Corrosivity and passivity of metastable Mg alloy

---An Introductory Study to Future Stainless Mg Alloys

Guang-Ling Song

Materials Science and Technology Division Oak Ridge National Laboratory

Contacts: <u>songg@ornl.gov</u>; (865) 574 4451

June 11, 2015

Project ID # LM096

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview: Project

Timeline

- Project start: Nov. 2013
- Project end: Sept. 2015
- ~85 Percent complete

Budget

- Total project funding –\$600k DOE share
- \$600k received in FY13

Barriers

- Lightweight Materials Barrier H: Maintenance, Repair, and Recycling
- Lightweight Materials Barrier C: Performance (corrosion resistance)
- 50% vehicle body/chassis weight reduction target will require low-cost, corrosionresistant Mg alloys

Partners

- U. Montana (collaborator)
- GM R&D Center Corp.

Relevance and Objective: Improve Mg Alloy Corrosion Resistance

- Mg and carbon fiber have the highest potential to achieve targeted 50% weight reduction in vehicle body and chassis
- Poor corrosion resistance is a major challenge to achieve widespread adoption of Mg alloys in vehicle applications
- Development of passivated stainless Mg alloys may permanently solve the poor corrosion, particularly the galvanic corrosion problem
- <u>Objective</u>: explore the possibility and feasibility of forming a stainless Mg alloy

Issues to address

- Can a Mg alloy be passivated by a supersaturated Passivating Element (PE) in the matrix phase?
- If yes, what is the PE threshold level?
- How is a surface film affected by the substrate Mg alloy?

Difficulty

- Key ---passivity of matrix phase
- Difficulty ---solubility of PE in the matrix phase
 - Limited solubility of PE in Mg
 - Traditional metallurgy ---impossible to obtain a passive matrix

Milestones: Focus on passivity and corrosivity measurement

- FY 2015 Complete XRD, XPS, electrochemistry, and TEM study of at least 3 sputtered Mg-Ti compositions relative to pure Mg (3/31/15): Met
- FY 2015 Submit journal paper on Mg-Ti system (6/30/15):
 On Track
- FY 2015 Complete electrochemical and XPS screening assessment in sputtered Mg-Cr system, submit journal paper if results warrant (9/30/15): On Track

Approach/Strategy: passivity of Mg-matrix phase with strong passivating element

- To find out whether Mg alloys can become passive or not by alloying approach, magnetron-sputtering was employed to form single phase Mg-X (X-strong passivating elements, such as Ti, Cr, Al)
 - Selected strong passivating elements
 - Non-equilibrium process
 - Metastable single phase
 - Pure Mg as bench mark
- Immersion and polarization curve measurements to detect corrosivity and passivity
- SEM,TEM, XPS, XRD to characterize the alloys and surface films
- Correlation of alloy composition, film characteristics and passivity/passivity

Song LM096 2015

Ingot pure Mg in saturated Mg(OH)₂ solution

Polarization curves, even after IR-correction, shows that Mg cannot become passive by strong anodic polarization. Anodic dissolution rate increases with with increasing potential.

AC-impedance confirmation

- Active dissolution behavior of Mg in the non-corrosive solution
- The film becomes more porous and thicker at a higher anodic polarization potential

SEM cross-sections of Mg in saturated Mg(OH)₂ for 24 hours

- (A) Film is thick, cracked, not protective
- (B) Film becomes thicker with increasing potential
- (C) Film ruptures at high potential

(A) BSE SEM, OCP

(B) BSE SEM, -1 V/SCE

SEM and OM topographic images of Mg after immersion in saturated Mg(OH)₂

- Cracks might be formed during film formation or SEM/TEM examination
- A severely corroding spot may cathodically protect its surrounding areas → non uniform corrosion damage

TEM cross-sections of Mg in saturated Mg(OH)₂ for 24 hours

(h) Electron diffraction pattern

•Nano-porous Inner and outer layers •Mixture of MgO and Mg(OH) $_2$

Film formation and corrosion model

- Electrochemical dissolution and hydrogen at exposed surface area
- Chemical oxidation on non-exposed area
- Mg(OH)₂ mainly deposited from solution, and MgO & Mg(OH)₂ conversion in film
- Film ruptured due to anodic hydrogen evolution

Song LM096 2015

Solution selection for Mg-Ti alloy passivity measurement

0.1wt.% NaCI + saturated Mg(OH)₂ selected (with clear passivity breakdown feature)

EXAMPLE 2 OAK RIDGE NATIONAL LABORATORY

Song LM096 2015

Magnetron-sputtered Mg-Ti alloys

(a) Mg93Ti0

(c) Mg52Ti38

(b) Mg68Ti19

- Some O and C are included in the alloy
- There is always a thin oxide/hydroxide film on the surface
- Vertically grown grains
- Crystal orientation and single phase alloy

Single phase Mg-Ti solid solution alloys simulating the Mg matrix phases

Song LM096 2015

OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Compositions of the surface films formed after 5 hours of immersion in the testing solution

- Mg93Ti0: thick surface film mainly MgO
- Mg68Ti19: mixture of thick surface film and uncorroded areas (?MgO/OH?)
- Mg52Ti38: thin surface film (?MgOH/O?)
- Mg28T51: thin surface film (?MgOH/O?)

Song LM096 2015

Mg93Ti0 TEM

Ti

TEM crosssections of the surface films after 5 hours of immersion in the testing solution

Mg52Ti38 TEM

0

0.5um

Mg

- Mg93Ti0: thick surface film (Mg/O)
- Mg68Ti19: non uniform thick surface film coverage/corrosion damage (Ti/O)
- Mg52Ti38: thin surface film (O?)

Song LM096 2015

Immersed Surface Morphologies after 5 hours of immersion in the testing solution

(a) Mg93Ti0

(b) Mg68Ti19

(d) Mg28Ti51

Cracks formed on Mg93Ti0 and Mg68Ti19

Some corrosion damage/cracks on Mg52Ti38

Almost non-corrosion on Mg28Ti51

Uniformly magnetron-sputtered MgTi alloys in the testing solution

- Sputtered Mg more active than ingot Mg
- Active dissolution at ~19%Ti
- Active-passive at ~39%Ti
- Passivated at ~51%Ti
- Anodic current density decreases with increasing Ti content
- Cathodic current density does not always decrease with increasing Ti content

Responses to previous year reviewers' comments

This project was not reviewed last year

Collaboration and coordination

- GM R&D Center
 Anil Sachdev
 ---helped select alloying elements and will provide a GM alloy
- University of Montana State University Paul E. Gannon, Phil Himmer, Quinn Andrews
 ---magnetron-sputtering Mg-X alloys for this project

Future work in FY2015 (Project ends in Sept. 2015)

- Initial Mg-Cr alloy synthesized and under evaluation
- The corrosivity/passivity of Mg-Cr alloys will be measured
- SEM, TEM, XRD and XPS characterization of Mg-Cr
- Key milestone: a paper on Mg-Cr passivity (9/30/2015)

Challenge

- Cr passivating ability may be stronger than Ti, but
- Cr is heavier than Ti, and thus the amount of Cr alloying cannot be too high

Summary

- Pure Mg cannot become passive in a non-corrosive solution even by anodic polarization
- Ti alloying can significantly reduce the anodic dissolution rate of Mg. Complete passivity can be achieved after the Ti content is high enough and the Mg-Ti alloy becomes Ti based.
- A continuous thin protective passive film can only be formed on a Ti based Mg-Ti alloy with a Ti crystal structure. On a low Ti-containing alloy with Mg crystal structure, the surface film is thick but not protective. When the Ti content is neither high enough nor too low, a thin film may be formed on some local surface areas, while on the other areas the film is a thick nonprotective corrosion product layer.

Technical Back-Up Slides

Magnetron sputtering MgTi alloys

2nd layer that holds samples onto bottom plate

1st layer that samples are inserted into

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Sample holder in Vapor Deposition Chamber

Setups for Immersion Corrosion and Electrochemical Tests

Electrochemical tests

Song LM096 2015

OAK RIDGE NATIONAL LABORATORY

Polarization curves of library

active, transitive, and passive

Passivated/unpassivated composition

Mg

Very roughly, 3 zones: active; transitive; passive

Active-passive dissolution confirmed by EIS

•EIS resistance extremely large at 51%Ti

•EIS resistance a few thousand Ohm when Ti<50%

