High Energy Density Lithium Battery

M. Stanley Whittingham State University of New York at Binghamton June 10th, 2015

Project ID # ES231

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 10-01-2014
- Project end date: 9-30-2017
- Percent complete: 18%

Budget

- Total project funding
 - DOE \$1,265,773
 - Contractor share: Personnel
- Funding received
 - FY15: 398k\$

Barriers

- Barriers addressed
 - Higher volumetric energy density
 - Cyclability of conversion electrodes
 - Lower cost
 - Abuse-tolerant safer electrodes

Partners

- National Laboratories
 - Brookhaven; Argonne
- Local Industry
 - Through NYBEST
- Academia
 - Electrolytes UC Boulder, URI

Relevance and Objectives of Work

- The primary objectives of our work are to:
 - Replace the present volume intensive carbon anode
 - Replace the present cathodes with ones where more than one Li reacts per transition metal
 - Lower the cost of materials and approaches
- The relevance of our work is:
 - Achieving the above objectives
 - Will increase the volumetric energy density of lithium batteries by > 50%
 - 1 kWh/liter at the cell level
 - Will increase the gravimetric energy density
 - ≥ 300 Wh/kg at the cell level
 - Will lower the cost of tomorrow's batteries

Relevance: Milestones

- Demonstrate synthesis and complete characterization of CuF₂. (Dec. 14)
 Completed
- 2. Determine discharge product of CuF₂. (March 15) **Completed**
- 3. Begin cyclability testing of CuF_2 . (June 2015) **Underway**
- 4. Demonstrate more than 100 cycles on Sn_2Fe at 1.5 times the volumetric energy density of carbon. (Sept. 15) **Underway**
- 5. <u>Go/No-Go</u>: Demonstrate cyclability of CuF_2 . <u>Criteria</u>: Capacity of 200 mAh/g over 10 cycles. (Sept-15)

Approach and Strategy: Improved Anodes

Stan Whittingham SUNY at Binghamton

- Replace intercalation carbon host with conversion reaction material
 - Allows for much higher capacities
 - Carbon only 350 Ah/g and 0.8 Ah/liter
 - Pure lithium anode has around 2.5 times the volumetric capacity
 - Place emphasis on tin-based systems
 - Why Sn₂Fe?
 - 804 Ah/kg and >2000 Ah/liter
 - > 2.5 times that of carbon
 - Protect with carbon coating
 - Initial BATT results promising
 - Safer than carbon and silicon
 - $\Box \Delta G Sn/Fe-SnO_2 160 \text{ kJ/mole Li}$
 - $\Box \Delta G \text{ Si-SiO}_2$ 194 kJ/mole Li
 - $\Box \quad \Delta G \text{ C-CO}_2 \qquad 2366 \text{ kJ/mole Li}$

- Replace materials that react with ≤ 1 Li per transition metal - E.g. LiFePO₄ and LiCoO₂
- By materials that can react with up to 2 Li per transition metal
- Two-pronged approach
 - Intercalation cathode
 - Essentially retain the crystal structure
 - The system VOPO₄-LiVOPO₄-Li₂VOPO₄ chosen
 - Conversion cathode
 - Destroy and rebuild the crystal structure
 - The system $CuF_2 Cu + 2LiF$ chosen
 - Higher potential than other fluorides

Approach and Strategy: Improved Cathodes

- Why the choice of CuF₂ and VOPO₄?
- CuF₂
 - High theoretical energy density of 1874 Wh/kg
 - Compare 1000 Wh/kg and 587 Wh/kg theoretical for complete reaction of LiCoO₂ and LiFePO₄ respectively.
 - Theoretical specific capacity exceeding 500 mAh/g
 - Theoretical potential, 3.5 V, highest amongst the 3d transition metals

• VOPO₄

- Intercalation cathode
- High energy densities of 1080 Wh/kg and 3.5 kWh/L
 - > 1.5 times that of $LiFePO_4$
 - Theoretical capacity of ~ 320 Ah/kg (double that of $LiFePO_4$)
 - Redox potentials at 3.9 V for $V^{5+}\!/V^{4+}$ and ~ 2.5 V for $V^{4+}\!/V^{3+}$

- Low Volumetric Energy Density of Li batteries
 - Volumetric capacity of today's Li-ion batteries limited by carbon anode and less than 1 Li/transition metal
 - Find anode material with double the volumetric capacity of carbon
 - Find cathode material that reacts with approaching 2 Li

• Cyclability of conversion electrodes

Efficiency of known conversion reactions too low

• High cost of lithium batteries

- Reduction of Materials and manufacturing costs
- Find anode material with double the volumetric capacity of carbon
- Find

• Low Safety and Abuse-tolerance

- Find an anode that reacts with lithium faster
- Find thermally stable electrodes under all states of charge

Milestone $1 - CuF_2$ synthesized and characterized: forms solid solution with FeF₂. Composite with MoO₃.

Stan Whittingham SUNY at Binghamton

Synthesis of $Cu_{1-y}Fe_{y}F_{2}$, y= 0, 0.2, 0.5;

Carbon or MoO_3 composite synthesized by high energy ball-milling of CuF_2 and FeF_2

XRD Characterization:

- Fe is soluble in CuF₂ forming a solid solution:
 - Shift in the diffraction peak position
 - Change in lattice parameters
 - Both have similar structures.
 - CuF₂ distorted rutile structure
 - FeF₂ rutile structure
- MoO_3 forms a composite: No solid solution.

	a (Å)	b(Å)	<i>c</i> (Å)	β(°)	<i>V</i> (Å ³)
CuF ₂	4.595(3)	4.560(3)	3.295(1)	95.76(1)	68.71(3)
$\mathrm{Cu}_{0.5}\mathrm{Fe}_{0.5}\mathrm{F}_2$	4.675(3)	4.642(3)	3.285(1)	90.62((1)	71.39(3)

Milestone 2 – Discharge products of CuF_2/C and $Cu_{0.8}Fe_{0.2}F_2/C$ identified

Stan Whittingham SUNY at Binghamton

CuF₂

- Reaction complete at 1.8 V
- CuF_2 converted to Cu and LiF

$Cu_{0.5}Fe_{0.5}F_2$

- Not complete at 1.8V
- Forms LiF and Cu
 - Peaks of Fe phase overlap with LiF phase, so cannot

be identified

Milestone 3 – Cycling shows close to theoretical capacity for CuF₂; MoO₃ composite does not cycle well

Stan Whittingham SUNY at Binghamton

Initial discharge capacity:

- CuF_2 shows close to the theoretical capacity of 528 mAh/g
 - More extended cycling underway
- CuF_2/MoO_3 composite shows higher first discharge capacity
 - Consistent with prior primary battery report
 - Cyclability does not warrant further study

- Earlier results showed capacity exceeding that of Sn₂Fe
 - Theoretical capacity of Sn_2Fe is 804 mAh/g
 - Carbon must contribute to capacity
 - Formation of LiC_2 can explain capacity
 - Study initiated to determine role of carbon

Milestone 4. Synthesis optimization of Sn-Fe-C anode Impact of graphite content

Stan Whittingham SUNY at Binghamton

- Carbon essential to mechanochemical synthesis
 - Tin melts at the high temperature caused by high energy ball milling.
 - Fails to react completely leaving globules of tin.

- Past standard synthesis used a 10:1 ratio of graphite:tin
- Replacing graphite partially by carbon black had no impact on capacity retention, however amount of carbon critical
 - 5:1 carbon:tin leads to larger amounts and greater crystallinity of tin metal
 - 5:1 carbon:tin results in lower capacity retention and lower coulombic efficiency.
 - Conclusion: need 10:1 ratio, and source of carbon not important

- Impact of high energy ball milling on graphite electrochemistry
 - Crystallinity of graphite reduced
 - Fe₃C impurity phase might form
 - First cycle excess capacity is increased significantly (doubled)
 - Attributed to creation of defects in graphite structure
 - Electrochemical capacity of graphite not significantly increased by high energy ball milling
 - Conclusion: tin needed to activate carbon to LiC_2

Response to 2014 Reviewers' Comments

Stan Whittingham SUNY at Binghamton

New Project – No Comments

Collaboration and Coordination with other Institutions

Brookhaven and Argonne National Laboratories

 Ex-situ and in-situ synchrotron X-ray diffraction, PDF (pair distribution function) and XAS (X-ray absorption) studies

• Academia

- Working with DOE funded electrolyte efforts (will use their improvements)
 - U. Colorado on electrolytes
 - U. Rhode Island on electrolyte additives

• Industry

- As this is a new project working through NYBEST to disseminate information
- NYBEST (New York Battery and Energy Storage Technology Consortium)
 - Building collaborations between Industry, Academia, and Government

Remaining Challenges and Barriers

This Project has only completed the first 6 months

- CuF₂ conversion cathode
 - Cyclability of electrode

• **VOPO**₄ intercalation cathode

- Long-term stability of structures when two Li are intercalated

• Nano-Sn₂Fe

- Long term cycling
- Cost effective synthesis methods
 - Mechanochemical method
 - Find collaborator to determine viability of mechanochemical manufacturing

• Lithium incorporation in full cell (3rd year)

- Neither electrode presently contains Li

Proposed Future Work

- Copper Fluoride, CuF₂
 - Cyclability
 - Determine impact of partial substitution of part of copper
 - Determine impact of electrolyte
 - Is solubility of copper species a key issue?
 - solvable?
 - Determine rates of reaction
- Vanadyl Phosphate, VOPO₄
 - Determine optimum synthesis approach
 - Determine long-term cyclability over both redox plateaus
- Anode: Tin-Iron-Carbon Composite, Sn₂Fe
 - Improve cycling performance over 100-200 cycles

Summary

Project started October 2014

Enhanced Cathodes

- Synthesized and characterized copper fluoride material
 - Pure CuF_2 formed, as well as solid solution $Cu_{1-y}Fe_yF_2$
 - Lattice parameter is a function of the Fe content
 - Products of electrochemical reduction determined
 - For pure CuF₂ only copper and lithium fluoride observed
 - For $Cu_{1-y}Fe_yF_2$ some rutile phase remains
 - Discharge capacity exceeding 300 mAh/g attained
- Parallel Effort beginning on VOPO₄
 - Initial capacities exceed 200 Ah/kg

Enhanced Anodes

- Sn_2Fe effort transferred from previous BATT funded project
 - Carbon plays a critical role
 - On target to be substantially better than carbon anodes
 - Anticipate up to double volumetric capacity of carbon

Technical Back-Up Slides

Stan Whittingham SUNY at Binghamton

Technical Back-Up Slides

Calculation of capacity of Sn-Fe-C composite: Volumetric energy density exceeds carbon

- Gravimetric capacity:
 - Measured reversible capacity of 600 Ah/kg of total composite
 - Sn₂Fe contributes 804 Ah/kg
 - Remainder contributed by carbon
 - Must be C₂Li
 - 1100 Ah/kg
 - Theoretical capacity of 760 Ah/kg for total composite
 - If C_6 Li then theoretical capacity is 490 Ah/kg
- Volumetric capacity:
 - Approaches 1.6 Ah/cc, based on above value of 600 Ah/kg

Safety of Sn and Si anodes relative to carbon: On complete combustion to the oxide

- Free energy of formation of oxide:
 - -394.36 kJ/mole for C to CO₂
 - -519.6 kJ/mole for Sn to SnO₂
 - -371.1 kJ/mole for Fe to $\frac{1}{2}$ Fe₂O₃
 - -705.5 kJ/mole for oxidation of Sn₂Fe to SnO₂ and Fe₂O₃
 - -850.7 kJ/mole for oxidation of Si to SiO₂
- Free energy of oxidation per lithium stored:
 - -2366 kJ/Li for a carbon anode
 - -160 kJ/Li for a Sn₂Fe anode
 - -193 kJ/mole for a Si anode

Assumptions: 6 C/Li and 4.4 Li/Sn or Si

Even if substantial amounts of carbon are used with the Sn and Si anodes, they will still generate less heat than graphite alone