

Development Of Advanced High-performance Batteries For Plug-in Hybrid Vehicle Applications

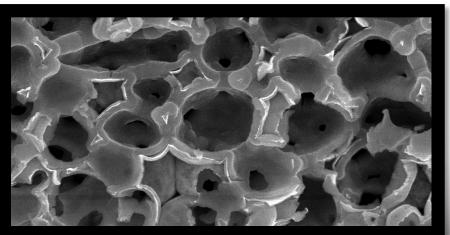
#### 2015 DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting June 10, 2015

#### **Project ID: ES248**

P.I.: John Busbee, Ph.D. *Chief Executive Officer* (217) 377-6888

<u>j.busbee@xerionbattery.com</u>

### **Overview**




#### **Period of Performance:**

- 15 month total duration
- 23 July 2014 start date
- 23 Oct 2015 end date

#### Contract Total: \$667,454

- XABC Costs: \$333,727
- USABC Costs: \$333,727



#### **Barriers Addressed:**

- Costs: New manufacturing method reduces cell raw material costs (projected cell costs below \$250/KWh)
- Performance: New high-rate electrode architecture improves cell power to energy and charge acceptance performance (30,000 W/Kg, 200 Wh/kg)

**Life:** 3D, co-continuous electrode architecture reduces internal resistance and internal stresses during cycling

### **Relevance & Objectives**



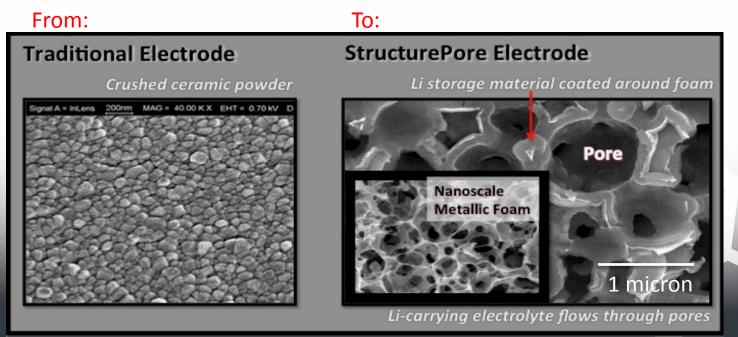
- **Overall Objective:** Develop and produce commercial pouch cell prototypes optimized for PHEV use to:
  - Demonstrate significant power/energy and charge acceptance improvements using StructurePore<sup>TM</sup> architecture
  - Demonstrate architecture utilizing currently commercial chemistries for baseline comparisons
  - Produce sufficient materials and process data to project cost reduction at commercial scales

#### • Previous Year's Objectives:

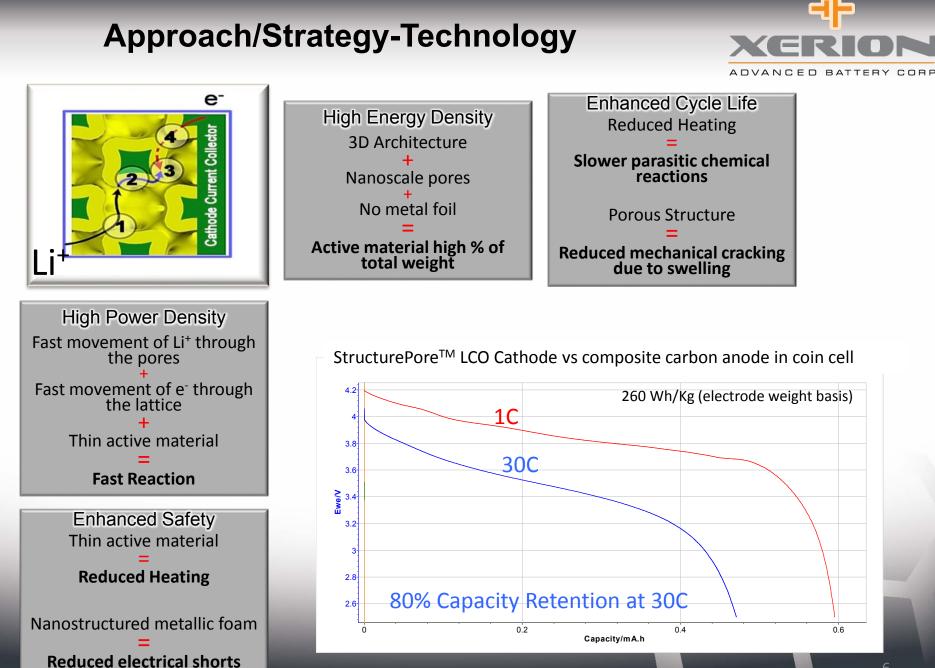
- Demonstrate through detailed characterization the ability to produce commercial phases of lithium manganese oxide
- Optimization of carbon current collector for mechanical robustness and high electrical conductivity

# Milestones




| Date      | Milestones and Decision Points                                                        | Status       |
|-----------|---------------------------------------------------------------------------------------|--------------|
| July 2014 | Milestone:<br>Provide Nanostructured Layered LMO, LCO, and<br>carbon anode cycle data | Complete     |
| Oct 2014  | Decision Point:<br>Select LMO or LCO as cathode chemistry                             | LMO Selected |
| Jan 2015  | Milestone:<br>Demonstrate cylability of Spinel LMO half-cell                          | Complete     |
| Jun 2015  | Milestone:<br>Demonstrate single-layer pouch cell (100 mAh)                           | On Track     |

# **Approach/Strategy**




#### **Replace traditional electrodes with StructurePore<sup>™</sup> nanostructured, porous electrodes**

- Co-continuous electronic and ionic pathways allow fast diffusion of reactants throughout the bulk of the electrode, reducing internal resistance
- Fast diffusion allows achievement of power goals using thicker electrodes, reducing weight and volume of the balance of cell components
- Conductive foam acts as current collector, allowing the removal of metal foils, further increasing packing efficiency
- Reduce raw material costs by directly electroplating active materials



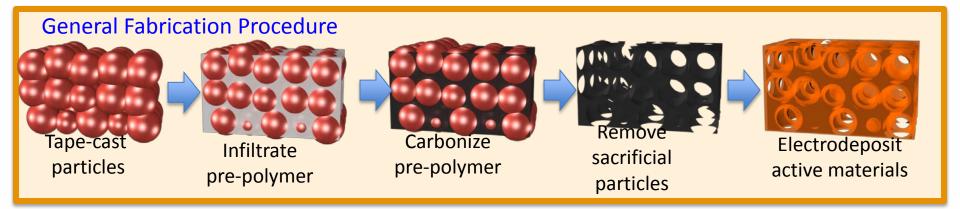
#### 5

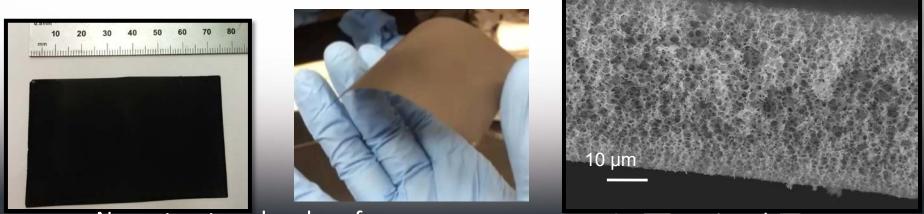


#### **Approach/Strategy-Plan**



- Design StructurePore<sup>™</sup>-based prismatic pouch cells that are parametrically designed to maximize PHEV performance, optimize materials and manufacturing processes, and build for delivery and evaluation by Argonne
- Utilize commercial chemistries so that structure can be evaluated with respect to commercial cells 201/


|     |                                                   | 2014              |             |       | 2013       | 2         |       |            |      |       |         |        |            |
|-----|---------------------------------------------------|-------------------|-------------|-------|------------|-----------|-------|------------|------|-------|---------|--------|------------|
| WBS | Title                                             | Q3                | Q4          |       | Q          |           |       | Q2         |      |       | Q3      |        | Q4         |
| -   |                                                   | Month Month Month | Month Month | Month | Month Mo   | ont Month | Month | Month M    | onth | Month | Month M | onth N | Nonth Mon  |
| ,   | USABC Proposal Tasks                              | -                 |             |       |            |           |       |            |      |       |         |        |            |
| 1   | Cathode / Anode Half Cell Data                    | $\diamond$        |             |       |            |           |       |            |      |       |         |        |            |
| 2   | PHEV Cell Parametric Design and Optimization      |                   |             |       |            |           |       |            |      |       |         |        |            |
| 3   | Scaffold Development                              |                   |             |       |            |           |       |            |      |       |         |        |            |
| 4   | Active Material Processing Development            |                   |             |       |            |           |       |            |      |       |         |        |            |
| 5   | LMO Cyclability Data                              |                   |             |       | $\diamond$ |           |       |            |      |       |         |        |            |
| 6   | Cathode M&P Optimization                          |                   |             |       |            |           |       |            |      |       |         |        |            |
| 7   | Anode M&P Optimization                            |                   |             |       |            |           |       |            |      |       |         |        |            |
| 8   | Multi-Layer Lab Prototype Fab & Test              |                   |             |       |            |           |       |            |      |       |         |        |            |
| 9   | 100mAh Cell                                       |                   |             |       |            |           |       | $\diamond$ |      |       |         |        |            |
| 10  | Initial Commercial Pouch Cell Fab & Test          |                   |             |       |            |           |       |            |      |       |         |        |            |
| 11  | 920mAh Cell Fabrication Qty: 18 (Xerion Internal) |                   |             |       |            |           |       |            |      |       |         |        |            |
| 12  | Independent Testing                               |                   |             |       |            |           |       |            |      |       |         |        |            |
| 13  | Deliverable Cells >920mAh Qty: 36*                |                   |             |       |            |           |       |            |      |       |         |        | $\diamond$ |
|     |                                                   |                   | _           |       | -          |           |       |            |      |       |         | 7      | ,          |

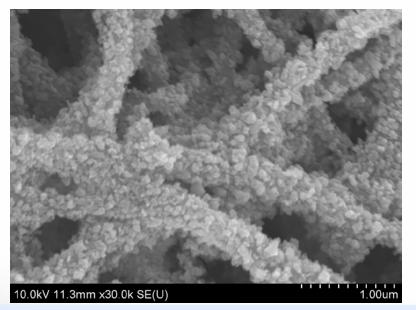

2015

# Technical Accomplishments and Progress

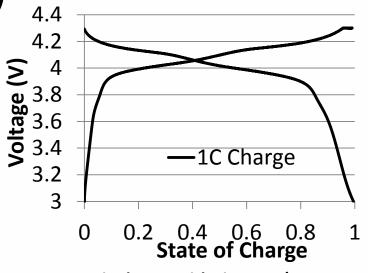


• Created robust nanostructured, open-cell carbon foam scaffold to act as integrated current collector

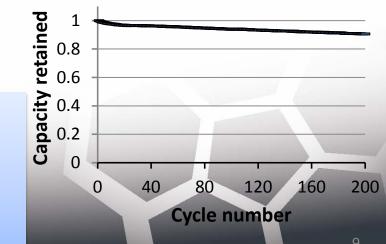




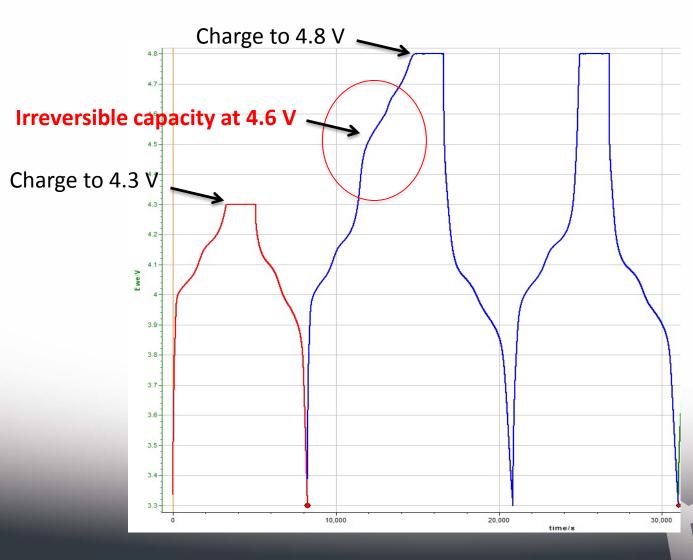

Nanostructured carbon foam


**Cross sectional SEM** 




**Demonstrated conformal** electrodeposition of spinel lithium manganese oxide on carbon scaffolds.



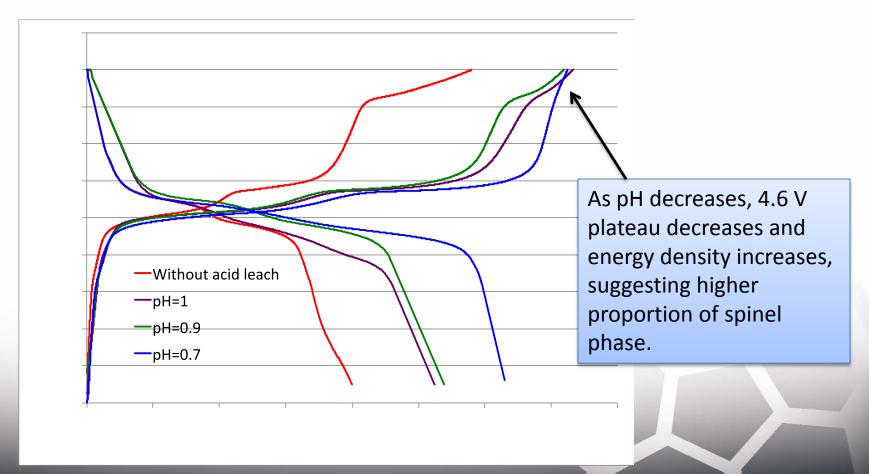

- **Conformal electrodeposition of spinel LMO**
- Active material based capacity: 80~ 105 mAh/g for standard cycling voltage window (3 – 4.3 V)
- Reduced capacity due to the presence of impurity/stabilization phase



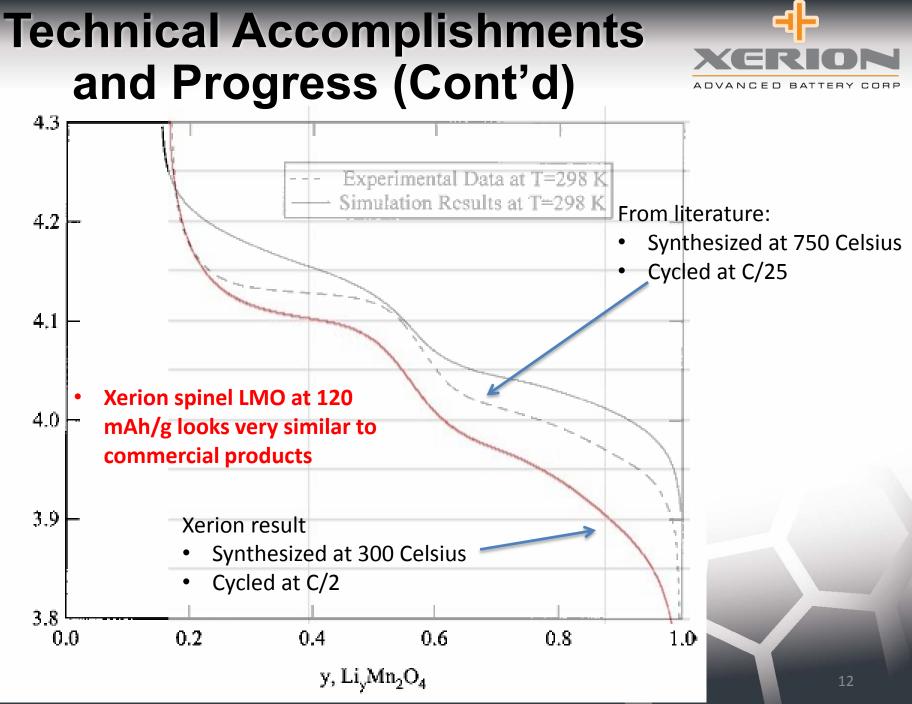
Spinel LMO with Li<sub>2</sub>MnO<sub>3</sub> (1.5 mAh/cm<sup>2</sup> cell) cycle life-Half cell vs. lithium



#### Identified secondary phase







- Active material based (reversible) capacity:
   89 mAh/g
- Irreversible capacity:
  89 mAh/g
- 4.6 V plateau indicates the impurity phase is Li<sub>2</sub>MnO<sub>3</sub>
- The composition of our material based on capacity ratio is most likely to be
  - 2LiMn<sub>2</sub>O<sub>4</sub>•Li<sub>2</sub>MnO<sub>3</sub>
- Consistent with ICP result.
- Li<sub>2</sub>MnO<sub>3</sub> can act as a stabilization phase for spinel



• Demonstrated ability to controllable remove secondary phase

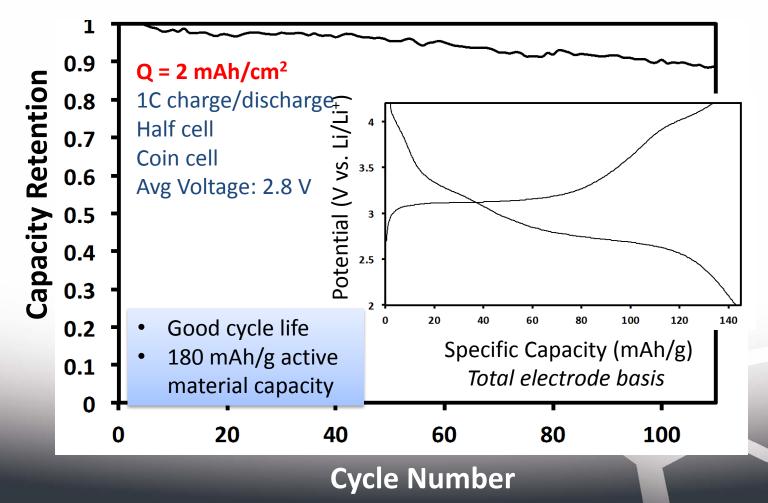


First charge-discharge cycle of spinel LMO leached with different pH



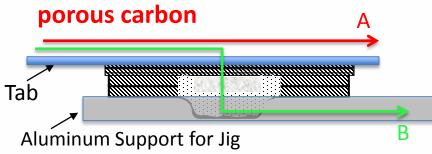
(v) U




#### • Demonstrated full-cell, single layer pair of spinel LMO versus carbon

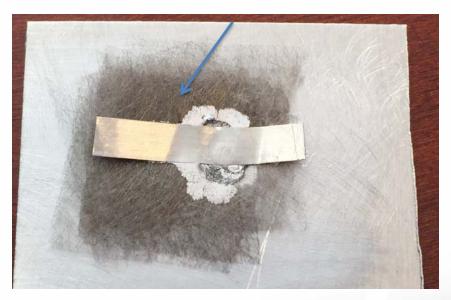
Full cell includes LMO cathode, separator, and porous carbon anode (no packaging) 4.4 4.2 4 **Voltage (V)** 3.6 3.4 3.2 3 50 150 200 250 350 0 100 300 400 450 Volumetric Energy Density (Wh/L)

13




Demonstrated direct deposition of γ – MnO2—must be lithiated after deposition






Initial demonstration of securely welding aluminum tab to multi-layer



**Resistance of Path A=Resistance of Path B** (Resistance of Weld is not measurable with milliohm meter)

Eight Layers of Carbon (microfiber mesh demo)



**Envisioned Standard Configuration:** 



### **Partners/Collaborations**





Subcontract Purpose:

**Commercial Pouch Cell Assembly** 



**Environmental Testing** 



Microstructural Characterization and Process Optimization

### Remaining Challenges and Barriers



- Demonstrate robustness of tab welding
- Determine cycle-life and cold weather performance in pouch cell format
- Produce multi-layer pouch cells with spinel LMO vs Porous carbon
- Demonstrate enhanced P/E ratios in pouch cell
- Demonstrate enhanced charge acceptance in pouch cell format
- Validate performance enhancement for USABC Gap Chart
- Deliver prototypes to USABC/Argonne for testing