Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PI: Richard K. Huff Caterpillar Inc.

Vehicle Technologies – Annual Merit Review June 10, 2015

Project ID: PM 059

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start December 2012
- Project end December 2016
- Percent complete ~ 50%

Budget

- Total project funding: \$5.08M
 - DOE share: \$3.48M
 - Contractor share: \$1.6M
- Expenditure of Gov't Funds:
 - FY2013: \$524,942
 - FY2014: \$816,519
 - FY2015: \$334,390 through Mar.

Barriers

- Efficiency: material and process must achieve 214 MPa endurance limit to enable higher cylinder pressure and temperature combustion regimes.
- Power Density: achieve 25% increase in strength over A842 compacted graphite iron.
- Cost: no more than 110% of production A48 gray iron cast units

Partners

- Interactions/ collaborations
 - QuesTek Innovations
 - University of Alabama at Birmingham
 - Argonne National Laboratory
 - Northwestern University
 - Jonkoping University
 - Elkem
- Project lead Caterpillar Inc.

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059

Objectives

- New high-strength ferrous materials with at least 25% improvement in component strength relative to components made with A842 (Compacted Graphite Iron).
- Cost should not exceed 120% of the cost of components using A48 (Gray Iron).
- Material must be produced using sand or investment casting processes.
- Evaluate the performance of existing ICME codes to accelerate the development of new alloys and processing techniques.
- Develop comprehensive cost models demonstrating costs relative to established grey cast iron baselines and identifying a path to meet incremental cost targets.
- Contractor specific requirement: achieve fatigue endurance limit of 214 MPa.

Relevance

- Advanced materials that are lighter and/or stronger are essential for boosting the fuel economy and reducing emissions of modern vehicles while maintaining performance and safety.
 - Increased powertrain efficiency can be obtained by enabling engine components to withstand the high pressures and temperatures of high efficiency combustion regimes.
 - Offset weight penalties from advanced emissions-control equipment, safety devices, integrated electronic systems and power systems such as batteries and electric motors for hybrid, plug-in hybrid, or electric vehicles.
 - For example, using lighter and/or higher strength materials to achieve a 10% reduction in vehicle weight can result in a 6% 8% fuel-economy improvement.
- Cost penalties need to be minimized to accelerate adoption by industry and creating consumer demand.
- ICME tools need to be developed and utilized to accelerate to the design and validation of new materials.

Milestones

FY13 and FY14

Milestone	Measure	Date	Status
Updated Project Management Plan + Reporting	Monthly + Quarterly	Ongoing	Ongoing
Definition of Alloy Requirements	Performance Requirements	Mar. '13	Complete
Generate Alloy Design Concepts	4 main areas of investigation	Aug. '13	Complete
Design Prototype Alloy Concepts	~16 prototype concepts	Dec. '13	Complete
Machinability Baseline for Current High Strength CGI	Tool wear & cutting force response surface for 450 MPa CGI, milling + drilling	Dec. '13	Complete
Design and Produce Prototype Castings	~ 16 prototype casting samples	Dec. '14	Complete
Evaluate Material Properties of Prototype Casting Alloys	> 100 KSI tensile, 140 – 245 HB	Mar '15	Complete
Refine Design of High Potential (HP) Alloy Concepts (Iteration 2)	~4 HP alloy concepts	Apr. '15	Ongoing
Produce Prototype Castings for HP Alloy Concepts	~4 HP alloys	Jun. '15	Ongoing
Evaluate Mechanical Properties of HP Alloy Concepts	> 100 KSI tensile, > 31 KSI fatigue limit	Jul. '1 5	
Evaluate Castability of HP Alloys	Minimize difference from HSGI, fluidity & Hot Tear	Aug. '15	

- FY15 evaluate HP alloys, down-select and optimize final alloy design
- FY16 validate final alloy design, demo component design
- FY17 variation analysis, cost model

Approach

- Utilize an Integrated Computational Materials Engineering (ICME) approach that has been proven to accelerate alloy development time by applying mechanistic materials models within a systems-engineering framework to computationally engineer new material compositions and manufacturing processes.
- Prototype melts will be produced and characterized iteratively for an alloy design within a stage-gate process.
- Standard characterization and material testing will be done to validate the alloy performance against goals and provide feedback to ICME models.
- Utilize the Advanced Photon Source (APS) at Argonne National Labs to conduct innovative measurements to map 3D graphite networks and identify nucleation sites. In-situ measurements of phase evolutions and damage during heating and cooling under various loading conditions is also planned.
- Utilize an integrated modeling approach that simulates the material, processing, and performance to optimize the design of a concept engine component to demonstrate the potential benefits of the new material.
- Cost models analyzed at the material and the component/system level as a function of annual production volumes.

Introduction - Microstructure of Cast Iron

Relevant features:

- □ Solidification Stage:
 - austenite (primary & eutectic)
 - graphite
- □ Room Temp.:
- pearlite provides strength and hardness
- graphite provides thermal conductivity, vibration dampening, decreases tensile & fatigue strength

Possible Approaches to Improving Strength (UTS, FS) of Cast Iron:

- Refining the primary austenite dendrites
- Refining the eutectic cell size:
 - Inoculation (find most potent inoculants)
 - Solidification at the limit or outside the Eutectic Coupled Zone
- Improve the strength of the metal matrix:
 - Pearlite refining (alloying with Cu, Mo...)
 - Ferrite strengthening (nano-precipitates)

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059

Approach

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines PM 059

Graphite Nuclei Identification by Serial Sectioning

- Nuclei for nodular and vermicular graphite revealed
 - EDS for particle ID: (La,Ce)S particles found
 - Layered particles found: sulfide with oxide core

Development of Advanced High Strength
Cast Alloys for Heavy Duty Engines
PM 059

. Nan Oanfidani

Graphite Nuclei Identification – FIB/SEM/EDS

Type of nucleus identified:

Type-I: Mg/Al/Si

Type-II: Mg/S + Ca

Type-III: (La,Ce)/S + Ca

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines PM 059

Non-Destructive 3D Tomography

Tomography reveals same feature as traditional metallography, but non-destructively and in 3D.

Absorption/phase contrast tomography

- Full field 2D image (mm²)of direct beams
- Absorption contrast (near) or phase contrast (far) by changing sampledetector distance
- Take image and rotate -180 ~ 180
- Reconstruct 3D volume with resolution
 1μm

Video Here

Video Here

Tomography reveals entire 3D structure.

Development of Advanced High Strength
Cast Alloys for Heavy Duty Engines

PM 059

3D Quantitative Analysis of Graphite Morphology

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines PM 059

Nodule Size Distributions – Inoculation DOE

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines PM 059

Volume Distribution of all Graphite – Inoculation DOE

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines PM 059

High-Throughput DFT Search for Austenite Inoculation

- Find new structures to inoculate austenite
 - Lower undercooling and promote fine prior austenite grain size
- OQMD*: Open Quantum Materials Database
 - Use ab initio phase diagrams to screen for stability
- 212 initial matches screened to 6
 - Screen for chemistry; lattice constant, crystal structure, etc.
- Matches for B1 and B2 structures: Mn-based; V-based; TaC
 - Currently melting prototypes to determine stability
- Will utilize for graphite inoculation and ferrite strengthening

Austenite Matches

Binary ab initio convex hull showing VFe₃ stability in Fe

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059

Eutectic Coupled Zone (ECZ) Solidification

- Inside the ECZ graphite and austenite grow in a cooperative manner as alternating lamellae; the graphite flake (lamella) size is comparable to that of eutectic cell size.
- Solidification outside the ECZ leads to refining of graphite flakes and increased tensile and fatigue strength of the material.
- The Eutectic Growth Velocity can be calculated with the relationship $V = \mu \cdot \Delta T^2$, where μ is the eutectic growth coefficient and ΔT is the undercooling
- Developed model that allows studying the influence of composition on μ .
- Current findings:
 - The developed model shows that eutectic microstructures at hypo-eutectic composition grow slower comparing to those of eutectic composition
 - Silicon additions decrease the eutectic growth velocity
 - · Manganese does not have a sensitive influence on the eutectic growth velocity

$$\mu = 4.552 \cdot 10^{-8}\%C + 5.583 \cdot 10^{-9}\%Si$$

-1.163 \cdot 10^{-10} \%Mn - 1.0272 \cdot 10^{-7}

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059

Eutectic Coupled Zone (ECZ) Solidification

Eutectic Lamellar Spacing: Theoretical Calculations vs. Experimental Measurements

> Directional solidification experiments have been conducted at The University of Alabama at Birmingham

Chemistry of experimental samples

Specimen ID	Sorel Pig	#1	#2	#3	#4
С	4.52	3.83	3.42	3.57	3.45
Si	0.21	1.67	2.07	2.01	2.08
Mn	0.025	0.075	0.095	0.593	0.669
P	0.008	0.017	0.015	0.012	0.016
S	0.009	0.007	0.01	0.009	0.011
Cr	0.045	0.049	0.05	0.054	0.054
Mo	0.057	0.06	0.06	0.06	0.06
Ni	0.149	0.141	0.135	0.136	0.138
Cu	0.065	0.08	0.086	0.095	0.09
Cequivalent	4.59	4.39	4.11	4.23	4.13

Examples of microstructure obtained in directional solidification at V=0.5 µm/s

Sorel Pig

Specimen#2

Specimen#3

> Current findings:

- The calculated eutectic spacing agrees well with experimental measurements when the chemistry of the alloy is not too far removed from the eutectic value (e.g., specimens #1, #2, #3, #4)
- For the highly hyper-eutectic specimen (*e.g.*, Sorel Pig) the agreement between the experiment and theoretical calculations is relatively poor but still within the range of the measurements errors

Eutectic Spacing Results (Exp. & Calculated)

Specimen ID	V (μms ⁻¹)	Exp. average spacing (µm)	Exp. std. dev. (µm)	Calc. average spacing (µm)
Sorel Pig	0.5	70.6	15.4	53.75**
#1	1	32.8 (48.2)*	6.5	29.4
#2	0.5	47.2	6.7	51.8
#3	0.5	45	7.3	46.2
#4	0.5	43.8	7.7	44.4

a bimodal spacing was observed due to the presence of austenite dendrites

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059

^{**)} calculated as $(\lambda_{ex} + \lambda_{M})/2$

Eutectic Coupled Zone (ECZ) Solidification

Calculation of Limit of Eutectic Coupled Zone (LECZ) in Fe-C Based Alloys

➤ LECZ was theoretically determined by using the developed eutectic growth model and the dendritic growth model available in literature (Lipton *et al*, 1984) which was extended to multicomponent alloys

> Current findings:

- Current LECZ model matches JK (Jones & Kurz, 1980) model at $C \ge C_{eut}$, but strongly deviates from JK model at hypoeutectic compositions
- The reason for this deviation is constant eutectic growth velocity used in JK model while the new model employs a chemistry dependent growth velocity
- According to the developed model the dendritic austenite is always the leading phase at hypoeutectic compositions

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059

Casting Trials

Scaled up casting trials being performed at UAB's experimental foundry (22 total heats poured, 3-4 variants per heat)

 Step block geometry chosen for test casting to provide a range of solidification rates

- Inoculation
 - 5 graphite inoculants, 1 austenite inoculant
- Alloying
 - Fe-C-Si-Al-S-Bi-Cu-Sn-Sb-V-Mo
- Structure-Property
 - Tensile, Yield, Elongation, Modulus
 - Phase Fraction %, Carbide %,
 - Nodularity, Graphite Count, Graphite Size
 - Eutectic Cell Size, Fraction Eutectic/Primary

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059

Casting Trials

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines PM 059

Cu-Ni-Al Precipitate Strengthening

Atom Probe (LEAP) of Cu-Ni-Al precipitates in button samples

Step Block Properties (as-cast)

- Stabilize bcc-structure (B2) in sub-scale buttons
 - Cu-based precipitates identified with atom probe
 - Increase shear resistance
- Target alloys cast during scaleup activities
 - Increased hardness and YS achieved
 - LEAP planned for precipitate confirmation
 - No observed tempering response
- Next Steps: Optimization of ascast microstructure for improved UTS

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059

Response to Reviewers Comments

- Comments from last year were generally all positive.
 - Liked approach
 - Good collaboration
 - Leveraging DOE Lab capability

Collaboration – Project Team

CATERPILLAR® Project Lead Material and Process Development Material Characterization Design Integration Max Flate Length: 995µm Average Flake Length: 48.5µm Max Cell Size: 2245µm Average Cell Size: 1955µm Integrated Simulation Design Optimization 215 - 300 MPa Concept Design Cost Model QuesTex® INNOVATIONS LLC Argonne · Computational Material Design Material Evaluation using Advanced Photon Solidification Design Source (APS) X-Ray and MTS Testing Machine Transformation Design In-Situ Microstructure and Damage Nano Design Material Characterization Measurements **Addition Support:** Northwestern University Dr P Voorhees Dr. C. Wolverton ABAQUS/SPO THE UNIVERSITY OF ALABAMA AT BIRMINGHAM SANS, XRD

GI Fatigue Testing

Bradley University

Fluidity Spiral Test Casting

Experimental Casting Material Samples

Liquid Metal Fluidity Evaluation

Hot Tear Resistance

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

TC(Coh)/DICTRA ABAQUS/EFG PrecipiCalc®

PM 059

Remaining Challenges and Barriers

- Nucleation and growth of austenite + graphite is not completely understood, especially for CGI.
 - There could be a theoretical limit to the nucleation density possible for graphite and the resulting microstructure refinement
 - Primary phase nucleation may be only refinement mechanism, extremely difficult to find austenite nucleants
 - Level of control of the eutectic growth that is attainable through control of alloying and casting conditions has not been quantified
- Material design that meets the mechanical properties targets while simultaneously satisfying thermal conductivity and manufacturing cost requirements is a significant challenge.
 - Can mechanical properties targets be achieved with a vermicular graphite morphology?
 - Strength-Conductivity trade-off
 - Strength-Fatigue relationship
- Satisfactory ICME tools for the fundamental material modeling to design cast iron alloys are not available.

Future Steps

Nucleation

- Continue serial sectioning to identify nucleants and better understand inoculation
- In-situ solidification experiments using X-ray radiography
- Refine precipitation models of strengthening phases and inoculants
- DFT calculations to identify new inoculation strategies

Growth

- Directional solidification + quenching experiments for CGI
 - Quantitative evaluation on the influence of alloying elements and solidification conditions on the formation sequence of CGI
- Improve and validate "Divorced Eutectic" solidification model (Austenite +CG)

Casting Trials

- Continue step block trials for variations of the high strength alloying concepts already identified
- Develop experimental process for increasing the solidification rate of step blocks
- Define property limits and strength vs. thermal conductivity trade-offs
- Investigate fatigue performance of the high-strength alloy concepts
- Cast step block samples of new precipitation strengthening and inoculation concepts

Summary

- Project is relevant to the development of high-efficiency, low-emission heavy-duty engines
 - Improved material properties are needed to enable heavy-duty engines to operate in optimal combustion regimes
 - Increased mechanical properties will allow the mass of heavy-duty engines to be reduced, which will improve fuel-economy at the vehicle level
- FY13-15: focus on identifying and modeling the critical mechanisms governing the microstructure development during solidification and high-strength alloy concepts
 - Nucleant identified in several graphite particles and categorized three types by size.
 - First CG nucleants found, determined CG nucleants are the same as SG nucleants
 - X-ray methods established to reveal complex 3-D graphite network in cast irons and quantified the distribution of graphite particles (size and shape).
 - DFT work in progress to identify potential new inoculant strategies for austenite and graphite phases and potential precipitation strengthening phases.
 - Eutectic Coupled Zone (ECZ) solidification model extended to multi-component alloys and validated through directional solidification experiments. Extending to CGI growth.
 - Casting trials have identified alloy concepts with strengths ranging from 650 to 820
 MPa tensile strengths for CG->MG->SG.

Technical Back-up Slides

Approach

Updated systems-design chart for cast iron

Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

PM 059