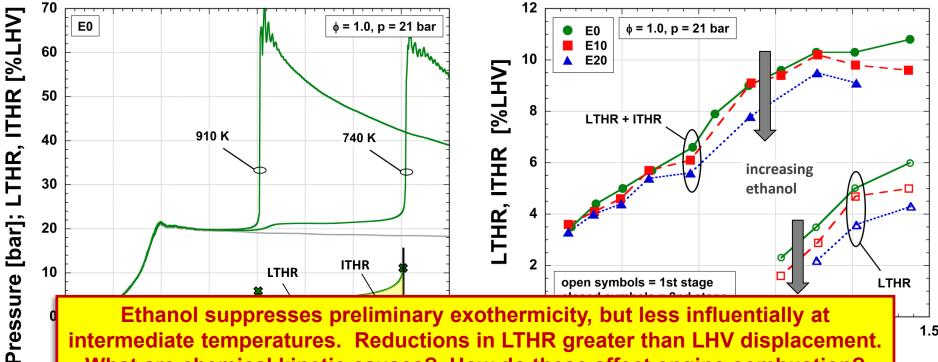
- FACE-F used as representative gasoline
  - Characterizing influence of ethanol on heat release behavior covering LTHR and ITHR







Kinetic modeling of experiments in collaboration with LLNL




#### **Technical Accomplishments / Progress GASOLINE / ETHANOL BLENDS**

- **FACE-F** used as representative gasoline
  - Characterizing influence of ethanol on heat release behavior covering LTHR and ITHR





Kinetic modeling of experiments in collaboration with LLNL

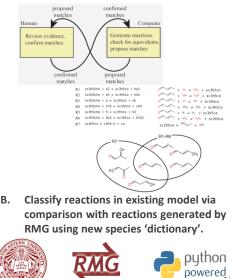



Ethanol suppresses preliminary exothermicity, but less influentially at intermediate temperatures. Reductions in LTHR greater than LHV displacement. What are chemical kinetic causes? How do these affect engine combustion?

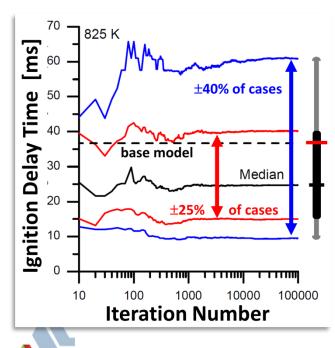
RCM Studies to Enable Gasoline-Relevant LTC, 2015 DOE Merit Review

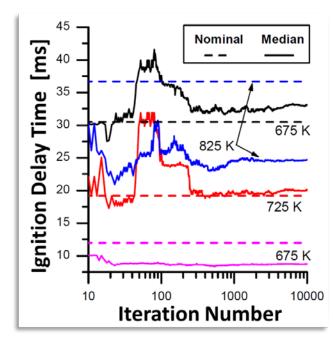
1.5

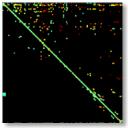
- Methodology to implement UQ/GSA using LLNL model
  - ~10<sup>4</sup> correlated uncertainties. Apply based on: (a) foundational (C<sub>0</sub>-C<sub>4</sub>) chemistry, or (b) reaction class (where 'rate rules' are used)
  - Detailed accounting of 7,336 reactions necessitates automated means to identify and classify individual reactions

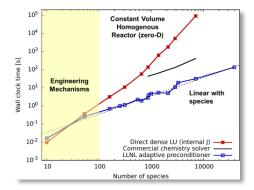



#### **Species ID, Reaction Classifier**


A. Identify species in existing kinetic models via comparison with reactions generated by RMG. Create 'dictionary' for model.


UF

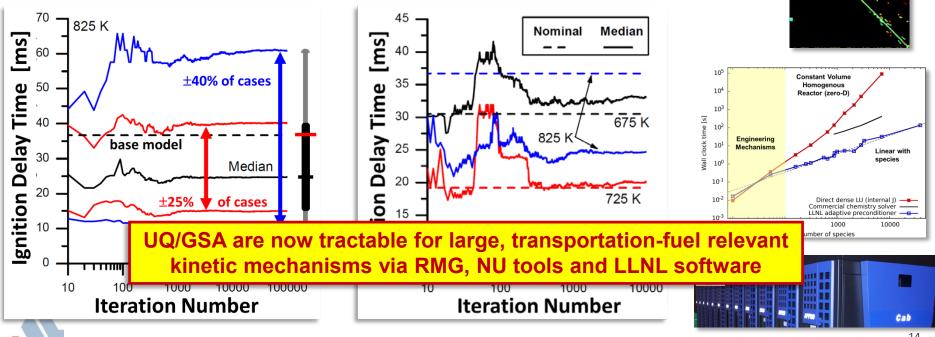

Δ



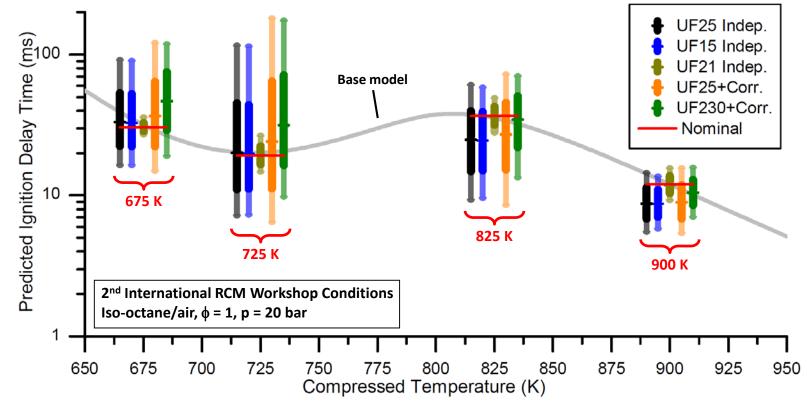

- Methodology to implement UQ/GSA using LLNL model
  - Reaction rate constants simultaneously perturbed for each Monte Carlo (MC) iteration to cover a range of possible ignition histories. Many realizations required, e.g., 10<sup>4</sup>–10<sup>6</sup>, to achieve adequate statistical convergence.
  - Fast chemical kinetic solver required for MC technique



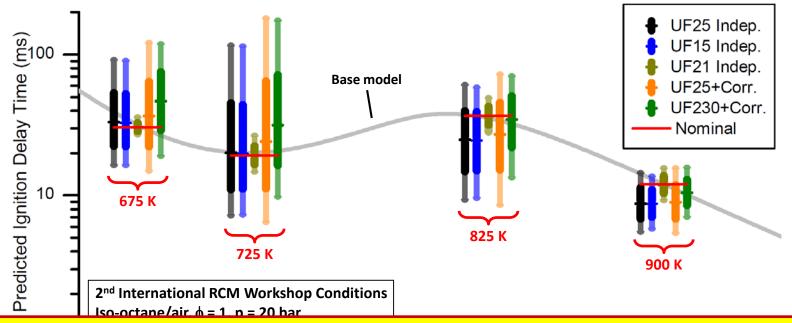






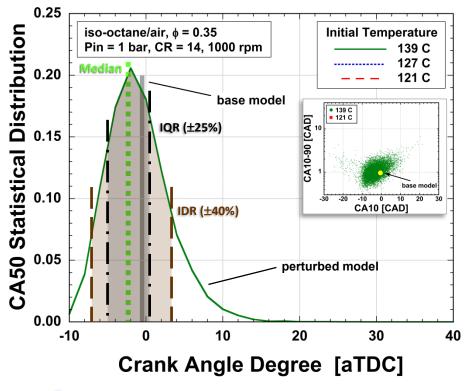




- Methodology to implement UQ/GSA using LLNL model
  - Reaction rate constants simultaneously perturbed for each Monte Carlo (MC) iteration to cover a range of possible ignition histories. Many realizations required, e.g., 10<sup>4</sup>–10<sup>6</sup>, to achieve adequate statistical convergence.

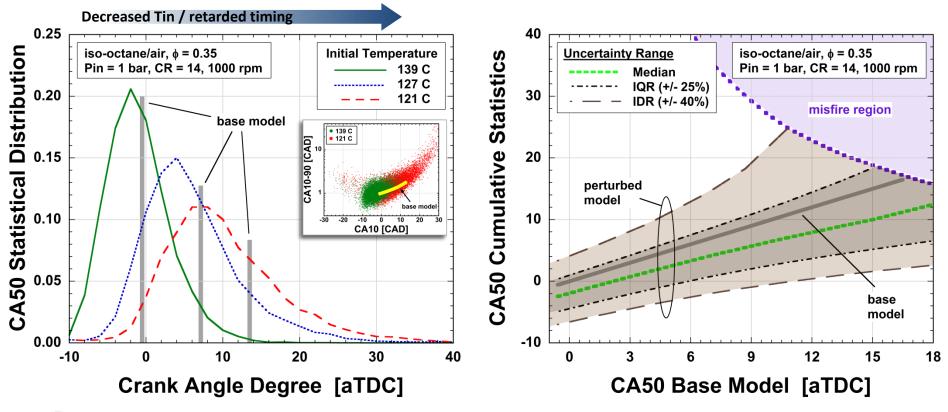

#### • Fast chemical kinetic solver required for MC technique



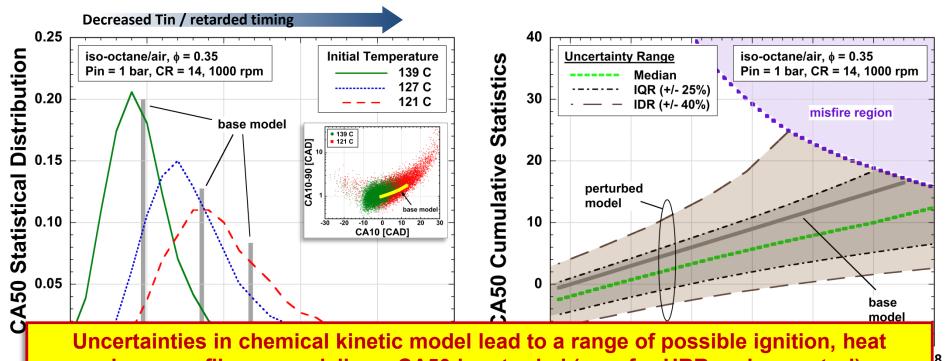
- Constant volume simulations
  - Quantifying how model uncertainties affect ignition predictions for a range of conditions using different assessments of uncertainty




- Constant volume simulations
  - Quantifying how model uncertainties affect ignition predictions for a range of conditions using different assessments of uncertainty



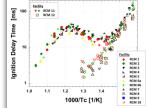

Uncertainties in chemical kinetic model (mostly fuel related here) lead to wide range of predicted ignition times. Greater differences in NTC and lower temperatures. Accounting for correlated uncertainties necessary to understand and improve confidence bands.


- HCCI single-zone simulations
  - Quantifying influence of model uncertainties on ignition timing and heat release profiles during IC engine-type operation



- HCCI single-zone simulations
  - Quantifying influence of model uncertainties on ignition timing and heat release profiles during IC engine-type operation




- HCCI single-zone simulations
  - Quantifying influence of model uncertainties on ignition timing and heat release profiles during IC engine-type operation



release profiles, especially as CA50 is retarded (e.g., for HRR, noise control). Greater spread expected for 'NTC fuels', e.g., lower AKI gasoline, or boosted operation.

#### **Collaborations COMMUNITY-WIDE ACTIVITIES**

- ANL-led, International RCM Workshop: patterned after ECN to better understand LTC phenomena using RCMs, esp. autoignition chemistry, turbulence-chemistry interactions, etc.
  - Participation includes experimentalists, modelers, theoreticians
  - Establishing consensus for 'Best Practices'
    - → approaches for reporting / analyzing / comparing data
    - approaches for simulating the experiments
    - uncertainty quantification for experiments and modeling



 14 RCM laboratories contributed to first standardized tests using iso-octane; 3<sup>rd</sup> Workshop to be held in August 2016

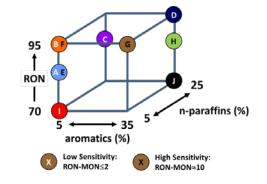


http://www.transportation.anl.gov/rcmworkshop/



## Collaborations ONGOING INTERACTIONS

- DOE Working Groups on HCCI and diesel engines: results presented at AEC MOU, ACEC Tech Team meeting, etc.
- CRC FACE Working Group: participate in meetings, test fuels
- ANL: global sensitivity analysis, mechanism refinement, gasoline LTC engine, new additives
- LLNL: fuel mechanism development / validation, gasoline surrogates, ToolKit development / testing
- KAUST / Chevron: fuel supply, model development
- Northeastern U.: mechanism diagnostics
- Other organizations: NUI Galway (kinetic models), Vrije Universiteit Brussel (reduced-order physical models), U. Michigan / U. Connecticut / UL1ST / U. Cambridge (review paper)


# **Remaining Challenges**

- Improvements to gasoline surrogate model requires deeper understanding of mechanism behavior, uncertainties associated with low temperature chemistry pathways of base model
- Understanding and representing the autoignition characteristics and sensitization of full boiling-range gasoline via low order (4-10 component) surrogate blends requires improved capabilities to formulate surrogates, wider palette of surrogate components
- Ignition delay time, and preliminary heat release are integrated metrics for ignition chemistry, constraints exist with their utility; additional diagnostics could improve development / validation efforts



#### Future Work FY2015 / FY2016

- Utilize integrated RCM system / engine model w/ model probing tools (GSA) to improve capabilities of gasoline surrogate model
  - Quantify influences of NTC fuels, boosted operation
  - Focus on influential reactions, refine uncertainty estimates
- Conduct additional RCM experiments and modeling with gasoline, gasoline surrogates
  - Naphthenes (KAUST), multi-component blends
  - FACE gasoline, ethanol/gasoline blends (LLNL)
  - New research grade gasoline (RD587) (LLNL, SNL)



- Demonstrate new single-piston RCM (funded via ANL LDRD)
  - Funds in FY14/15 reallocated to repair twin-piston machine
  - New capabilities / flexibilities in operation when device is commissioned

# **Response to Reviewer's Comments**

- The RCM is basic research tool for validating and developing mechanisms for engine modeling, and unique approach has helped reduce uncertainties in measurements and interpretation of data. FACE fuels and standard fuels should have higher priority than fuel additives. Progress should be demonstrated in FY15 on UQ/GSA techniques for improving kinetic models and illustrate how differences between measurements and model can be resolved.
  - FY2015 activities include acquiring data for 5-member ring cycloalkanes, as well as gasoline/ethanol blends, specifically targeting FACE-F since this is a relevant, well-characterized full boiling range gasoline. Ignition delay measurements are conducted along with novel heat release analysis to understand influences of LTHR/ITHR, and provide metrics for mechanism development and validation. Challenges in applying UQ/GSA techniques to the LLNL gasoline surrogate model have been addressed in collaboration with Northeastern University and LLNL, and further analysis will be focused on recent measurements.
- The project demonstrates good coordination with DOE labs and universities and the International RCM Workshop is a great idea to establish standardized tests and 'Best Practices.' It would be nice to see even more collaboration with complementary devices like shock tubes, flow reactors, etc. for a coordinated suite of measurements, and greater interactions with industry.
  - The 2<sup>nd</sup> Workshop was held in August 2014, with additional participation by labs that use shock tubes and flow reactors, as well as fuel and engine companies. The 3<sup>rd</sup> Workshop will be held in August 2016 with coordinated follow-on work.

# Summary

- Objective
  - Acquire data, validate/improve models for transportation-relevant fuels at advanced engine conditions
- Approach
  - Utilize ANL's RCM and novel data analysis tools, leverage expertise of BES-funded researchers to synergistically improve predictive models
- Technical Accomplishments
  - Acquired datasets to understand autoignition behavior of cyclopentane, and FACE-F gasoline blended with ethanol
  - Developed methodology, and conducted first UQ/GSA with LLNL detailed gasoline surrogate model
- Collaborations
  - National labs, universities and industry; International RCM Workshop
- Future Work
  - Additional testing with gasoline surrogates and surrogate blends, further ethanol blended gasolines
  - Refinements/extensions of UQ/GSA, cover additional conditions/fuels 22