

Advanced Solutions Group 4880 Venture Drive, Suite 100 Ann Arbor, MI 48108

Low-cost, High-capacity Lithium Ion Batteries through Modified Surface and Microstructure

Pu Zhang June 9, 2015 Project ID: ES238

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Barriers

Timeline

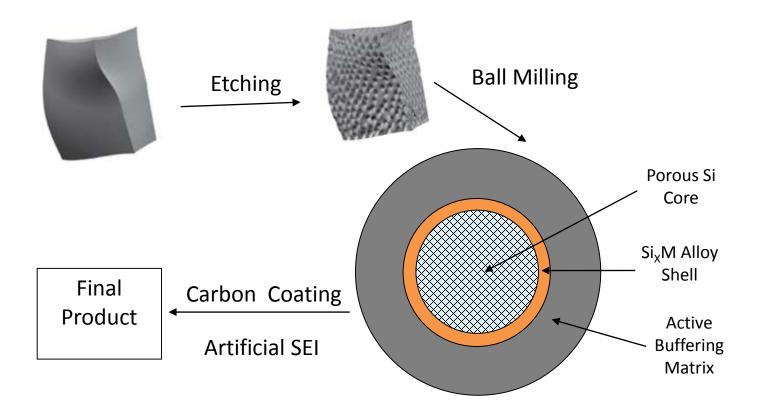
 Project start date: July 28, 2014 Project end date: July 27, 2016 Percent complete: 50% 	 High energy Li-ion battery (300 Wh/kg) by 2015 Low cost, long cycle life Si anodes are required
 Budget Total project funding: \$1,000,000 DOE share: \$1,000,000 Funding received in FY14: \$562,830 Funding for FY15: \$437,170 	Partners Funded Partner: Navitas ASG

L

- Project Goal:
 - Produce a practical and economical high capacity silicon-based anode material for lithium ion batteries
- Phase I Objectives:
 - + Develop macroporous Si anode with capacity >600 mAh/g and ICL <15%
 - + Verify scalable process to support pilot scale validation
 - + Demonstrate cycle life >300 at 100% DOD and >600 at 80% DOD

• Phase II Objectives:

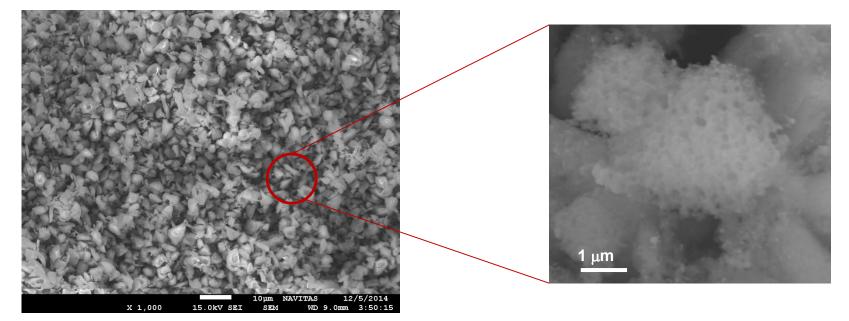
- Optimize the process to produce macroporous Si composite anode with >800 mAh/g and <12% ICL
- Develop the anode material with surface area <20 m²/g, tap density >0.9g/cm³ to support >4 mAh/cm² coating
- + Scale up to 500g/batch
- + Fabricate >2 Ah lithium ion cell with anode coating >4 mAh/cm²
- + Achieve Si-composite anode cycle life >1000 at 80% DOD in full lithium ion cell


Milestones

	Months ARO									%															
ТАЅК		Year 1					Year 2																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Effort
1. Porous Si preparation																									10%
2. Si composite synthesis																									15%
3. Conformal carbon coating																									5%
4. Artificial SEI coating																									13%
5. Anode process scale-up																									15%
6. Electrode Coating																									17%
7. Cell assembly and test																									20%
8. Process modeling																									5%
Milestones									1			2						3			4			5	100%

	Milestone	Metric	Date	Status	
1	Anode capacity and ICL	- Capacity >800 mAh/g - ICL <12%	05/2015	- Capacity >800 mAh/g - ICL <15%	On track
2	High loading Si anode	 Tap density >0.9 g/cm³ Surface area <20 m²/g Anode loading 4 mAh/cm² 	08/2015	 Tap density 0.83 g/cm³ Surface area <20 m²/g loading at 4 mAh/cm² 	On track
3	Process scale up	>500g batch	02/2016	Identification of the scale-up equipments	On track
4	Prototype Li ion cell deliverable	10 prismatic cells >2Ah	05/2016	Active material qualification	On track
5	Cycle life demonstration	>1000 cycle at 80% DOD	08/2016	Active material qualification	On track

Si composite process

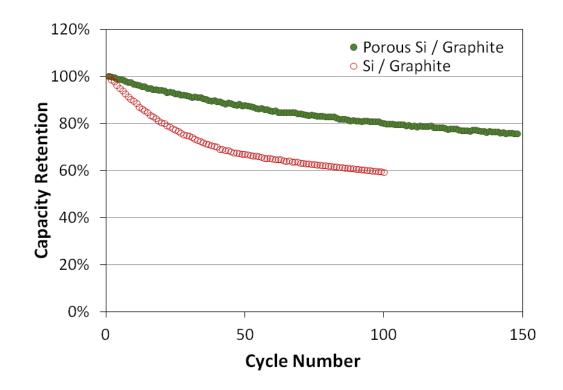


Technical Progress

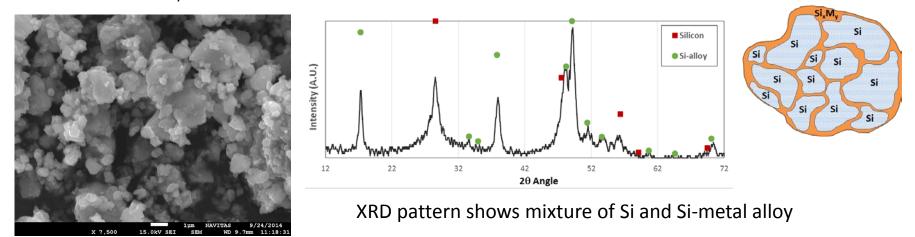
	Objectives	Results	Status		Details	
1	Produce macroporous Si composite anode with >800 mAh/g and <12% ICL	- Capacity >800 mAh/g - ICL <15%	Optimizing the process to reduce ICL	On track		
2	Develop the anode material with surface area <20 m ² /g, tap density >0.9g/cm ³ to support >4 mAh/cm ² coating	 Tap density 0.83 g/cm³ Surface area 15 - 20 m²/g Anode loading 4 mAh/cm² 	Optimizing the composition to increase the tap density	On track	Slides 7 - 11	
3	Process scale up	Qualified the Ball Milling and Carbon Coating processes in large scale equipments	Developing Etching and Artificial SEI coating processes in pilot scale	On track	Slide 12	
4	Prototype Li ion cell deliverable	Tested coin half cells and single-layer-pouch (SLP) Li ion cells	Will fabricate large format cells in next period	On track	next review	
5	Cycle life demonstration	Evaluated GEN1 material in half cells and SLP cells as a baseline	Improving the material towards GEN2 and demonstrate cycle life in next period	On track	Slides 7 - 11, 13	

Step 1: Porous Si

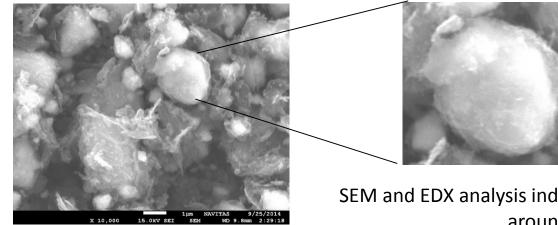
• Conventional HF etching process

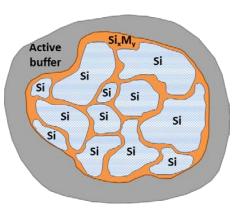

Cathode reaction	$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O, E^0 = 1.78V$
Anode reaction	$Si + 2H_2O \rightarrow SiO_2 + 4H^+ + 4e, E^0 \cong 0.91V$ $SiO_2 + 6HF \rightarrow [SiF_6]^{2-} + 2H_2O + 2H^+$
Total reaction	$Si^0 + 2H_2O_2 + 6F^- + 4H^+ \to \{SiF_6\}^{2-} + 4H_2O$

• An alternative non-HF process is being developed


Cycle life of porous Si vs. non-porous Si

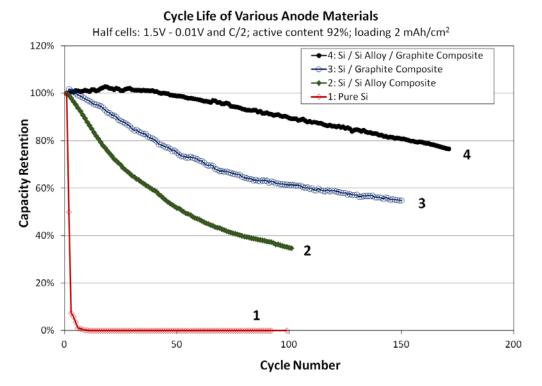
- Both materials are Si-graphite composites
- tested in half cells: 1.0V 0.01V at C/2
- Porous Si composite shows >100% improved cycle life vs. non-porous Si composite




Step 2: Si / Alloy / Carbon Composite (Objectives 1, 2, & 5)

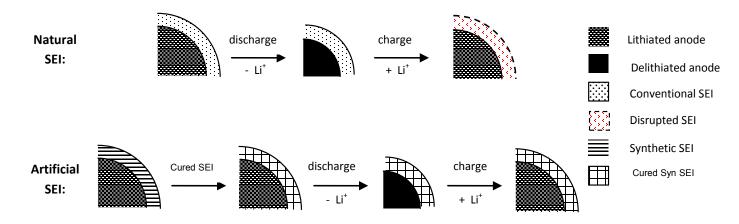
Step 2A: Si / Si_xM_y Alloy Composite

Step 2B: Si / Alloy /Carbon Composite



SEM and EDX analysis indicates active buffering coating around the Si /alloy matrix

Si Composite Advantage (Objectives 1, 2, & 5)

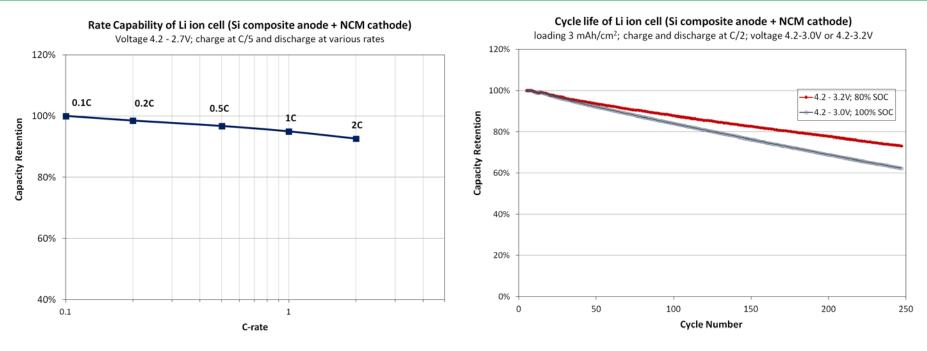

- Cycle life improvement from **Si-metal alloy protection**
 - Plot 2 vs. Plot 1
 - Plot 4 vs. Plot 3
- Cycle life improvement from graphite matrix buffering
 - Plot 3 vs. Plot 1
 - Plot 4 vs. Plot 2

• Step 3A: carbon coating

Carbon Coating (Y/N)	Tap Density (g/cc)	BET Surface Area (m ² /g)	Reversible Capacity (mAh/g)	ICL
No	0.64	160	1062	24%
Yes	0.83	18	864	15%

• Step 3B: Artificial SEI – will be developed for GEN2 material

Process	Phase I		Phase II			
Process	Equipment	Batch size (g)	Equipment	Batch size (g)		
Chemical etching	Hot plate and flasks		Pilot scale reactor			
High energy ball milling	SPEX 8000 mill	<20	Industrial ball mill	>500		
Carbon coating	2" tube furnace		6" tube furnace	2500		
Artificial SEI forming	Hot plate and flasks		Pilot scale reactor			


- Qualified the large scale equipments for ball milling and carbon coating processes
- Will qualify the pilot scale reactors for etching and artificial SEI forming processes

6" Tube Furnace

Li-ion Cell Evaluation on GEN1 Anode (Objectives 5)

- GEN1 material was developed as a baseline to qualify the large scale processes
 - Rate capability :
 - >90% retention at 2C; comparable to graphite
 - Cycle Life:
 - 130 cycles (100% DOD) and 180 cycles (80% DOD) at 80% capacity retention
- GEN2 material is under development (to be completed by Month 18)
 - Optimize material composition, synthesis parameters, and surface treatment processes
 - Meet the cycle life target

This project is a new start

- Navitas Advance Solutions Group (ASG) is a sub-contractor to provide electrode fabrication, cell assembly and cell testing labor in support of the program. ASG is a whollyowned subsidiary of Navitas Systems
- Navitas is evaluating pilot scale partners for Si precursors
- Navitas will collaborate with Li ion battery OEMs (A123 and XALT Energy) for anode evaluation

- Reduce the ICL to <12%
 - ICL has been reduced from 25% to 15%
 - Need to further reduce it to <12% that is comparable to graphite anode
- Scale up the process to >500g
 - Phase I process (20 g) has been transferred to pilot scale equipments
 - Need to demonstrate >500g batch for TRL 6
- Achieve a cycle life of 1000 at 80% DOD
 - All of the qualifications are at EV relevant levels
 - Anode active content 92%
 - Anode loadings 2 4 mAh/cm²
 - Need to meet the cycle life target for EV battery

- Optimize synthesis condition and surface modification process to reduce ICL to <12%
- Develop GEN2 anode material by optimizing material composition and synthesis conditions
- Develop artificial SEI coating to improve the performance
- Scale up the process to > 500 g
- Demonstrate performance in EV relevant prototype Li ion cells

- GEN1 material has been developed with 800 mAh/g capacity and 15% ICL
- The advantages of "porous Si", "Si alloy protective phase", and "active buffering matrix" have been confirmed
- Carbon coating is effective to lower the surface area and reduce the ICL
- Qualification of pilot scale equipments are being conducted. The projected readiness is TRL 6 for the material upon completion of the program
- Improvement towards GEN2 material has been started (including material composition, synthesis parameters, and surface treatment development) to meet the program goal