

Ion-Exchanged Derived Cathodes (IE-LL-NCM) for High Energy Density LIBs

(with Farasis Energy Inc. IC3P as lead: ES213)

Christopher S. Johnson (P.I.), Arturo Gutierrez, Dehua Zhou, Eungje Lee

> Argonne National Laboratory Chemical Sciences and Engineering Division

> > Annual Merit review, Washington DC June 8-12, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID: ES257

Overview

Timeline

- Start: October 1, 2013
- End: Sept. 30, 2015
- Percent complete: 80+%

Budget

• 276K/2 yr.

Barriers

 Calendar/cycle life of lithiumion cells being developed for PHEV and EV batteries that meet or exceed DOE/USABC goals

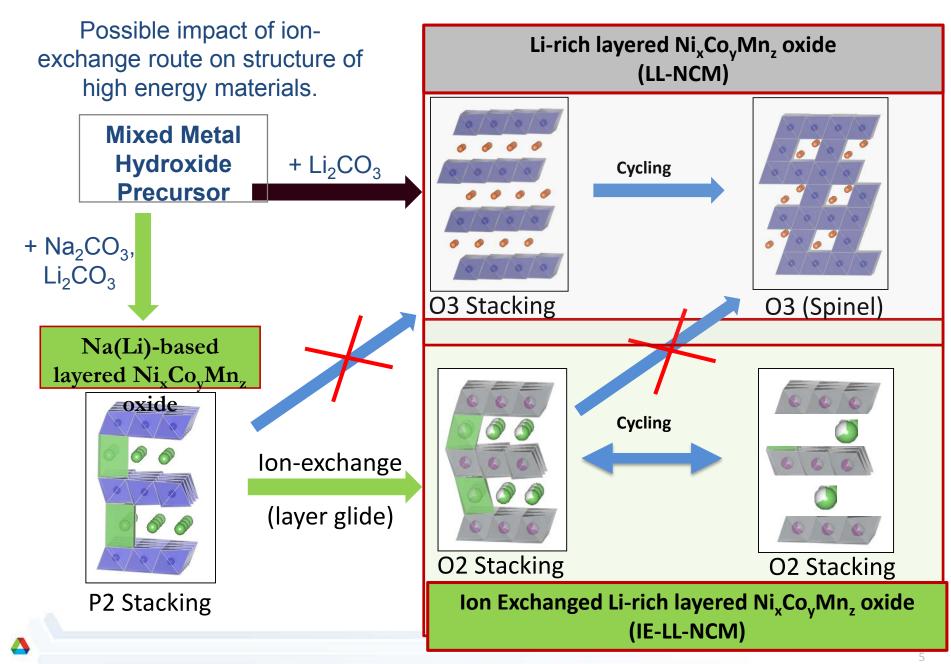
Partners

- Farasis Energy Inc.
- LBNL

Relevance

- New cathode materials are required to improve the energy density of Li-ion cells for transportation technologies.
 - –LMR-NMC class of layered compounds : Best known cathode option to date
 - -However, voltage fade (VF) in LMR-NMC causes unacceptable energy loss
 - –Need to solve structural and electrochemical performance problems
 - -Explore new syntheses routes towards VF-free cathode materials

–Focus on changing stacking sequence in c-axis direction for layered oxide materials


•Remove O3 -> move to O2 stacking (no spinel change during cycling theoretically possible)

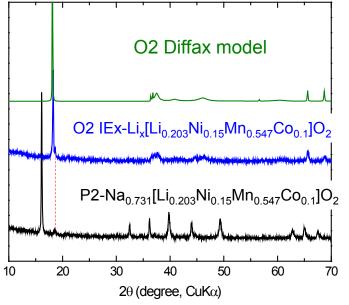
Concepts explored:

- Develop new routes to synthesize high-energy cathode materials
 - This work: Ion-exchanged cathode materials*
- Use stacking faulted cathode material* that is:
 - Stacking faults guided by ion-exchange chemistry of Na-types
 - Li-rich (high-capacity)
 - Structurally 'flexible' stacking faults/sliding of layers which will adjust naturally to Li-content as it cycles
 - No bulk phase transitions expected
 - No deleterious movement of TM cations expected; no spinel formation
 - High-rate capability possible again stacking faults allow fast insertion of Li cations
 - High Mn content -possible good thermal stability, less expensive
- Use new synthesis and advanced characterization methods to examine material
- Test material as cathodes and use VF protocol developed @ Argonne
- Compare to baseline cathode materials (Toda HE5050 : 0.5Li₂MnO₃•0.5Li[Ni_{0.375}Mn_{0.375}Co_{0.25}]O₂); <u>Ni_{0.15}Mn_{0.55}Co_{0.1}</u>
- Work with **Farasis Energy Inc.** to develop full cell chemistry with *new cathode

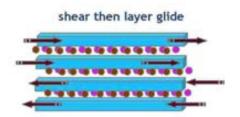
Ion-Exchange Synthesis of Layered-Layered NCM

Milestones of FY'15

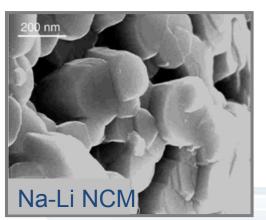
Baseline with Toda HE5050 Completed **Synthesis On-going** Ni-Mn-Co composition variance Completed Na/Li composition variance — Completed Post heat-treatment Completed Ion-exchange conditions variants **On-going** Characterization **On-going** Electrochemical On-going Structural On-going Technology transfer to Farasis Completed

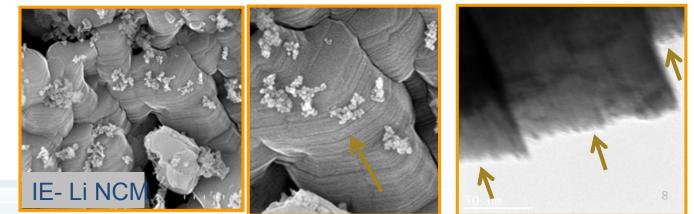

Synthesis flow Example

- Precursor: $(Mn_{0.656}Ni_{0.219}Co_{0.125})(OH)_2$ +Li & Na mixed salts (fired in air)
- Parent: Li_{1.0}Na_{0.2}(Mn_{0.656}Ni_{0.219}Co_{0.125})O_{2+δ}
 - 0.2 Na, + xLi (ion-exchange process; IEx)

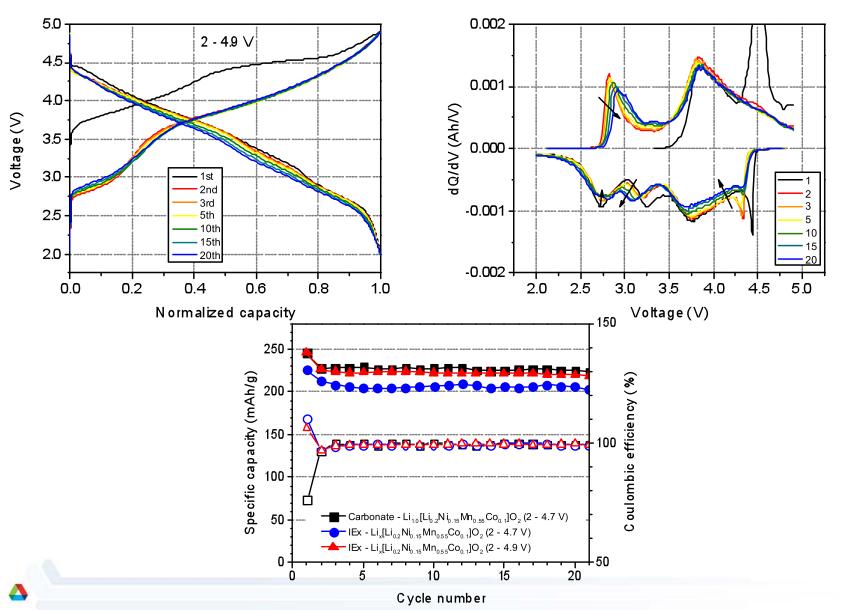

<u>Product</u>: $Li_{1+x}(Mn_{0.656}Ni_{0.219}Co_{0.125})O_{2+\delta}$

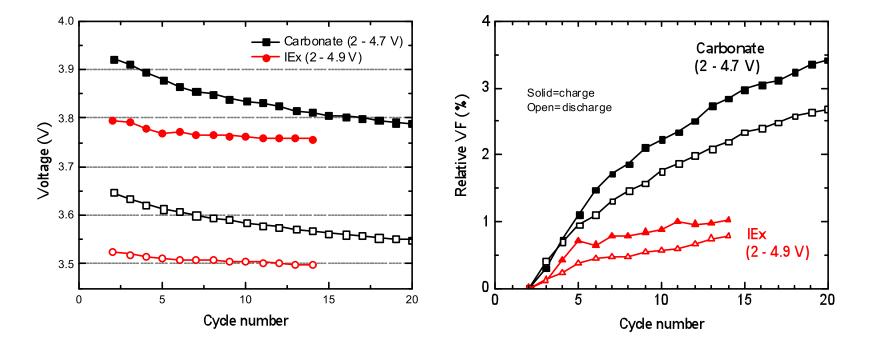
Ion-Exchange Synthesis of Layered-Layered NCM (with Toda HE5050 TM composition ratio)


• X-ray diffraction indicates good layering order but significant disorder in other crystallographic directions suggesting presence of stacking faults.



- Faults in shear order of crystal lattice during ion exchange
 - Still strongly layered
 - Local c-axis disorder
 - DIFFAX modeling: O2 layer stacking is best fit



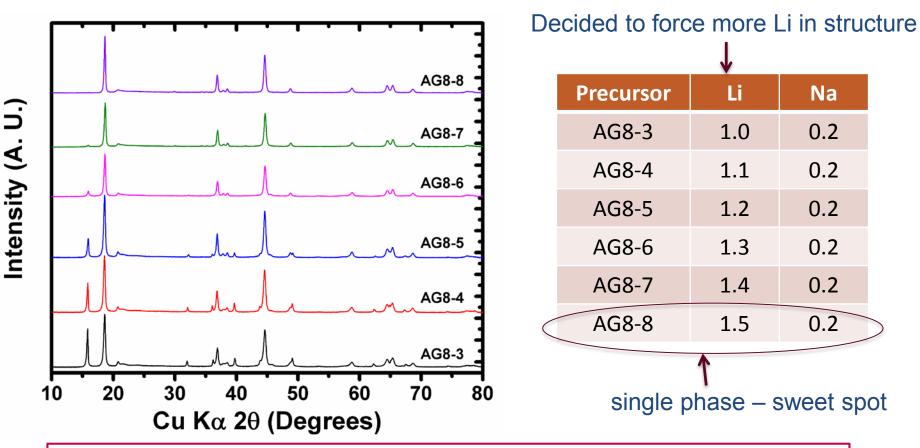


<u>Li_x[Li_{0.2}Ni_{0.15}Mn_{0.55}Co_{0.1}]O_{2-d} IEx derived cathode material (Toda HE5050 composition)</u>

9

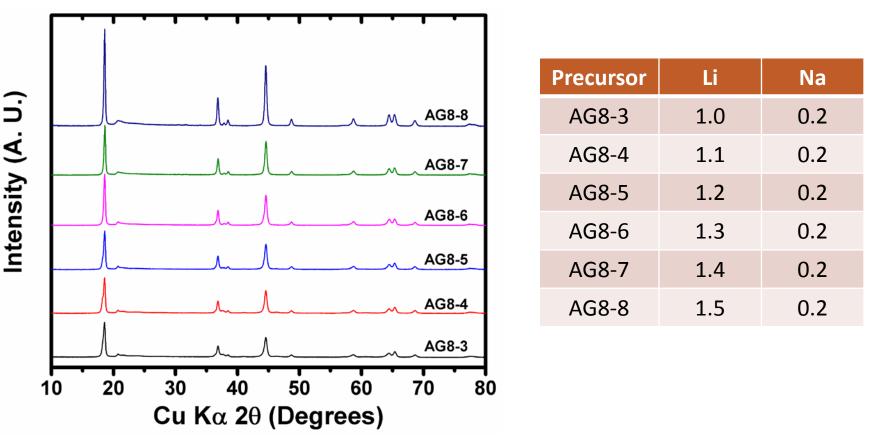
$\underline{\text{Li}_{\underline{x}}[\text{Li}_{\underline{0.2}}\text{Ni}_{\underline{0.15}}\text{Mn}_{\underline{0.55}}\text{Co}_{\underline{0.1}}]O_{\underline{2-d}} \text{ IEx VF result}}$

• Lower operating voltage, but less VF with IEx materials


Li_xNa_{0.2}(Mn,Ni,Co)O_{2+d} : Exploration of mixed metals effect - hydroxide precursors: <u>Na poor, Li rich</u>

Precursor	Mn	Ni	Со
AG7	0.45	0.15	0.4
AG6	0.6	0.2	0.2
AG8	0.656	0.219	0.125
AG10	0.656	0.125	0.219

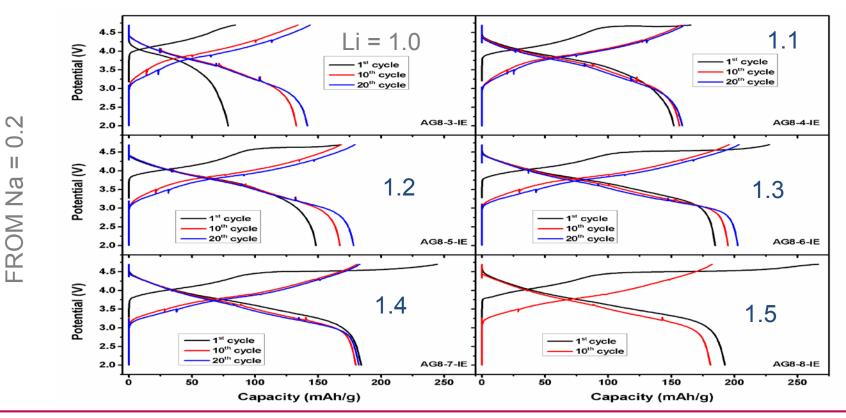
Precursor	Li	Na
AGx-1	0.8	0.2
AGx-2	0.9	0.2
AGx-3	1.0	0.2


• Precursors are co-precipitated hydroxides

AG8 XRD before ion-exchange

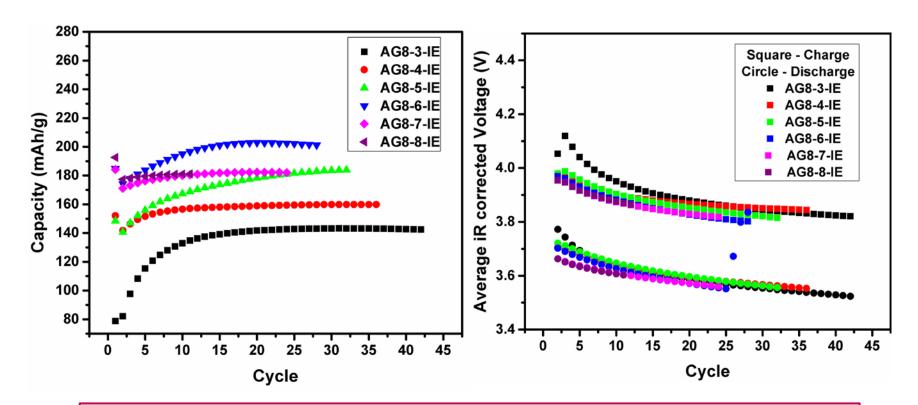
- Material is composed of three phases (P2 and P3-type Na_xMnO₂, Li₂MnO₃, and LNMC)
- Sodium phase peaks decrease with increasing Li content, as expected and are completely gone when Li = 1.5 (Li/Mn+Ni+Co = 1.5)
- No carbonate peaks found in XRD

AG8 XRD after ion-exchange

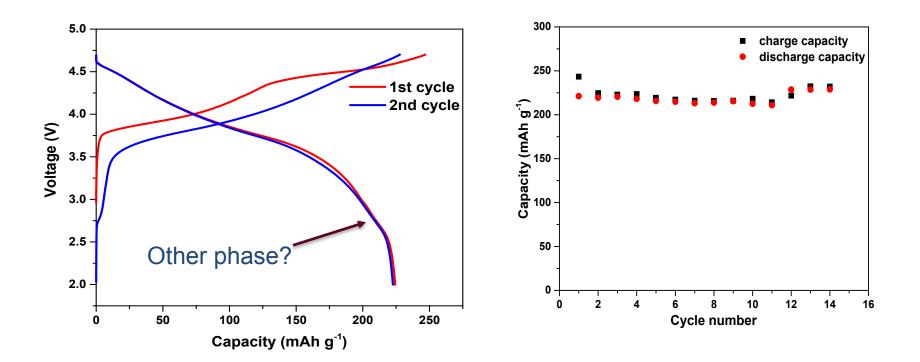


- Ion-exchange using LiBr and hexanol for 24 h w/ nice crystallinity
- Sodium phase peaks disappear
- All peaks after ion-exchange appear to be associated with layeredlayered material (i.e. LMR-NMC)

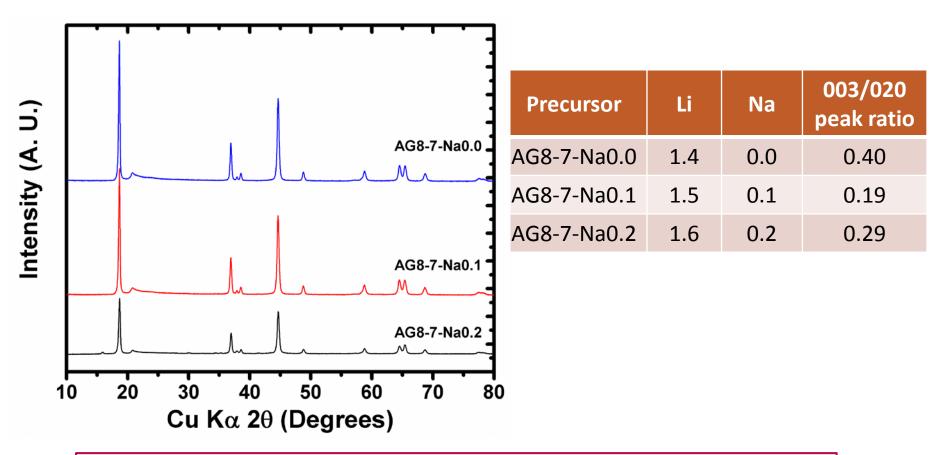
Composition after ion-exchange


Sample	Composition	Two-component notation	Oxidation State in NMC		
	Composition		Mn	Ni	Со
AG8-3	Li _{1.2} Mn _{0.656} Ni _{0.219} Co _{0.125} O _x	0.2Li ₂ MnO ₃ * 0.8LiMn _{0.57} Ni _{0.27} Co _{0.16} O ₂	3.47+	2+	3+
AG8-4	Li _{1.3} Mn _{0.656} Ni _{0.219} Co _{0.125} O _x	0.3Li ₂ MnO ₃ * 0.7LiMn _{0.51} Ni _{0.31} Co _{0.18} O ₂	3.61+	2+	3+
AG8-5	Li _{1.4} Mn _{0.656} Ni _{0.219} Co _{0.125} O _x	0.4Li ₂ MnO ₃ * 0.6LiMn _{0.43} Ni _{0.36} Co _{0.21} O ₂	3.84+	2+	3+
AG8-6	Li _{1.5} Mn _{0.656} Ni _{0.219} Co _{0.125} O _x	0.5Li ₂ MnO ₃ * 0.5LiMn _{0.31} Ni _{0.44} Co _{0.25} O ₂	4+	2.30+	3+
AG8-7	Li _{1.6} Mn _{0.656} Ni _{0.219} Co _{0.125} O _x	0.6Li ₂ MnO ₃ * 0.4LiMn _{0.14} Ni _{0.55} Co _{0.31} O ₂	4+	2.75+	3+
AG8-8	Li _{1.7} Mn _{0.656} Ni _{0.219} Co _{0.125} O _x	0.656Li ₂ MnO ₃ * 0.344LiNi _{0.64} Co _{0.36} O ₂	N/A	3+	3+

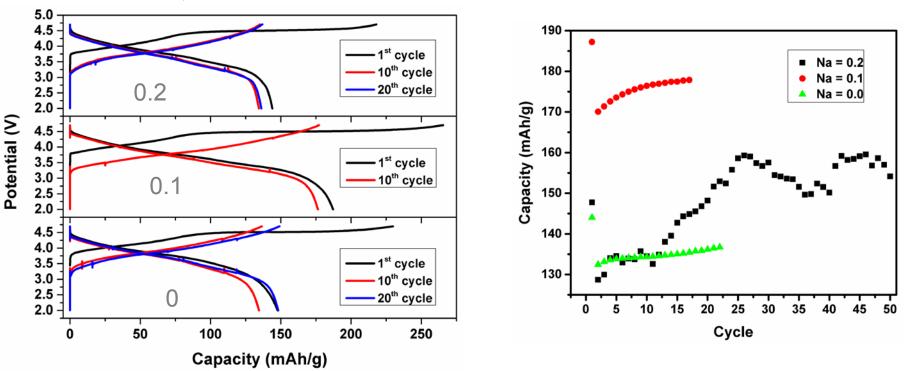
Charge-Discharge curves - 1st, 10th, and 20th cycles - (IEx material tested in Li half cell - VF protocol)


- First cycle capacity increases with lithium content in material
- Further activation of some materials in subsequent cycles increases capacity
- In samples with highest lithium content (AG8-7 and AG8-8) the capacity slightly decreases with subsequent cycling

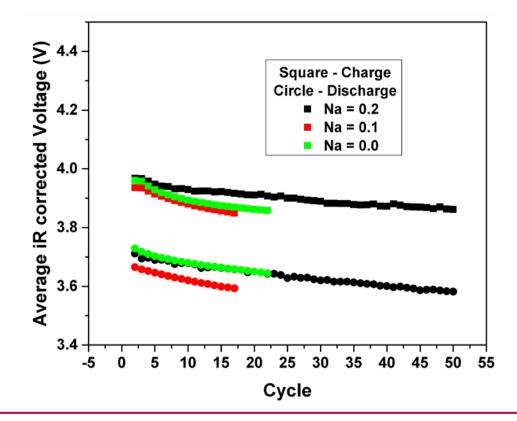
Cycling behavior - (IEx material tested in Li half cell - VF protocol)


- Low capacities
- Initial voltage fade rate decreases for first 10 15 cycles
- Average voltage generally decreases with increasing lithium content
- Amp-hour and Watt-hour efficiencies improve with increasing lithium content in starting material

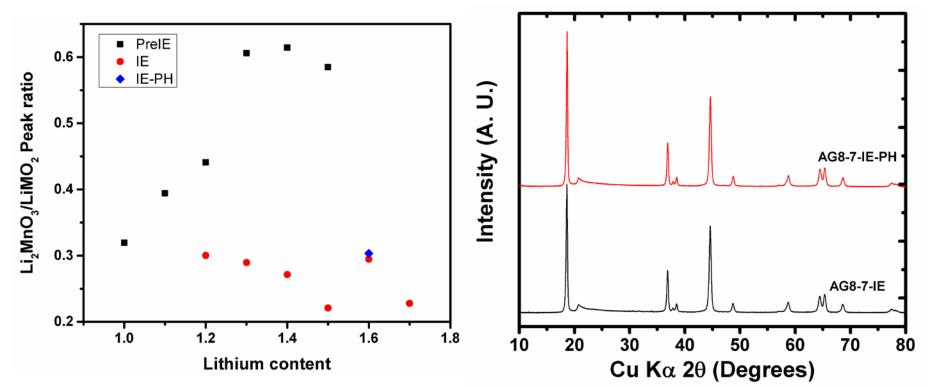
Repeat synthesis run: IEx AG8-3; voltage profile


- Repeatability (composition variance) hard to control in ionexchange process
- High capacities are obtainable from this chemistry

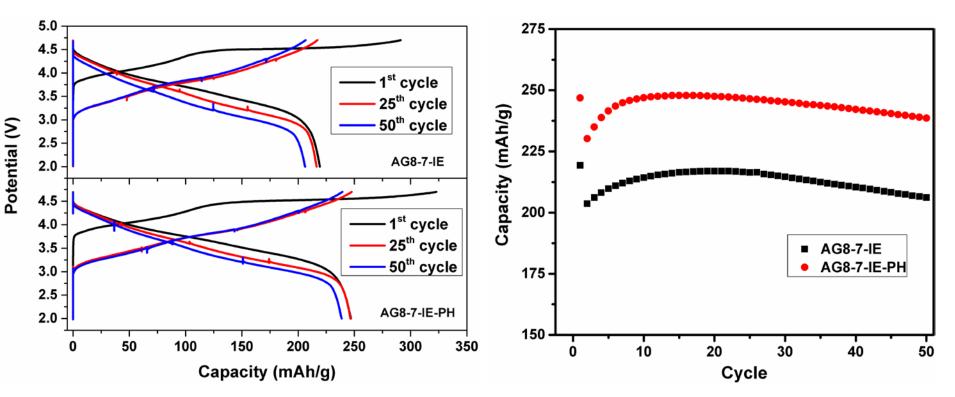
AG8 XRD after ion-exchange


- Ion-exchange using LiBr in hexanol and heating for 24 h
- Sodium phase peaks disappear
- All peaks after ion-exchange appear to be associated with layeredlayered material (i.e. LMR-NMC)

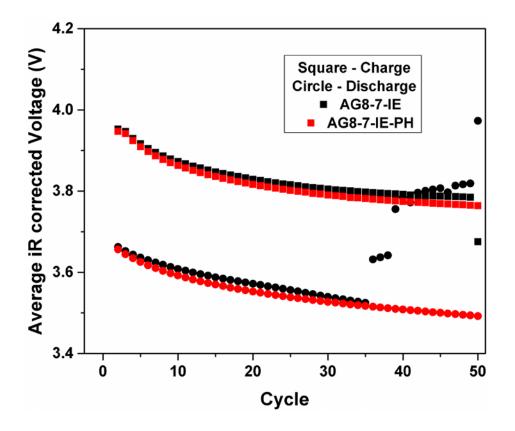
Cycling behavior - Na effect (IE material - VF protocol)


- No obvious trend in capacity was found based on initial Na content
- Initial Li content more dominant

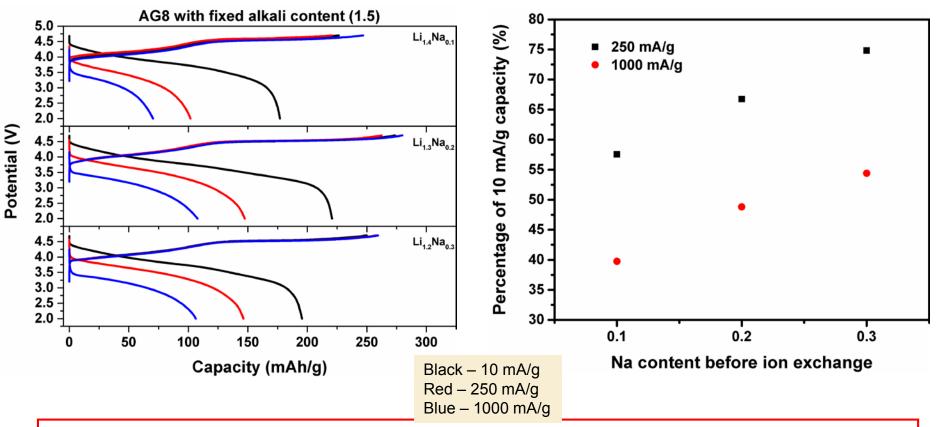
iR Corrected Voltage - Na effect (IE material - VF protocol)


- Highest sodium content lead to higher average resistance during cycling
- Highest sodium content sample displayed lower charge voltage fade

AG8 XRD after ion-exchange


• Post heated sample does not show any significant structural changes

Cycling behavior - Postheated AG8-7-IE (VF protocol)


- Post heat treatment enables a 25 30 mAh/g increase in capacity for all cycles
- Capacity fade appears to be slightly less in post heated samples
- Both samples display similar voltage fade

Average Voltage and Resistance - Postheated AG8-7-IE (VF protocol)

- Voltage fade is slightly worse after post heat treatment
- Both samples decrease in resistance over the 10 15 cycles
- Post heated sample displays higher average resistance

Cycling behavior - AG8 with different starting material Na+Li ratios

Rate capability of samples is improved when the starting material has more sodium content

Summary

- Evaluation of various Mn, Ni, and Co compositions suggest that Mn-rich systems are best in making the Li O3 phase with Na P2 second phase
 - High Li, low Na not the right direction
 - Should use P2 High Na, Low Li in Pre-IEx layered phase
- For Mn-rich, more Li creates Na incorporation in Li O3 structure (pre IEx)
- Ion-exchange process: more crystalline materials from dilution factor in reaction
- Clean pre-IEx material makes better Ion Ex product in terms of echem
- Capped out with capacity about 200-205 mAh/g
 - Need to get to 250 mAh/g level

Remaining Challenges and Barriers

- Work still exploratory at this juncture
- Can we find a new synthesis route not yet used that will stop voltage fade
- <u>Must determine location of Li, TM cations in IEx-LL-NCM to</u> direct syntheses going forward
 - Confirm no spinel phase formation upon cycling
- <u>Synthesis:</u>
 - Increase tap density
 - Streamline ion-exchange route
 - Can it be scaled?
- Improve high-power properties
 - Surface coatings

Future Work

- Explore more Na-rich and Li poor P2 Pre-IEx materials
- Continue with mixed Ni, Mn, Co phases precursors optimize
 - Move into Ni rich systems
- Continue exploration of post HT after IEx reaction
- More characterization to be done
 - Microscopy
 - X-ray absorption
- Continue working with Farasis on enabling these cathode materials for high-energy LIBs