Multi-Speed Range Electric Motor R&D

Lixin Tang Email: <u>tangl@ornl.gov</u> Phone: 865-946-1526

Oak Ridge National Laboratory

U.S. DOE Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting

June 9, 2015

Project ID: EDT071

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ORNL is managed by UT-Battelle for the US Department of Energy

Overview

Timeline

- Start FY15
- End FY17
- 17% completed

Barriers

• Efficiency: With single speed range motor, it is difficult to reach 2022 EDT efficiency target of 94%

Budget

- Total project funding
 - DOE share 100%
- Funding received in FY14: \$ 0K
- Funding for FY15: \$ 250K

Partners

- ORNL team members:
 - Tim Burress
 - Curt Ayers

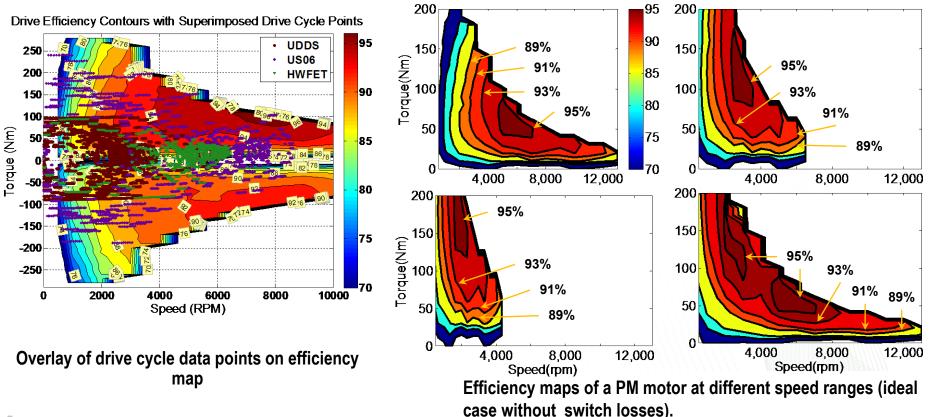
Project Objective and Relevance

Overall Objective

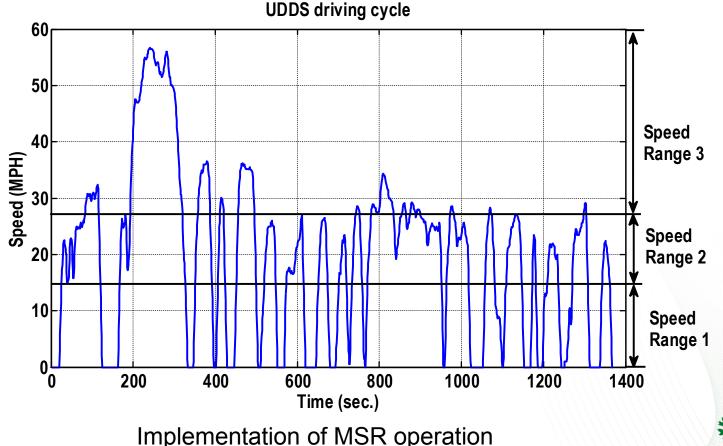
- Designs and strategies will be developed to achieve multi-speed range (MSR) operation in order to provide
 - Higher drive cycle efficiencies
 - $-\operatorname{Solutions}$ address inverter, motor, and combined efficiencies
 - Increased power density and specific power
 - Reduced system cost

FY15 Objectives

- MSR technique development, simulation, and comparison studies to find out the best MSR design
- Verify in simulation that the MSR design can reach EDT 2022 efficiency target
- Benchtop MSR component fabrication/evaluation to verify modeling results


Milestones

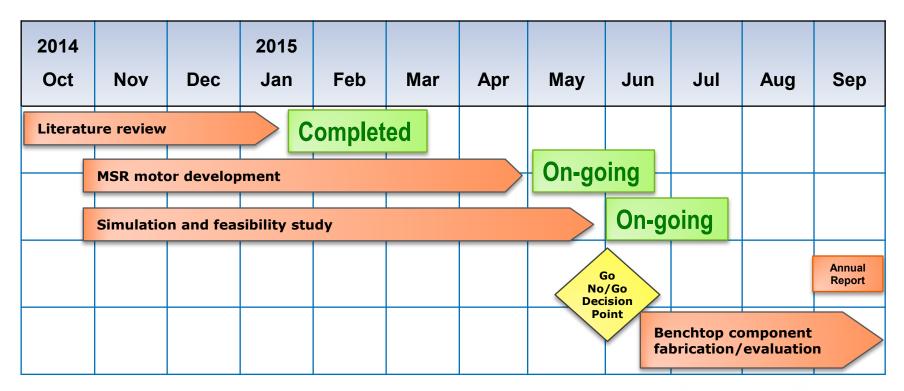
Date	Milestones and Go/No-Go Decisions	Status
2014	New start	
2014	New start	
June 2015	<u>Go/No-Go decision</u> : Determine if at least one MSR motor concept is feasible to achieve 2022 EDT efficiency target, then conduct benchtop testing.	
Sept. 2015	<u>Milestone</u> : Compare various MSR concepts based on simulation results and perform benchtop measurements for at least one concept.	On track


Problem to be Addressed

- HEVs and EVs with only one motor speed range have the following problems:
 - Low motor efficiency points in low-to-moderate torque and speed operation regions are frequented
 - Peak power and high efficiency regions of the motor are infrequently used in normal driving conditions
 - Complex clutches and gear arrangements are required to address these issues above

Approach Strategy to Address Limitations of SOA

- Implementation of MSR operation and the number of available speed ranges will vary depending on the method used
- Basic example of using three-speed range operation.


Approach Strategy to Address Limitations of SOA

- Designs and strategies will be developed to achieve MSR operation with higher drive cycle efficiencies, higher power density/specific power, and lower cost
- MSR motors can accomplish these goals through innovations in
 - Electric motor designs
 - Winding arrangements (e.g. reconfigurable windings)
 - Power electronics integration
 - Control techniques

7

Approach FY15 Timeline

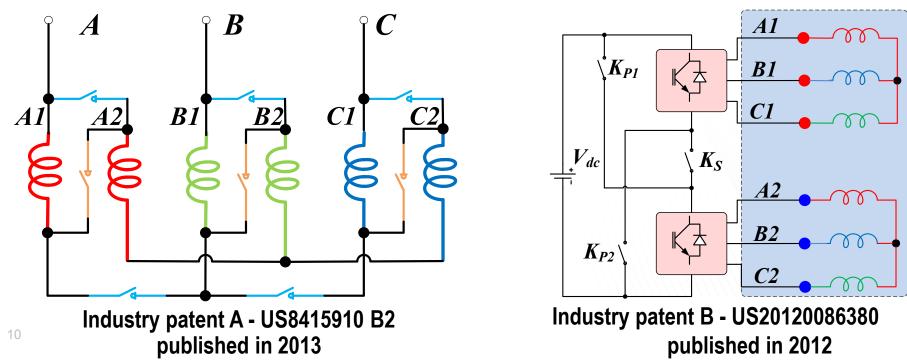
Go No/Go Decision Point: Determine if at least one MSR motor concept is feasible to achieve 2022 EDT efficiency target, then conduct benchtop testing.

Key Deliverable:

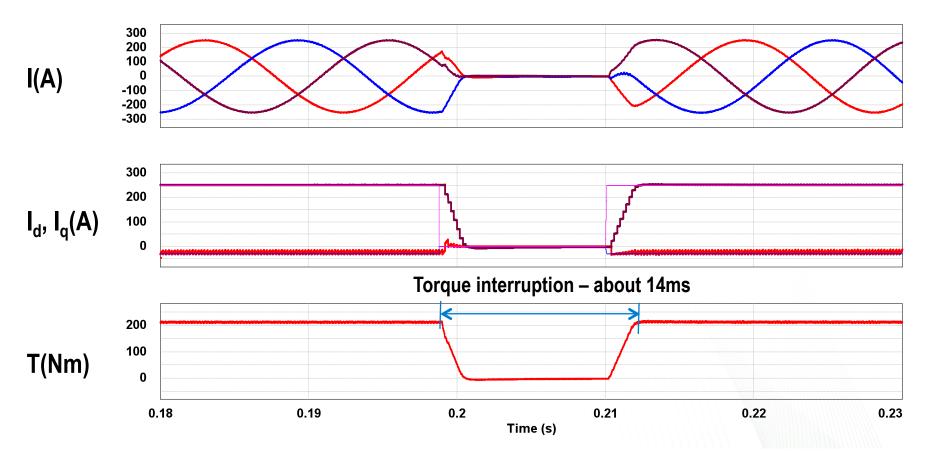
Annual report that includes literature review, feasibility studies and benchtop tests.

Technical Accomplishments FY 15 (1)

Literature review completed


- No commercial MSR motor products on the market yet
- Some MSR research targets low power applications such as electric scooter, electric bike, etc...
- Majority of MSR techniques reported utilize reconfigurable windings
 - Additional power switches are needed to change stator winding configurations
 - AC contactors and/or solid-state AC switches are used
 - Switching winding configuration in a MSR motor generates torque and current transients

Technical Accomplishments FY 15 (2)


Literature review - important patents

- Patent A uses 8 switches to achieve two speed range operation
- Patent B only uses 3 switches to achieve two speed range operation
 - Switches on the dc bus increase stray inductance; not suitable for high power electric vehicle applications
 - Possible short-circuit in case of accidental turn on of switches (K_S , K_{P1} and K_{P2}); additional short-circuit protection is required
- During speed range change, undesirable torque interruption occurs

Technical Accomplishments FY 15 (3)

Demonstration of torque interruption by simulation

- Simulations using a typical traction drive motor showed a 14 ms torque interruption
- New designs have the potential to mitigate torque transient

Technical Accomplishments FY 15 (4)

Simulation and feasibility study - important efficiency improvement achieved with MSR operation

 By using different strategies to actively re-locate high efficiency regions to lower speed/power regions, it is confirmed that the average drive cycle efficiency can be increased by roughly 5~6% with option 2 system (ideal case: without switch conduction losses).

	US06 (Aggressive)	UDDS (City/stop-go)	HWFET (Highway)	Combined
2013 Prius Motor only	86.9	80.7	89.9	84.7
2013 Prius Inverter only	91.8	81.0	95.95	87.6
2013 Prius System	81.7	69.1	86.6	76.7
Option 1 System	83.6	75.5	87.5	81.5
Option 2 System	86.3	78.7	87.8	83.0

Average drive cycle efficiencies show MSR improves efficiencies

Option 1 - Two-speed approach

Technical Accomplishments FY 15 (5)

Simulation and feasibility study - MSR reduces drive cycle energy losses by 24% - modeling results

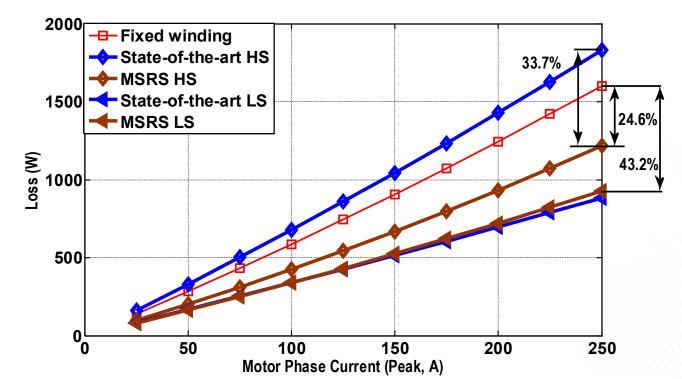
- The drive cycle total energy loss can be reduced by roughly 30% in US06 and UDDS drive cycle simulations (ideal case: without switch conduction loss)
- In combined drive cycle (US06 + UDDS + HWFET), the energy reduction is 23.6%

	US06 (X10 ⁶ Joules)	UDDS (X10 ⁶ Joules)	HWFET (X10 ⁶ Joules)	Combined (X10 ⁶ Joules)
2013 Prius System	1.374	1.621	0.803	3.798
Option 2 System	0.966	1.167	0.766	2.899
Loss Reduction (%)	29.7	28.0	4.61	23.6

Technical Accomplishments FY 15 (6)

Designed a novel MSR system called MSRS (under review for patent application)

- Uses fewer solid state switches to change speed range less added cost/weight
- Does not insert switches in dc bus will not increase dc bus stray inductance and potentially electromagnetic interference.
- Does not have a battery short circuit failure mode



Technical Accomplishments FY 15 (7)

MSR system development, simulation, and feasibility study

- Compared to the conventional (fixed winding) case
 - 24.6% reduction in losses at high speed (HS: above 1000 rpm) operation
 - 43.2% reduction in losses at low speed (LS: below 1000 rpm) operation
- Compared to the state-of-the-art (SOA) case
 - 33.7% reduction in losses at HS operation
 - Similar losses at LS operation

15

Technical Accomplishments FY 15 (8)

MSRS simulation and feasibility study – significant loss reduction achieved (losses in solid state switches considered)

- At low speed, the loss reductions of MSRS and SOA are similar
- At high speed, using the SOA system, losses increase by 14%
 - However, using the MSRS, the losses decrease by 24.6%
- MSRS uses fewer solid state switches than SOA system

	Fixed winding Motor loss (W)	SOA system loss (W)	MSRS loss (W)
Maximum current in LS mode	1620	890	920
Maximum current in HS mode	1620	1840	1220
Loss change over fixed winding motor(LS/HS)		- 45% (LS) + 14% (HS)	- 43.2% (LS) - 24.6% (HS)

Loss comparison – proposed MSRS reduces losses in both modes

Partners/Collaborators

- New start
- Actively seeking partners at this time.

Remaining Challenges and Barriers

- Cost of additional parts (e.g. extra rotor or switches/controls)
- Complexity of motor geometries and assemblies required to achieve MSR

Proposed Future Work

Remainder of FY15

- Feasibility studies and benchtop tests of MSR motor components
 - Develop, simulate and compare different MSR techniques
 - Fabricate/evaluate benchtop components
- FY16
 - Simulation, optimization, and testing of the benchtop prototype
 - Continue feasibility study on different MSR technologies
 - Perform simulation/optimization on the benchtop prototype
 - Build/test the benchtop prototype
- FY17
 - Select the final approach, system modeling, optimization and testing of final prototype
 - Select final design
 - Perform system modeling/optimization on the final prototype
 - Build/test the final prototype

Summary

- Relevance: This project targets drive cycle efficiency, weight, and improvement in performance and lifecycle
- Approach: MSR motors can accomplish these goals through winding arrangements (e.g. reconfigurable windings), power electronics integration, control techniques, and electric motor designs
- Collaborations: Actively seeking collaborations in motor industry partners to facilitate transition to industry
- Technical Accomplishments:
 - Literature review shows most MSR research are still under R&D
 - MSR motor reduces drive cycle loss by about 24% in a combined drive cycle
 - Proposed MSRS concept uses fewer solid state switches and does not have a battery short circuit failure mode
 - MSRS achieves significant loss reduction over a fixed winding motor
- Future Work:
 - Drive cycle loss analysis and components fabrication/evaluation (FY15)
 - Build/test benchtop prototype (FY16) and final prototype (FY17)
 - Commercialization plan: In-depth discussions will be held with automotive OEMs to maintain awareness of the advancements made on ORNL's motor project