Polyalkylene Glycol (PAG) Based Lubricant for Light & Medium Duty Axles

Arup Gangopadhyay (Presenter) Chintan Ved Ford Motor Company

June 11, 2015

Project ID # FT023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date October 1, 2013
- Project end date September 30, 2016
- Percent complete 35%

Budget

- Total project funding \$700,000
 - DOE share: \$350,000
 - Contractor share: \$350,000
- Expenditure of Govt. Funds
 - FY13: \$473
 - FY14: \$13,321

(ANL funding not included)

Barriers

- Barriers addressed
 - Improved fuel economy
 - Use of non-petroleum based lubricants (energy independence)
 - No-harm on emissions

Partners

- Collaborations
 - Dow Chemical (not accepting DOE fund)
 - Argonne National Laboratory (ANL)
- Project lead
 - ✓ Ford Motor Company

Relevance

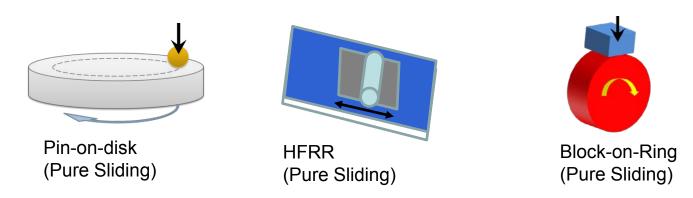
Project Objective

 Develop novel lubricant formulations that are expected to improve the fuel efficiency of light, medium, heavy-duty, and military vehicles by at least 2% over SAE 75W-140 axle lubricants without adverse impacts on vehicle performance or durability.

Objectives for this presentation

- Polyalkylene glycol and additive selection
- Friction and wear data on laboratory bench tests
- Ring and pinion gear wear data (L-37)
- Power Transfer Unit efficiency data
- Relevance to Vehicle Technology Office Objectives
 - Reduce petroleum consumption by improving fuel economy
 - Reduce energy dependence by using non-petroleum based lubricants
- Impact
 - Reduce fuel consumption (Save 0.13 billion gallons of petroleum fuel per year^{1,2})
 - New lubricant technology has no negative impact on durability and emissions

http://www.nada.org/NR/rdonlyres/C1C58F5A-BE0E-4E1A-9B561C3025B5B452/0/NADADATA2012Final.pdf
http://www.epa.gov/fueleconomy/fetrends/1975-2012/420s13001.pdf


Milestones

Milestone Description	Туре	Status			
Budget Period 1					
Define initial PAG lubricant formulations	Technical	Completed			
Define additive components	Technical	Iterative			
Select lubricants showing friction and wear characteristics (on preliminary bench friction & wear tests) equal to or better than 75W-140 lubricant	Go / No-Go	Iterative			
Budget Period 2					
Demonstrate formation of durable antiwear film	Technical	On Track			
Demonstrate thermal performance of formulations	Technical	On Track			
Select lubricants showing friction and wear characteristics equal to or better than 75W-140 lubricant	Go / No-Go	Pending			
Budget Period 3					
Demonstrate 2% improvement in vehicle level fuel economy	Technical	Pending			
Demonstrate durability in system (axle) level test	Technical	Pending			
Axle efficiency showing improvement over 75W140 lubricant	Technical	Pending			

Approach / Strategy

Fundamental understanding through laboratory bench tests

- Lubricant Formulation
 - Selection of modified PAG oils
 - Matching viscosity target
 - Selection and rough optimization of additive package
 - Laboratory oxidation tests
 - Copper corrosion tests
 - Rust prevention tests
 - Friction tests (MTM, Pin-on-disk, HFRR, Block-on-disk)

- Wear tests (Four Ball, Falex EP, Pin-on-disk, HFRR)
- Fatigue and micro-pitting tests

Approach / Strategy

System level evaluations

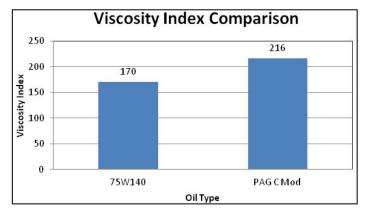
- Thermal and oxidative stability (L-60) tests
- Moisture corrosion resistance (L-33-1) tests
- Load carrying properties under low speed and high torque conditions(L-37)
- Load carrying properties under high speed and shock loading conditions (L-42)

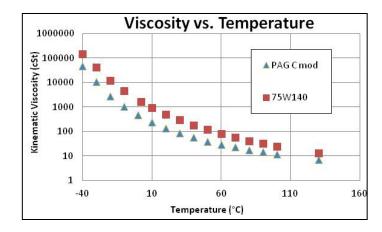
Approach / Strategy

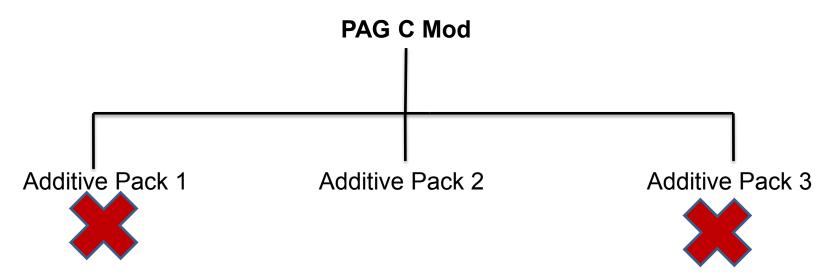
System level (more complex) and vehicle level evaluations

• Hypoid gear wear test (Ford proprietary)

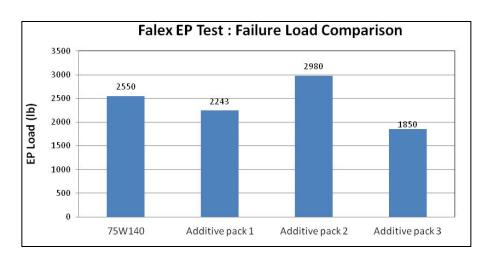
• Axle efficiency test (Ford proprietary)

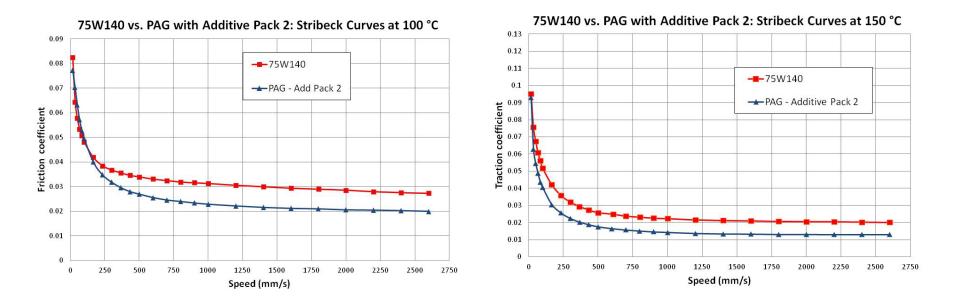

Chassis roll fuel economy and emissions tests


Lubricant Selection


- PAG C Mod was selected from seven PAG oils based on rheological properties
- Additive package selection
 - Three packages were initially selected based on experience
- Chemical properties evaluation
 - Thermal and Oxidative Stability of Lubricating Oils test (Modified ASTM D 5704)
 - Copper Corrosion test (ASTM D130)
 - Rust Prevention test (ASTM D665A)
 - Material (Seal) Compatibility test

• Friction and wear properties evaluation

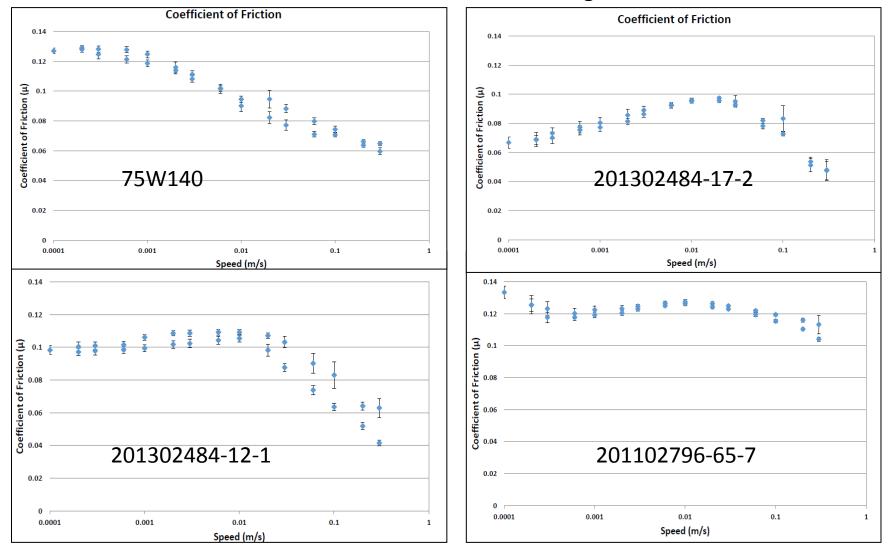

- Falex EP test (ASTM D 3233 test method A)
- 4 Ball wear test
- Mini-Traction Machine (sliding/rolling friction)
- Pin-on-disk test (sliding friction)
- High Frequency Reciprocating Test (sliding friction)
- Block-on-ring test (load to failure)



- Additive package 1 & 3 chemistry showed lower failure loads (Falex EP test) compared to 75W140 formulation and thus eliminated
- Additive package 2 showed improved performances over 75W-140 in all tests with little debit on copper corrosion test
- Focused on optimizing additive package 2

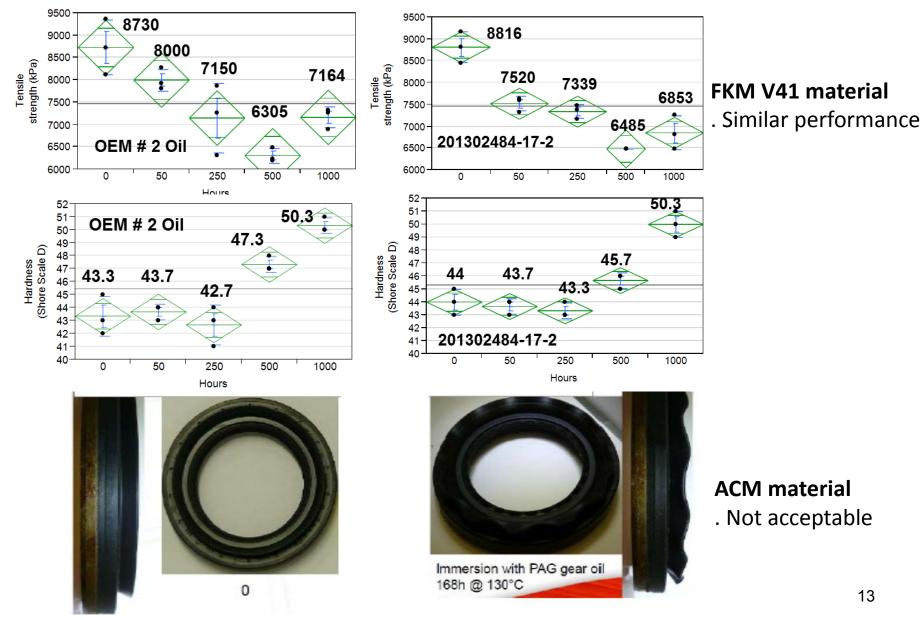
Traction Coefficient Comparison: Additive Pack 2

PAG oil showed lower traction coefficients than 75W140


Formulation	TOST	4 Ball wear (mm)	Falex EP (lb)	4 Ball EP (kg)	Ball on disc (ball wear) (mm)	Ball on disc (disc wear) (mm)	Rust Prevention	Copper Corrosion
75W140 Benchmark	20% viscosity increase ▲ TAN = 1.5	0.42	2807	420			Pass	2A
201302484-17-2 201302484-58-1 (Option 2_1)	4.7% viscosity increase ▲ TAN = 0.4	0.58	3609	400	0.48	0.47	Pass	1B
201302484-38-1 (Option 2_1_a)	13% viscosity increase ▲ TAN = 0.5	0.5		340				1B
201302484-39-1 (Option 2_1_b)	6% viscosity increase ▲ TAN = 0.2	0.58		340				1B
201102796-70-9 (Option 2_1_c)	5.8% viscosity increase ▲ TAN = 0.7	0.47	4500		0.39	0.36	Pass	1B
201302484-67-6 (Option 2_1_d)	8.8% viscosity increase ▲ TAN = 0.66, Some Deposits		3263		0.34	0.31	Fail	1B
201102796-71-5 (Option 2_1_e)					0.33	0.29	Pass	1B
201302484-18-2 (Option 2_2)	9.5% viscosity increase ▲ TAN = 0, Deposits	0.53	3318	480			Marginal	1A
201302484-12-1 (Option 2_3)	13.4% viscosity increase ▲ TAN = 1	0.55	NA	380	0.39	0.34	Pass	1B

Option 2_# : Products use additive pack # 2

Option 2_1_a-e: Products use the core 2_1 additive pack with minor component tweaks


: Current state of formulation

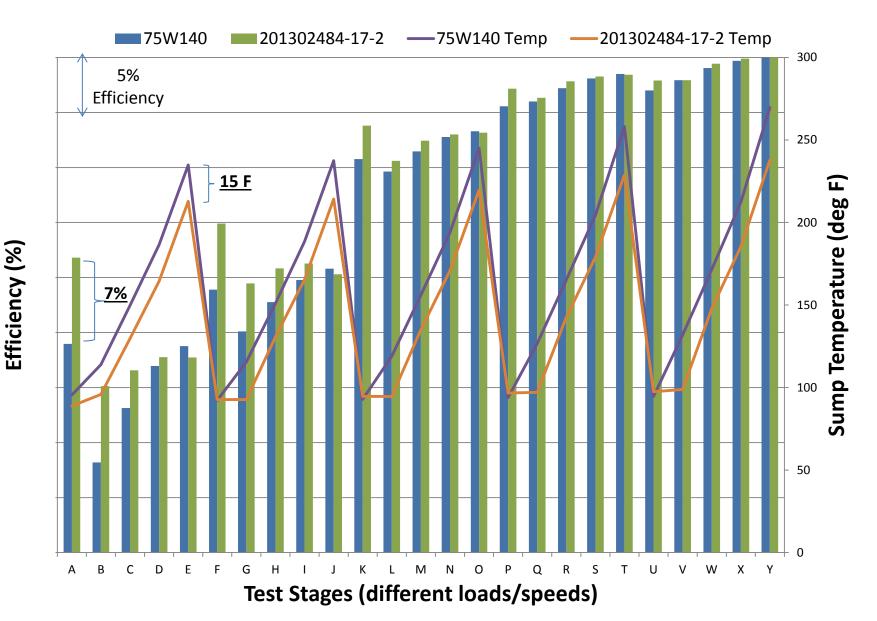
Pin-on-Disk test at 100 deg C

201302484-17-2 show lower coefficient of friction than 75W140

Seal Material Compatibility (1000 hrs at 150C)

Load Carrying Capability under Low Speed High Load Conditions (L-37)

Oil Code: 201302484-17-2


	Acceptance Criteria	Original Ring Rating	Original Pinion Rating
Wear	8	7	6
Rippling	8	8	5
Ridging	8	8	8
Pitting / Spalling	8	9.9	9.7
Scoring	8	10	10

Fluids		KV @40C
75W140	25.2 cSt	183.9 cSt
PAG 17-2	12 cSt	59 cSt

EXPERIMENTAL GEAR OIL PINION DRIVE SIDE

Technical Accomplishments and Progress PTU Efficiency Testing

Collaboration and Coordination with Other Institutions

• Dow Chemical – Collaborator (not accepting DOE fund)

- Responsible for
 - PAG oil formulations
 - Viscometric characterizations
 - ASTM tests (L-33-1, L-37, L-42, L-60)

• Argonne National Laboratory – Subcontractor

- Responsible for
 - Laboratory bench tests for friction and wear evaluation
 - Pin-on-disk tests
 - Block-on-ring tests
 - Reciprocating roller-on-disk tests
 - Fatigue and micro-pitting tests
 - Understand friction reduction mechanism through analysis of wear surfaces using x-ray photoelectron spectroscopy, Raman spectroscopy etc.

Remaining Challenges and Barriers

- Improve rippling performance in L-37 test (wear protection capability)
- Demonstrate load-carrying capability under high speed and shock loading conditions (L-42)
- Demonstrate thermal and oxidative stability (L-60)
- Demonstrate vehicle fuel economy benefits
- Lack of participation of any additive company

Proposed Future Work

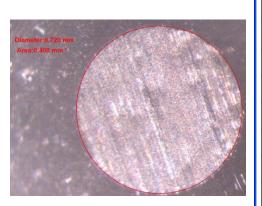
Remaining FY 15

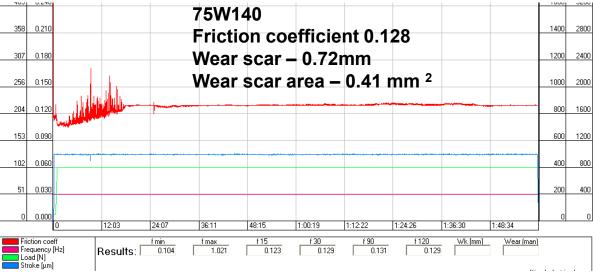
- Assess fatigue and micro-pitting performance
- Understand rippling (L-37 test) characteristics and reformulate
 - Ensuring no degradation in other performance attributes
- Explore other PAG base oils
- Assess performances in
 - L-60 test (Thermal and oxidative stability
 - L-33-1 test (Moisture corrosion resistance)
- Understanding friction reduction mechanism
 - Through analysis of wear surfaces

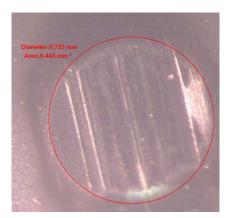
Proposed Future Work

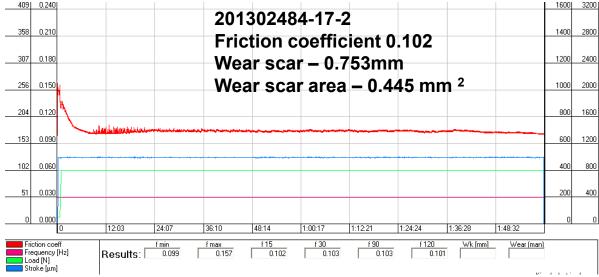
FY 16

• System and Vehicle Evaluation

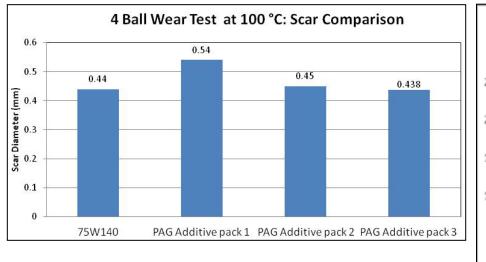

- System Evaluation
 - Axle efficiency tests
 - Load carrying capability (L-37) tests
 - Load carrying capability (L-42) tests
 - Hypoid gear wear tests
- Vehicle level tests
 - Vehicle Fuel Economy Tests

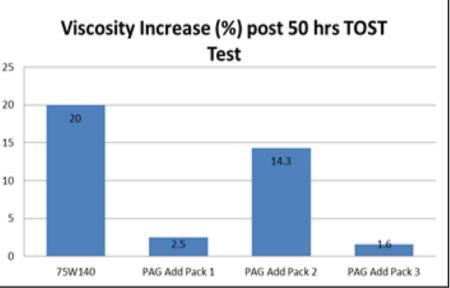

Summary Slide

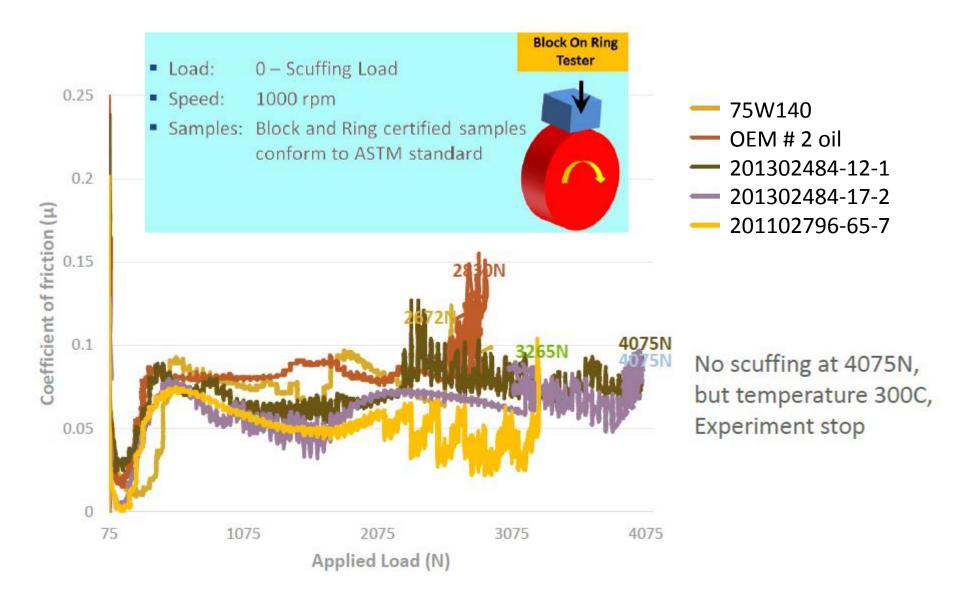

- Identified various test methods and test conditions for evaluating PAG formulations against SAE 75W-140
- Identified a PAG base oil and selected one additive package delivering bench test performances equal to or better than SAE 75W-140
- Preliminary results showed encouraging L-37 test performance with minor issue with rippling
- Power Transfer Unit results showed up to 7% efficiency improvement and 15F lower temperature in low torque stages


Technical Back-Up Slides

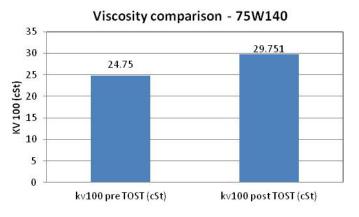
AW / EP Performance (SRV)





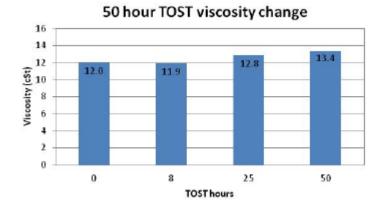

Wear & Oxidation Performance Data

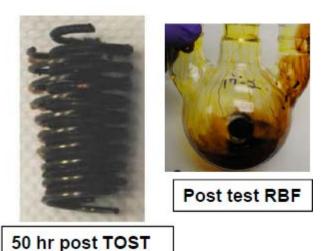
 3 different additive packages with PAG oil show comparable wear to the benchmark 75W140 formulation


All add packs show improved oxidation resistance

201302484-17-2 showed much improved load carrying capability than 75W140

Thermo-oxidative Stability Performance


75W140 at 150C / 50 hours



201302484-17-2 at 150C / 50 hours

Rust Prevention (ASTM D665A)

• All the three additive packages meet the rust prevention test requirement as outlined in ASTM test method 665A