

A Commercially Scalable Process for Silicon Anode Prelithiation

Ionel C. Stefan, Principal Investigator Yoni Cohen, Program Manager Amprius, Inc. June 8-12, 2015

ES250

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: October 2014
- End date: September 2015
- Percent complete: 50%

Barriers

- Performance
 - Manufacturing
 - Cost
 - Energy Density
- Life
 - Cycle life
 - Shelf life

Budget

- Total project funding: \$1,800,000
 - DOE share: \$1,260,000
 - Contractor share: \$540,000
- FY14 received: \$0
- FY15 projected: \$1,800,000

Partners

• Amprius – project lead

Relevance:

Project Objectives

- Develop and demonstrate a commercially scalable process for silicon anode prelithiation that will add no more than 10% to the cost of producing nanowires, facilitating production of silicon anodes that cost significantly less than today's premium graphite anodes
- Final performance targets:
 - Pilot level prelithiation capacity (>100 cells/day)
 - <\$0.1/Ah cost
 - >95% cathode utilization

Addresses Targets

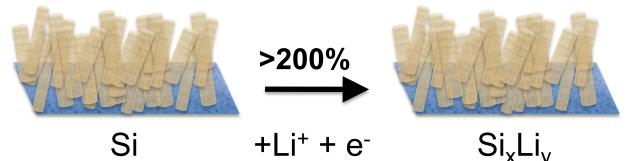
- Facilitates the manufacturing of silicon nanowire cells by addressing capacity loss in formation
- Eliminates a key barrier to high-volume manufacturing of silicon cells
- Increases cathode utilization, reducing the cost per Ah
- Increases energy density by increasing the reversible capacity of the cell

Relevance:

Milestones and Timing

4

Month/Year	Milestone or Go/No-Go Decision	Status
Nov-14	Milestone: Prelithiation methods preselected	Complete
Mar-15	Milestone: Methods down selected based on technical feasibility	On Track
Apr-15	Milestone: Pilot method selected	On Track
Sep-15	Milestone: Pilot tool/machine/setup demonstrated Deliver 10 cells with a capacity over 2Ah, prelithiated in pilot too Final report	On Track


	10/14	11/14	12/14	1/15	2/15	3/15	4/15	5/15	6/15	7/15	8/15	9/15
Prelithiation												
 Methods preselection based on cost project 1.1. Evaluation of materials and tooling required 1.2. Materials quoting for large volume manufact M1. Methods to study preselected 												
 2. Technical feasibility evaluation 2.1. Electrochemical methods 2.2. Chemical methods 2.3. Physical methods M2. Methods downselected based on technical 												
 3. Pilot scale prelithiation development 3.1. Cost analysis and best candidate(s) selection M3.1. Pilot method selected 3.2. Pilot design, sourcing and assembly 3.3. Pilot testing, optimization 3.4. Deliverable assembly on the pilot tool 3.5. Commercialization plan M3. Tool demonstrated, Cells delivered, Final Re 						1		\$				4

Approach:

Silicon Nanowires enables high energy

Amprius' growth-rooted silicon nanowires enable silicon to swell and contract successfully, without compromising the battery's mechanical stability

01

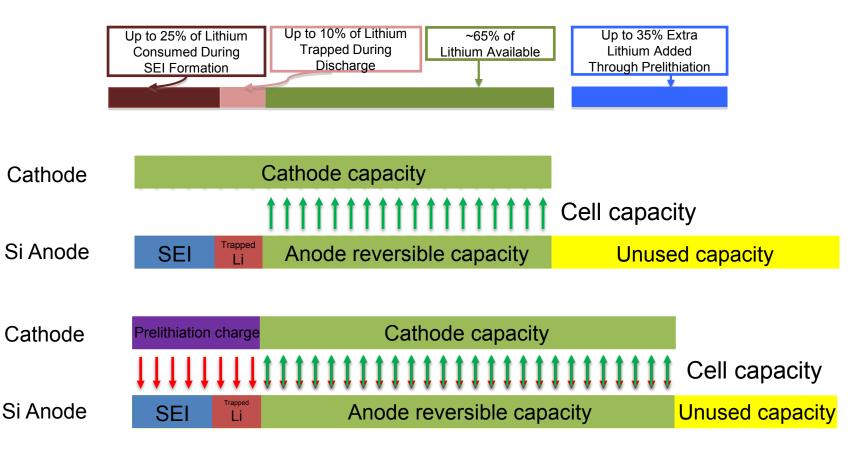
1/3-1/5th of graphite anode thickness

High content active silicon materials (100%)

Ideal and adjustable porosity distribution

High mass loading (2-3 mg/cm²)

High conductivity and connectivity


Low tortuosity – high rate capability

Approach:

Prelithiation Concept

Increase cell capacity without an increase in cathode size by compensating anode losses through anode prelithiation

Approach:

Prelithiation Methods Considered

Туре	Method	Options
Electrochemical	Ex-situ (before cell assembly):	 Lab scale – individual anodes in fixtures Industrial – R2R electrochemical bath
	In-situ (in cell):	 Auxiliary electrode source of lithium Oversized cathode Cathode embedded lithium source – lithium rich materials as secondary phase Sacrificial salt in electrolyte as lithium source
Chemical	Lithium from active reactants:	Organometallic compoundsLithium salts, reactive or unstable
	Lithium metal:	 Direct contact, dry Direct contact, with electrolyte Lithium powders or films, in cell
Physical	Vacuum methods:	EvaporationSputtering
	Inert atmosphere:	Molten metal mix, spray, dip-coating

Q1-Q2 Accomplishments

Selected two electrochemical and one physical method for prelithiation, based on cost and manufacturing process impact

Evaluated the impact of prelithiation on cell capacity and cycle life

Started technical feasibility evaluation and development of preselected methods

Task 1: Methods Preselection

- Lithium metal does not have a spot price and has a wide range depending on source, purity and shape
- Common lithium compounds include Li2CO3 and LiOH*H20 and are available in large quantities at prices that are 10-20 times lower than those of lithium metal
- Prelithiation added cost cannot exceed the cost of added capacity by oversizing the cathode

LCO capacity	165	mAh/g
LCO price	30	\$/kg
Charge price	0.18	\$/Ah

Task 1: Methods Preselection

Step	Condition	Environment	Prelithiation type
Finished electrode	Full roll, coated and calendared or deposited (NW)	Electrode dried before calendaring; no air exposure (NW)	 Bath prelithiation, rinse and seal (or protection) Wet contact with lithium foil Lithium evaporation, sputtering, molten spray plus protective layer Li powders in anode Unstable Lithium salt on anode
Slitting or Punching	Narrow rolls or sheets	Requires dry room if prelithiated; typically not a dry room	No prelithiation method applicable
Jelly roll assembly, tabbing	Stack or roll accessible through the sides	Requires dry room if anode is prelithiated; typically not dry	 Bath prelithiation with slow or pulsed current after jelly roll drying Contact foil inserted in cell on anode or separator
Pouch & tab sealing	Stack or roll accessible through one side	Requires dry room if anode is prelithiated; typically not dry	Electrochemical with auxiliary electrode
Electrolyte injection	Stack or roll accessible through one side	Done in dry room or sealed machine	Electrochemical with concentrated Li salt and reactive anion
Pouch sealing & hot press	Anode not accessible	Sealing done in inert or dry vacuum	No prelithiation method applicable

Task 2: Feasibility Evaluation

Work directions:

- 1. Find the optimum prelithiation charge level by electrochemically dosing the charge and evaluation of the effects on reversible charge and cycle life
- 2. Increase the concentration of prelithiation salt by optimizing the solvent formulation
- 3. Optimize the prelithiation protocol for cell fabrication process integration
- 4. Study thermal and optical properties of LiN3 for physical prelithiation application
- 5. Evaluate roll-to-roll industrial processes that can be adapted to prelithiation

3 0.956900 0.004104 0.00237

600

Task 2: Feasibility Evaluation

3.4287

3.46667 0.015275 0.00882

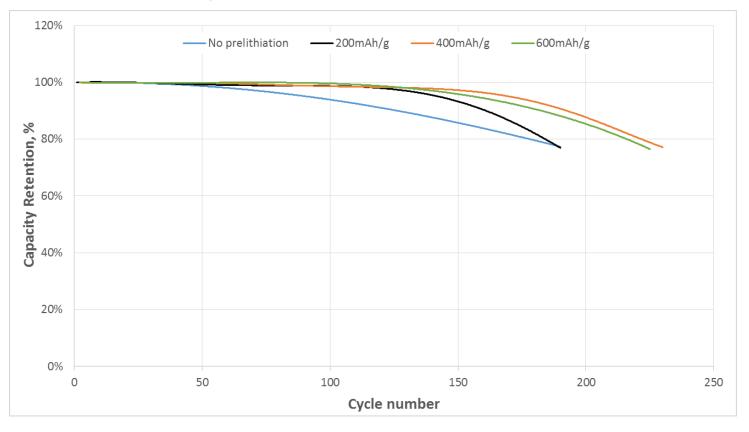
Prelithiation charge optimization:

There is no significant difference in reversible capacity or first cycle efficiency \rightarrow 200mAh/g is enough to compensate for SEI formation

600

3

0.96709


0.94671

3.5046

Task 2: Feasibility Evaluation

Prelithiation charge optimization:

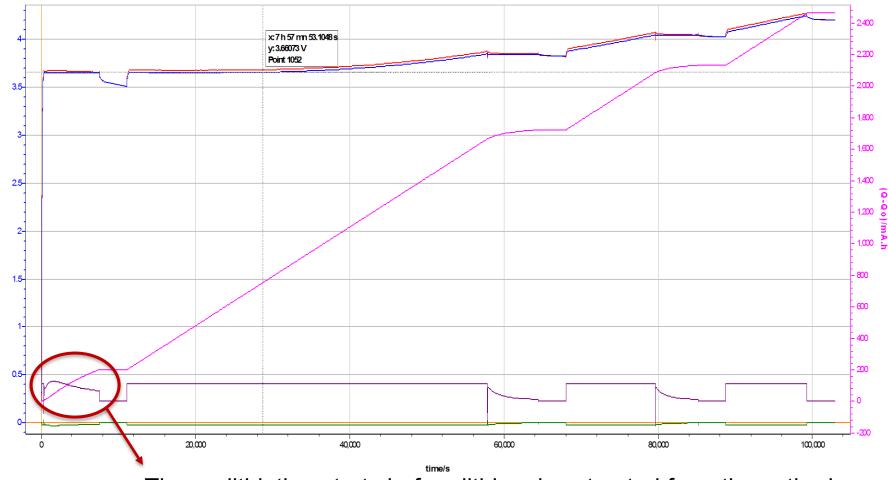
Cycle life seems to be affected by prelithiation charge \rightarrow the amount of trapped charge probably acts as a lithium reservoir

400mAh/g prelithiation level compensates lithium loss in formation and results in improved cycle life at 97% cathode utilization

In cell prelithiation

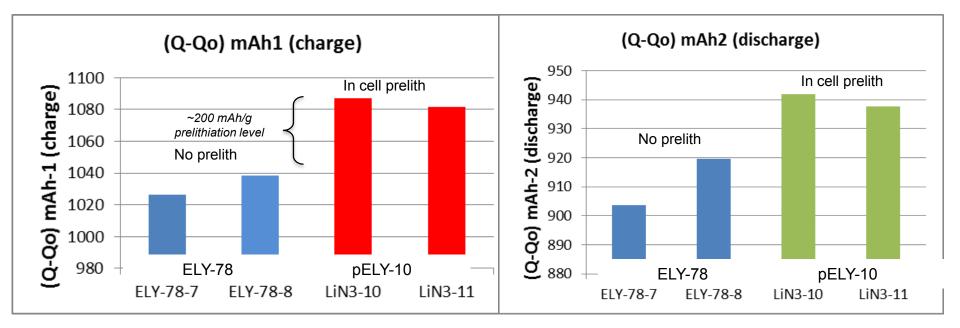
Uses sacrificial salt for prelithiation

The electrolyte formulation, electrochemical protocol and physical setup have to meet all conditions:


- Lithium ions are driven into the anode for prelithiation
- No solvent reduction on the anode or reaction that forms stable SEI
- Oxidize the solvent or anion salt on the cathode, as counter-reaction
- Counter-reaction products should be inactive, so gas-forming reactions are ideal
- Counter-reaction at low voltage so that there is no driving force to pull lithium out of the cathode

Ewe/V

--- Everys, time# --- Everys, time ---- Ecerys, time ---- <-> vs, time ---- (Q-Qp) vs, time


The prelithiation starts before lithium is extracted from the cathode

In cell prelithiation

In cell prelithiation applied to wound cells made from full frame foils

Prelithiation formulations increase capacity by about 3%

• Currently in cycle life

New Project, Not Applicable (No Prior Comments)

Amprius Looks Forward to Replying to your Comments Collaborations:

Amprius is the only team member; there are no subcontractors on the project

Amprius has to date performed the overwhelming majority of project work. However, Amprius will engage external vendors to assist with the design and assembly of a pilot prelithiation chamber

Sourcing materials for prelithiation

 Prelithiation is a new process step and, with the exception of lithium metal, the chemicals needed for the prelithiation step are not available in quantities required by the battery industry

Process integration

- Prelithiation affects the properties of anode materials and requires special conditions and handling
- Potential impact on downstream process steps is difficult to quantify

Feasibility

- A 3-6 months feasibility evaluation may be too short to fully evaluate potential secondary effects of prelithiation and new chemical formulations of the electrolyte
- 3-6 months may also be not enough time to complete design, development and demonstrate of a pilot prelithiation chamber

Future Work:

Activities – Through September

Down-select method for prelithiation scale-up

- Finish technical feasibility evaluation of selected methods
- Analyze cost impact of each method tested

Pilot prelithiation development

 Design, test and optimize a pilot setup and equipment that can be integrate with current cell assembly processes

Pilot prelithiation demonstration

 Produce and deliver cells prelithiated using the pilot process developed

Amprius analyzed the cost and process impact of a variety of prelithiation methods, and selected three for technical feasibility evaluation

Amprius optimized the prelithiation charge level and started feasibility evaluation with the optimized level as target

A new prelithiation method with minimum process impact was invented and is under development