HIGH-VOLTAGE, HIGH-CAPACITY POLYANION CATHODES

ARUMUGAM MANTHIRAM Electrochemical Energy Laboratory (ECEL) Materials Science and Engineering Program The University of Texas at Austin

June 10, 2015

Project ID #: ES051

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start date: January 2012
- Project end date: December 2015
- 75 % complete

Budget

- Total project funding
 DOE: \$1,120K
- Funding for FY14
 - \$280K
- Funding for FY15
 - \$280K

Barriers

- Barriers
 - Cost
 - Cycle life
 - Energy and power densities

Targets

 High-capacity, high-voltage polyanion cathodes

Partners

None officially

Project Objectives

- To develop high-voltage, high-capacity polyanion cathodes for lithium-ion batteries and a fundamental understanding of their structure-composition-performance relationships
 - To develop low-cost, thermally stable, high energy density polyanion cathodes that can undergo **multi-electron redox process**
 - To develop novel synthesis approaches and doping strategies to obtain nanostructured phosphate cathodes with optimized microstructures to enhance ionic and electronic transport
 - To develop a fundamental understanding of the factors that influence the electrochemical performances of polyanion cathodes, employing both electrochemical and chemical lithiation/delithiation processes

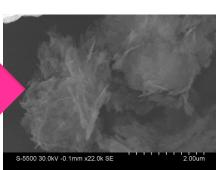
MILESTONES

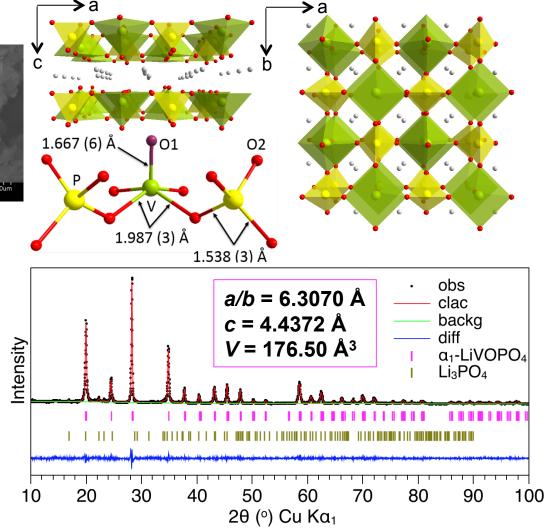
Month/Year	Milestone			
June 2014	Demonstrate > 150 mAh/g capacity with Li ₉ V ₃ (P ₂ O ₇) ₃ (PO ₄) ₃ prepared by novel synthesis approaches (Complete)			
September 2014	Demonstrate > 150 mAh/g capacity with Li ₃ M(CO ₃)(PO ₄) prepared by microwave-assisted synthesis (Complete)			
December 2014	Demonstrate the synthesis of LiVOPO ₄ nanoparticles with > 200 mAh/g capacity by employing ordered macroporous carbon as a hard-template (Complete)			
March 2015	Demonstrate aliovalent doping with Ti^{4+} in LiM _{1-2x} $Ti_x \Box_x PO_4$ with enhanced electrochemical properties by the microwave-assisted solvothermal synthesis (Complete)			

APPROACH / STRATEGY

- Develop a firm understanding of the factors controlling the electrochemical performances of polyanion cathodes and utilize the understanding to develop high-performance cathodes for vehicle batteries
 - Develop novel synthesis approaches to obtain all three polymorphs (triclinic, orthorhombic, and tetragonal) of LiVOPO₄ that has the potential to insert/extract two lithium ions per formula unit (multi-electron redox process)
 - Analyze the electrochemically/chemically lithiated/delithiated LiVOPO₄ cathodes to understand the structural evolution and evaluate the possibility for multiple lithium-ion insertion/extraction
 - Explore aliovalent doping in LiCoPO₄ (substitution of V³⁺ for Co²⁺) by lowtemperature synthesis approaches to enhance the electrochemical performance
 - Solid-state, template, and microwave-assisted synthesis approaches
 - Advanced chemical, structural, and surface characterizations
 - In-depth electrochemical characterization and evaluation
 - Understanding the structure-property-performance relationships

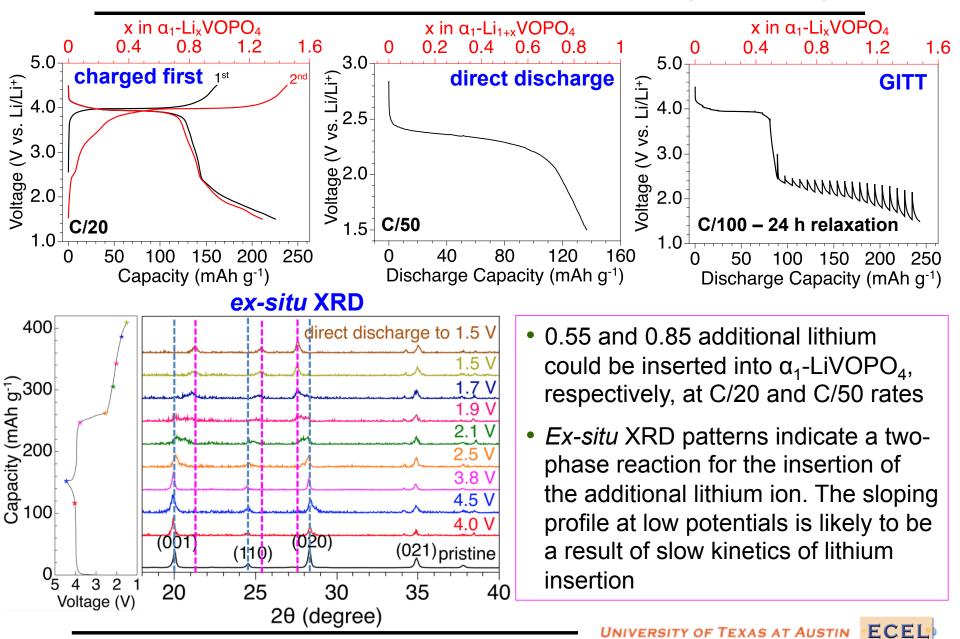
TECHNICAL ACCOMPLISHMENTS AND PROGRESS


- The tetragonal LiVOPO₄ synthesized by a low-temperature microwaveassisted solvothermal synthesis process has been systematically studied
 - An additional lithium ion could be inserted into the structure either by electrochemical or chemical lithiation process, consistent with the findings with the other two forms of $LiVOPO_4$ (triclinic and orthorhombic)
 - Lithium diffusion is slower in triclinic LiVOPO₄ as evidenced by chemical delithiation experiments with the three polymorphs of LiVOPO₄
 - A new form of VOPO₄ with a layer structure has been obtained by delithiating the tetragonal LiVOPO₄
- A novel synthesis of triclinic LiVOPO₄ nanoparticles with conductive polymer coating offers reversible insertion of more than one lithium ion
- $Na_3MCO_3PO_4$ with M = Mn, Co, Ni, and Cu have been synthesized by the microwave approach at 220 °C, but good cell performance could not be obtained due to the lack of compatible electrolyte
- Aliovalent substitution of V^{3+} for Co^{2+} in LiCoPO₄ increases the capacity to \sim 100 mAh/g, reduces the polarization, and enhances cyclability


MICROWAVE SYNTHESIS OF METASTABLE α₁-LiVOPO₄

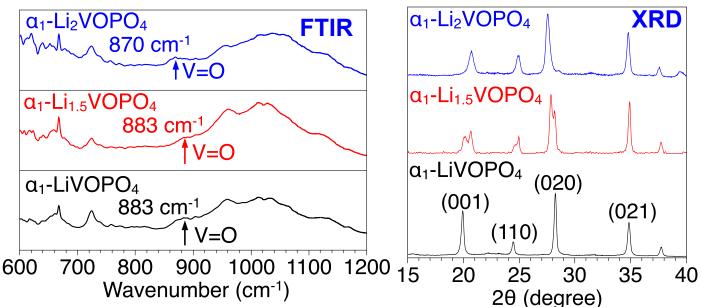
microwave synthesis of nanostructured α₁-LiVOPO₄

tetragonal (P4/nmm) with a layered structure

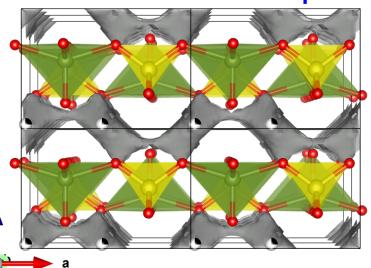


UNIVERSITY OF TEXAS AT AUSTIN

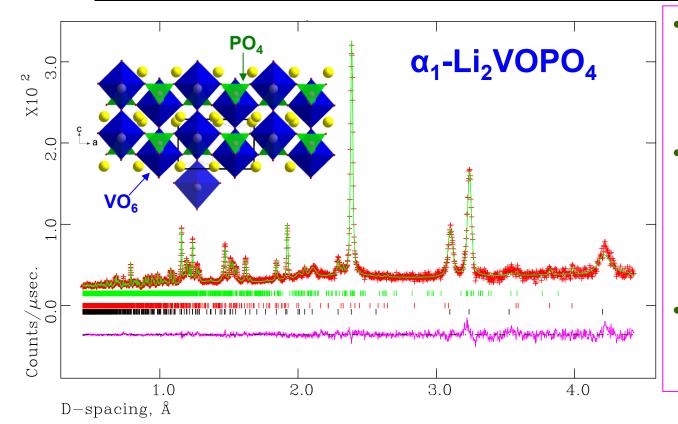

ECEL


- Metastable α₁-LiVOPO₄ and α₁-LiVOPO₄/graphene have been synthesized by the microwave-assisted solvothermal (MW-ST) method
- Tetragonal α₁-LiVOPO₄ has a layered structure with lithium ions occupying ¼ of the 8j sites between the VOPO₄ layers

ELECTROCHEMICAL LITHIATION OF α_1 **-LiVOPO**₄

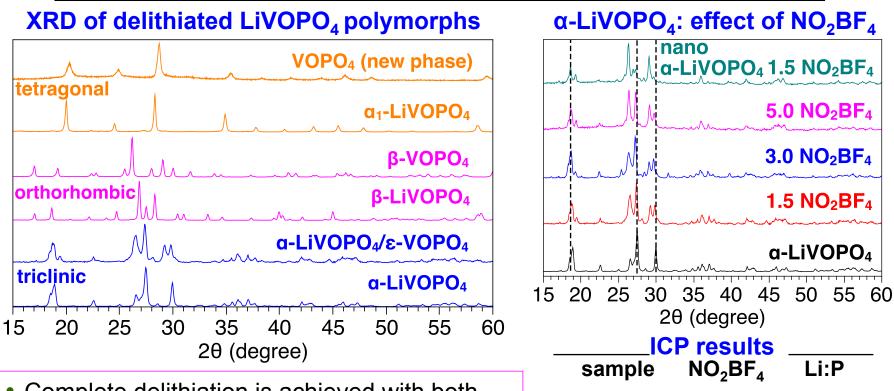


CHEMICAL LITHIATION OF α_1 -LiVOPO₄ WITH n-BUTYLLITHIUM


bond valence sum map

- The chemically lithiated α₁-LiVOPO₄ samples show color changes similar to that observed with the chemical lithiation of α- and β-LiVOPO₄
- Both FTIR and XRD confirm the structural change upon the lithiation of α₁-LiVOPO₄
- Bond valence sum map suggests that the additional lithium ion possibly takes the available 8j sites as the original lithium ion

NEUTRON SCATTERING OF CHEMICALLY LITHIATED α₁-Li₂VOPO₄



- Each VO₆ octahedron
 is connected to 2 other
 VO₆ by corner sharing
 to form chains
- The 2D layered structure of α₁-LiVOPO₄ is changed to a 3D structure in α₁-Li₂VOPO₄
- Volume change is
 < 0.5% on inserting the second lithium ion

	space group	a (Å)	b (Å)	c (Å)	<i>V</i> (Å ³)	
α_1 -LiVOPO ₄	P4/nmm	6.3070(1)	6.3070(1)	4.4372(2)	176.50(1)	
α_1 -Li ₂ VOPO ₄	P4/nmm	6.4796(2)	6.4796(2)	4.2135(2)	176.91(2)	
Li ₃ PO ₄ : < 3%, α-LiVOPO ₄ : < 0.5%						

DELITHIATION OF THE THREE POLYMORPHS OF LIVOPO₄

- Complete delithiation is achieved with both $\alpha_1\text{-}$ and $\beta\text{-LiVOPO}_4$
- A new layered VOPO₄ phase is obtained on delithiating the α_1 -LiVOPO₄
- Complete delithiation of α-LiVOPO₄ (triclinic) was not possible, indicating the difficulty of lithium diffusion in the structure

1.5

5.0

3.0

1.5

1.5

1.5

044.1

0.49:1

0.72:1

0.81:1

0.03:1

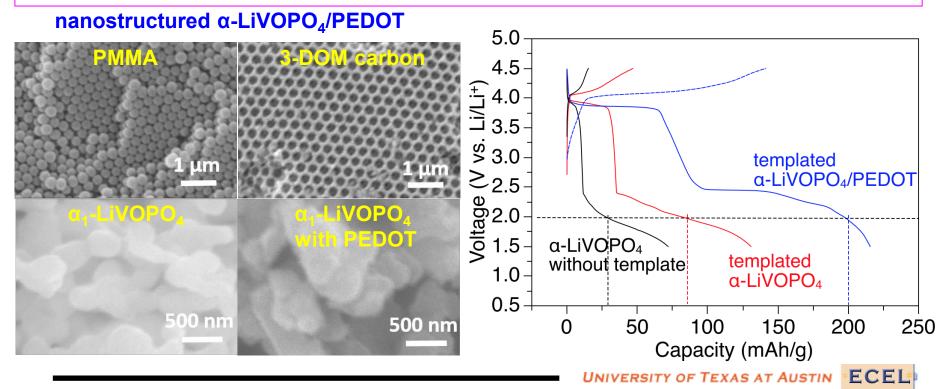
0.03:1

nano α-

LiVOPO₄

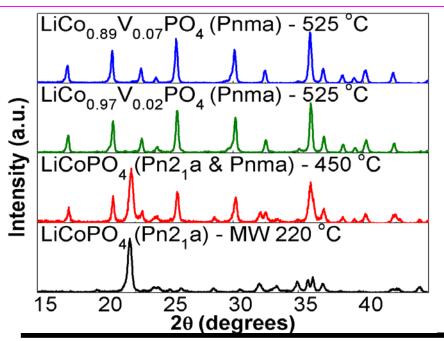
α-LiVOPO₄

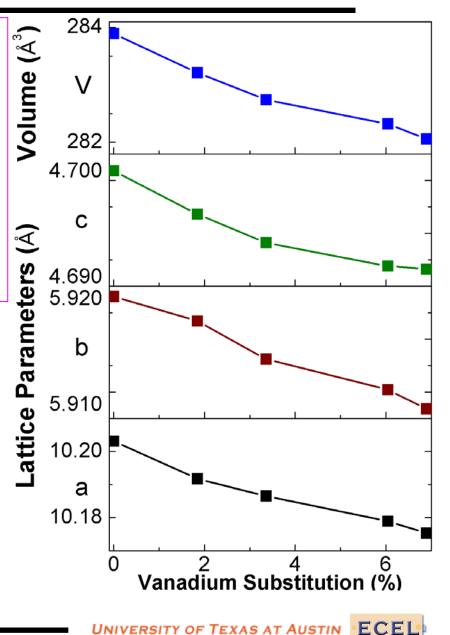
α-LiVOPO₄

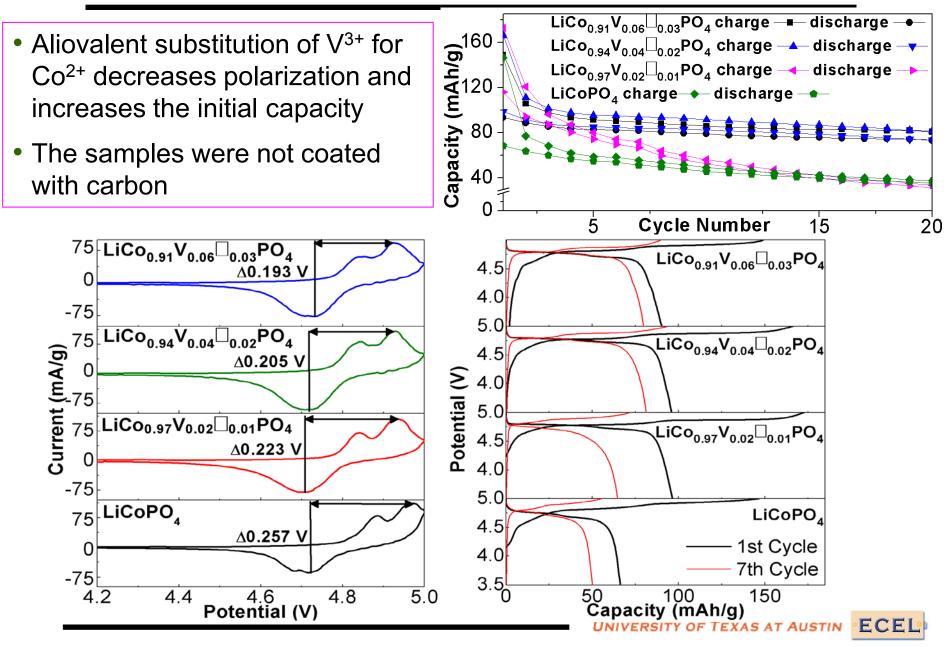

α-LiVOPO₄

β-LiVOPO₄

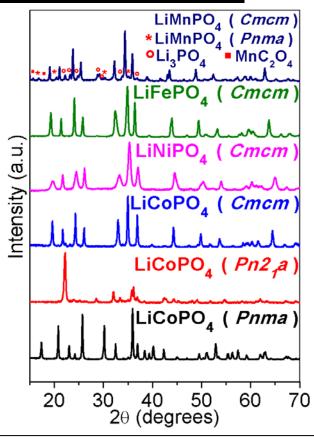
 α_1 -LiVOPO₄


TEMPLATED α -LiVOPO₄ WITH CONDUCTIVE POLYMER COATING


- α-LiVOPO₄ is not stable either during high speed ball-milling with carbon or under pyrolysis carbon-coating at 400 °C
- Nanosized α-LiVOPO₄/PEDOT was synthesized with a hard-template, followed by in-situ polymerization of EDOT
- Electrochemical results show a high capacity of ~ 220 mAh/g at C/20 rate with this optimized cathode, highlighting the significant influence of both particle size and conductive coating


SYNTHESIS OF ALIOVALENTLY-DOPED LiCo_{1-3x/2}V_xD_{x/2}PO₄

- Co²⁺ was aliovalently substituted with V³⁺ to obtain LiCo_{1-3x/2}V_x $\square_{x/2}$ PO₄ with x ~ 0.07
- LiCo_{1-3x/2}V_x□_{x/2}PO₄ (*Pn*2₁*a*) was made by microwave-assisted solvothermal synthesis, and subsequently converted to (*Pnma*) by calcining in argon at 525 °C
- Lattice parameters and unit cell volume decrease with increasing x due to the substitution of smaller V³⁺ for Co²⁺



EFFECT OF V³⁺ SUBSTITUTION ON PERFORMANCE

SYNTHESIS OF NON-OLIVINE LIMPO₄ (M = Fe, Mn, Co, Ni)

- Three polymorphs of LiCoPO₄, belonging to the space groups *Cmcm*, *Pn*2₁*a*, and *Pnma* have been synthesized by a facile microwave method in TEG
- LiCoPO₄ (*Cmcm*) and LiNiPO₄ (*Cmcm*) have been previously obtained only at high pressures (15 Mpa)
- LiMnPO₄ (*Cmcm*) is reported here for the first time
- LiCoPO₄ (*Cmcm*) shows irreversible removal of Li at ~ 4.3 V
- Polyglycols are hygroscopic and the water content influences the type of phase formed with LiCoPO₄, LiFePO₄, and possibly other LiMPO₄

FY 2014 REVIEWERS' COMMENTS AND RESPONSES

Comment: "the insertion of Li into LiVOPO₄ has caused a significant potential reduction to the level that it becomes not practically useful"

Response: It is an intrinsic problem for most of the redox couples undergoing multielectron process, except for the Ni^{2+/3+} and Ni^{3+/4+} couples. Compared to other cathodes, LiVOPO₄ is still one of the most promising candidates with high capacity and energy density.

Comment: "suggested that the PI should investigate how to improve the cyclability and charge/discharge rate of LiVOPO₄"

Response: The reversible insertion/extraction of two lithium at a practical rate is still challenging due to the low ionic and electrical conductivities, as observed with many other polyanion cathodes. However, we have developed some efficient strategies for structural/electrode optimization to improve the performance of these cathodes.

Comment: "to explore new cathode materials that can intercalate multiple Li-ions" and or provide higher capacity"

Response: We agree. We have been actively exploring new cathodes capable of inserting multiple Li⁺ ions, *e.g.*, we have developed approaches to obtain non-olivine LiMPO₄ (M = Fe, Mn, Co, and Ni) and a new form of VOPO₄ by delithiating the tetragonal LiVOPO₄ that might exhibit interesting electrochemical performances.

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

- Oak Ridge National Laboratory Dr. Craig Bridges
 - Investigation of the crystal structure of the lithiated LiVOPO₄ with spallation neutron source and X-ray diffraction

REMAINING CHALLENGES AND BARRIERS

- The primary challenge to achieving the insertion/extraction of two lithium with the LiVOPO₄ cathode is the low electronic and ionic conductivities. Thus, preparation of nanoparticles with desired conductive coating is still the primary task for this material. Previous work on the tetragonal form of LiVOPO₄ indicates that *in-situ* incorporation of graphene is an efficient way to enhance the electrical conductivity. It will be extended to the other two forms of LiVOPO₄ in the future. In parallel, optimization of the microwave synthesis will be pursued to obtain smaller LiVOPO₄ particles.
- Structural variation is another factor that needs to be considered for the multi-electron process in LiVOPO₄, especially for the insertion of a second lithium. A firm understanding of the structure-performance correlation of VOPO₄-LiVOPO₄-Li₂VOPO₄ in the future will help determine which form of LiVOPO₄ is the most promising and worthy of further studies.

PROPOSED FUTURE WORK

- Develop further understanding on the structures of the three polymorphs (triclinic, orthorhombic, and tetragonal) of LiVOPO₄ and determine which polymorph is the most promising to achieve fast ionic and electronic transport with the extraction of two-lithium per vanadium
- Develop LiVOPO₄ electrodes with controlled particle size and conductive coating to overcome the low electronic and ionic conductivities and thereby realize a practical capacity of ~ 250 mAh/g
- Explore the preparation and electrochemical properties of various VOPO₄ that potentially insert two lithium ions per formula, as well as sodium ions
- Explore the synthesis of the non-olivine phases of LiMPO₄ (M = Mn, Fe, Co, and Ni) and their electrochemical properties

SUMMARY

 Systematic structural and chemical/electrochemical characterizations demonstrate reversible insertion of more than one lithium ion with a capacity of > 200 mAh/g with all the three forms of LiVOPO₄.

	Symmetry	Lithiation	Delithiation
α-LiVOPO ₄	triclinic	✓ α-Li₂VOPO₄	✓ α-LiVOPO₄/ε-VOPO₄
β-LiVOPO ₄	orthorhombic	β-Li ₂ VOPO ₄	✓ β-VOPO ₄
α_1 -LiVOPO ₄	tetragonal	$\checkmark \alpha_1$ -Li ₂ VOPO ₄	✓ VOPO ₄ (new phase)

Chemical delithiation of the three forms of LiVOPO₄ suggests

- α -LiVOPO₄ shows slower lithium mobility than the other two forms
- a new layered VOPO₄ phase can be formed from α_1 -LiVOPO₄
- Significant amount of aliovalent V³⁺ has been substituted for Co²⁺ in LiCo₁₋ $_{3x/2}V_{x} \Box_{x/2}PO_{4}$ (0 ≤ x ≤ 0.07) by a microwave-assisted synthesis process at < 260 °C. The samples disproportionate to LiCoPO₄ on heating to 600 °C, demonstrating the necessity of low-temperature methods.

