

Super Truck Program: <u>Vehicle Project Review</u>

Recovery Act –Class 8 Truck Freight Efficiency Improvement Project

Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck North America LLC June 11th, 2015

Project ID: ARRAVT080

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: April 2010
- Project end: March 2015
- Percent complete: 100%

Budget

- Total project \$79,119,736
- Vehicle budget \$47,486,735
 - DOE share \$ 19,228,552
 - DTNA share \$ 19,228,552

Barriers

- Resolve thermal & fluid dynamics tradeoffs between aero
 & cooling
- Rejecting more heat in a smaller, aerodynamic hood & engine compartment
- Development of safe and efficient high voltage power distribution, integrating multiple HV energy sources
- · Making tradeoffs between efficiency, cost and weight
- Vehicle controls integration (aux, hybrid, powertrain, waste heat, predictive)

Partners

- Detroit Diesel
- Schneider National, Walmart
- National Renewable Energy Lab
- Oregon State University
- Strick Trailer
- Michelin

Objectives and Milestones

Develop and demonstrate a 50% total increase in vehicle freight efficiency:

• At least 20% improvement through a heavy-duty diesel engine capable of achieving a 50% brake-thermal efficiency

• Identify key pathways towards achieving 55% through modeling and analysis

Timeline	Phase Description	Milestones	
4/10–3/11	Analysis: (1) Technology Modeling/Analysis and Initial Component Development and Demonstration	Develop analytical roadmap: • 50% vehicle freight efficiency improvement • 50% engine brake thermal efficiency	
4/11–3/12	Specification: (2) Experimental Demonstration of Technology Building Blocks for Intermediate Goals	Experimentally demonstrate technology building blocks: • 25% vehicle freight efficiency improvement (system level test) • 46% engine brake thermal efficiency	
4/12–5/13	Design: (3) Technology Identifications and Final Component Development and Demonstration	 Identify and initially develop technology building blocks: 50% vehicle freight efficiency improvement (system level test & analysis) 50% engine brake thermal efficiency 	
6/13–6/14	Build: (4) Experimental Demonstration of Technology Building Blocks for 50% Engine Thermal Efficiency and 50% Vehicle Efficiency	 Experimentally demonstrate technology building blocks: 50% vehicle freight efficiency improvement (system level test) 50% engine brake thermal efficiency 	
7/14–3/15	Test: (5) Final System Integration and Demonstration	 Experimental demonstration: 50% vehicle freight efficiency improvement (entire vehicle test) 50% engine brake thermal efficiency (engine test) 55% engine brake thermal efficiency (engine analysis) 	

Approach

Phase 5: Road to 50%

A-Sample (Performance Test, April 2014)

- · Aero hood, bumper, active grille
- Stock DD11 Engine, DT12 DD Trans. + eCoast
- · Waste Heat Recovery (electrical expander & vehicle cooling)
- 6x2 Axle Config., 2.28:1 RAR + oil baffle
- GHC Hybrid B-sample (120kw eMotor, 360v, 2.4 kw-hr Li-Ion Bat)
- eHVAC (HV compressor, remote condenser, electrical fan)
- eMotor engine start
- · Cab insulation package
- Clutched air compressor / electronic air control
- AccuSteer (closed center steering gear + accumulator)
- · Low rolling resistance wide based single tires
- Thermal mgt. (variable speed fan, water pump)
- Trailer aero., lightweighting and solar

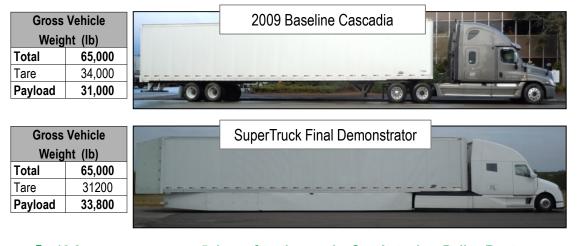
A-Sample

ST Final Demonstrator

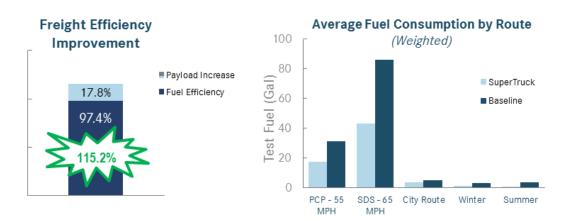
Final Demonstrator (FE Test, Oct 2014 – Jan 15)

A-Sample Technologies, plus...

- Full Tractor Aero
 - cab/sleeper, underbody, drive wheel fairing, mirror cam, steer wheel, full side extender
- 50% BTE DD11 Engine + WHR
- Predictive hybrid controller
- Predictive engine controller
- · New final drive active oil management with FE gear oil
- Lightweight Aluminum Frame and cross members
- Ultra Lightweight Air Suspension
- Advanced Loadshift 6x2
- · Solar reflective paint
- Enhanced Trailer aerodynamics



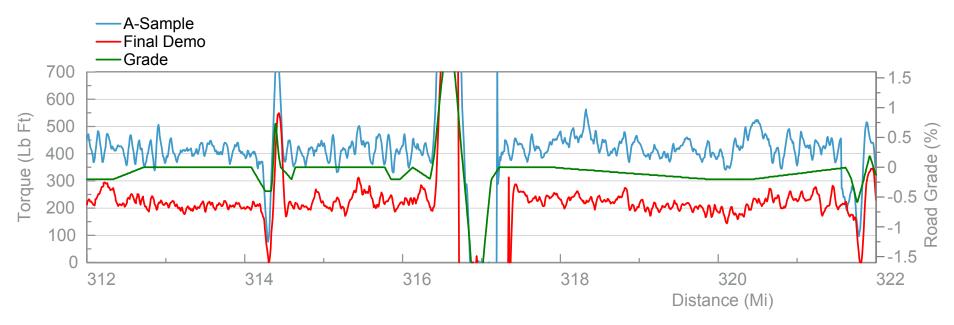
Tinker Trucks



SuperTruck Final Demonstration Test

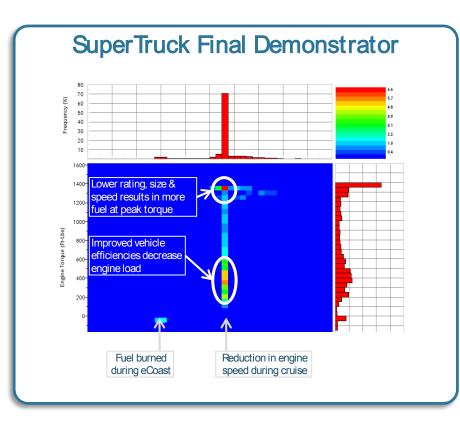
October 2014 – January 2015

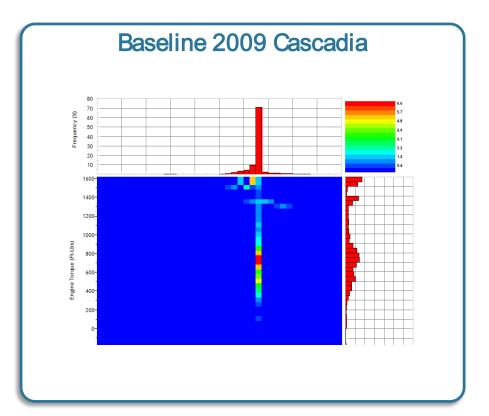
➔ 12.2 mpg average over 5 days of testing on the San Antonio – Dallas Route



Torque Reduction: A-Sample vs Final Demonstrator

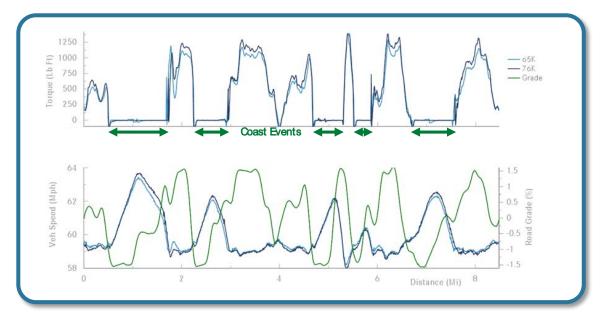
Comparison of A-Sample and Final Demonstrator on the same section of road


- Similar weather conditions between each run.
- Large reduction in torque on flat ground.



→ Significant reduction of road load observed in lower engine torque levels

Engine Operations on Portland Canyonville Route



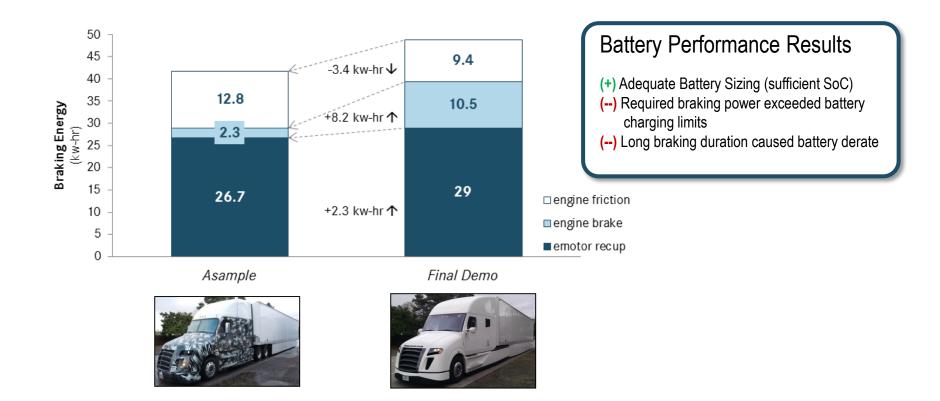
→ Performance enhancements based on smaller engine spec, improve vehicle efficiency and eCoast

eCoast Benefits Enhanced on SuperTruck

Highway Test evaluation San Antonio – Dallas Route			
eCoast Performance			
%Drive time <i>(green)</i>	eCoast Mode		
	Predictive		
	Standard		
	N∕A		
	ast Perform %Drive time		

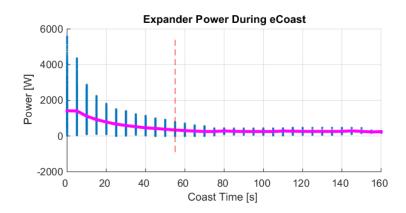
Closed Test Track

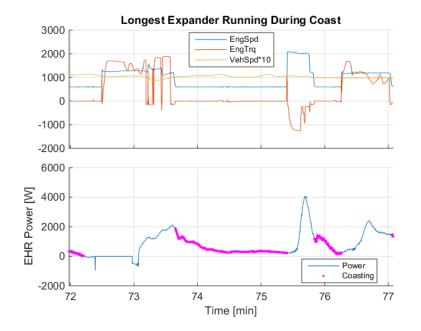
- 5 Coast Sections: 40%– 43%Coast time
- Improved vehicle extends eCoast intervals
- Hybrid enabled, but seldom used

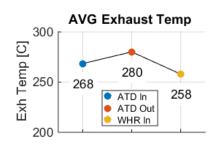

eCoast performance enhanced

- Lower vehicle drag provides more eCoast opportunity
- Predictive Technologies enhance eCoast with 3D map data

Brake Energy Evaluation


A-Sample vs. Final Demonstrator Vehicles on San Antonio – Dallas Route


➔ An increase in brake energy on the final demonstrator translates into more engine braking, rather than hybrid recuperation



Exhaust Heat Recovery Performance Dependent on Vehicle Design and Operations

➔ Tradeoff observed: expander 'loses steam' during coasting

Exhaust insulation needed to minimize temperature loss to the EHR boiler

SuperTruck Technology Evaluation

Commercially viable technologies

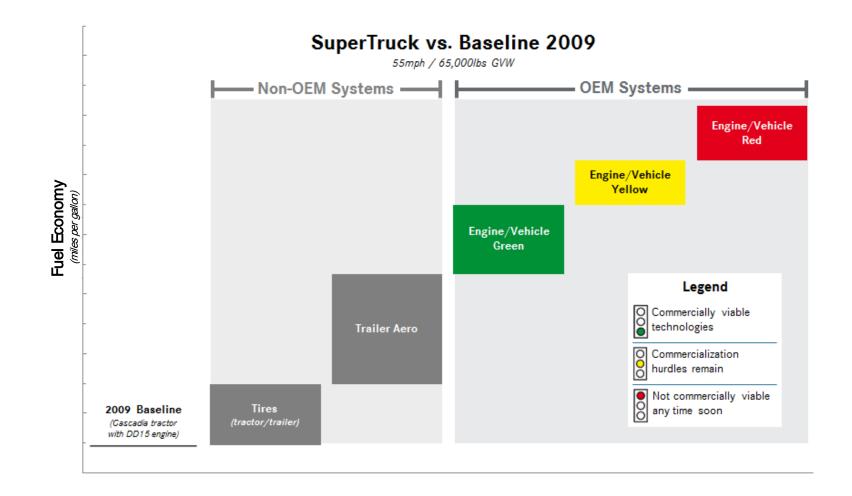
- 00
- Engine
- (e.g. variable water pump, rating, downspeeding)
- Predictive Tech. (e.g. cruise control, shifting)
- Powertrain (e.g. direct drive AMT, eCoast)
 - Aerodynamics (e.g. cab/ chassis side extenders, bumper, windshield seals)
 - Tires (e.g. energy efficient, wide based singles)
- Trailer (e.g. EPA Smartway aerodynamics)

Commercialization hurdles remain

(e.g. regulatory, economic and/ or technical)

- Engine (e.g. higher compression ratio, peak firing pressure)
 - Aerodynamics (e.g. drive wheel fairing, under body cover, active grille)
 - MirrorCam

Auxiliaries


(e.g. clutched compressor, power steering pump)

Not commercially viable any time soon

- 00
- Hybrid Electric Powertrain (predictive technologies alternative low cost solution)
- Exhaust Heat Recovery
- Lightweight Materials
- (e.g. carbon fiber)

Breakdown of Fuel Economy Improvements

SuperTruck Partnerships and Collaborations

Department of Energy:

- → Roland Gravel
 → Gurpreet Singh
- → Ken Howden
 - → Carl Maronde

Daimler Trucks | SuperTruck Program | June 11th, 2015 | Public Information

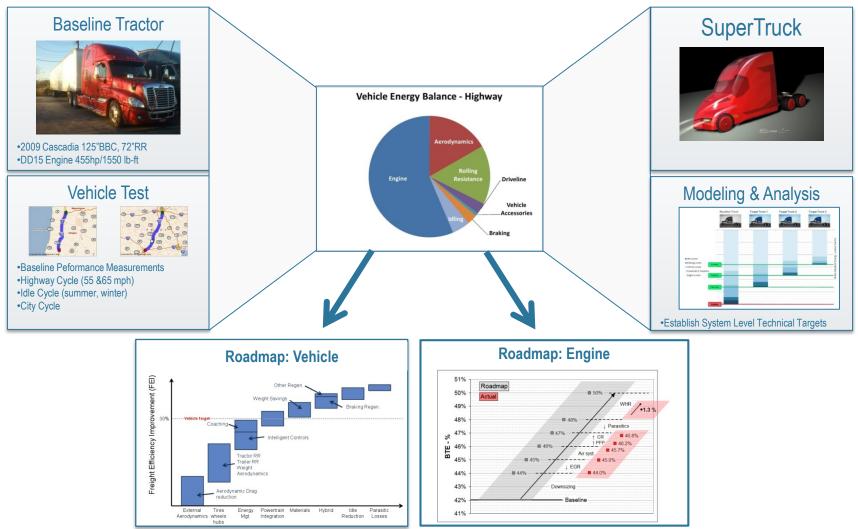
Summary and Future Work

Successful completion of phases 1-5; Phase 5 targets exceeded

50% Vehicle Freight Efficiency target exceeded on Final Demonstrator vehicle through testing on Portland-Canyonville, San Antonio-Dallas, Portland City and Idle cycles
 50% Engine Brake Thermal Efficiency target exceeded in engine test cell

Mission Accomplished

Backup

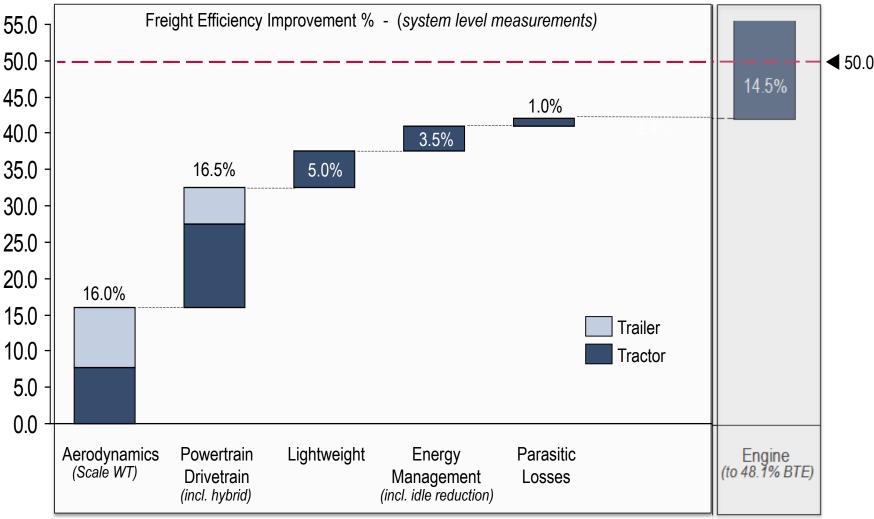

Department

Backup

Phase I Milestone Completed

Analytical roadmap development to 50% vehicle FEI & 50% engine BTE

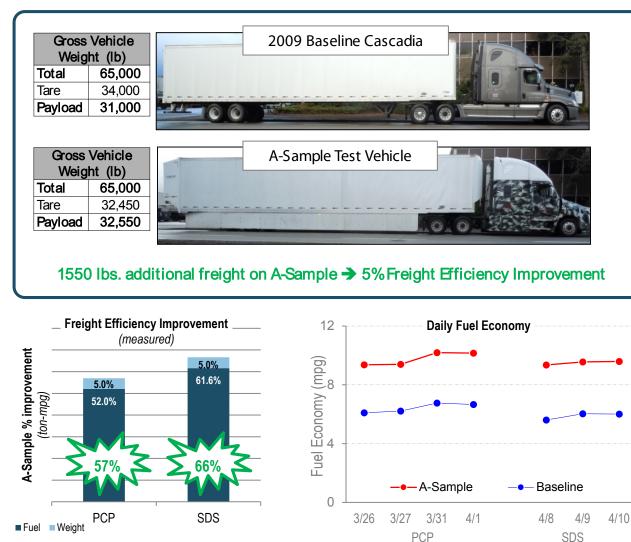
Daimler Trucks | SuperTruck Program | June 11th, 2015 | Public Information

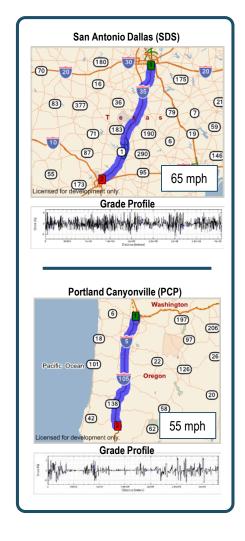

(Engine topics covered in separate session)

Backup

Phase 2 & 3 Milestone Status 🗸

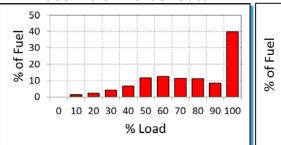
Experimental testing to 25% & 50% vehicle freight efficiency*


* Technical Accomplishments covered in the 2012-2013 Annual Merit Reviews

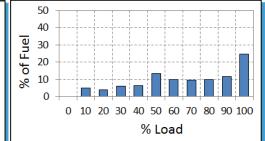

Backup

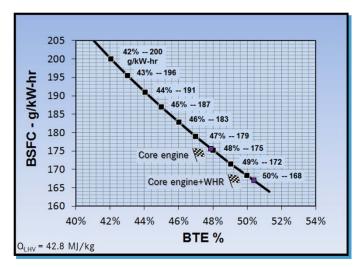
Vehicle Level Performance Test ✓

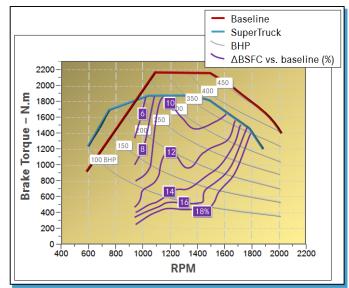
March-April, 2014: On Highway Fuel Economy Test



Backup




SuperTruck Engine – Final Results


- 50.2% BTE
- Large fuel economy improvement at part load relative to 2009 baseline -- resulting from optimized, downsized, down-sped SuperTruck engine
- Technical focus since last year's AMR
 - Engine & WHR hardware and design freeze
 - Software and calibration freeze
 - Model based engine controller commissioned on the SuperTruck demonstrator vehicle
 - SuperTruck vehicle integration
 - 55% BTE scoping activities
- SET: 6.9 g/bhp-hr E.O. NOx -- 0.15 g/bhp-hr T.O. NOx
- FTP: 3.0 g/bhp-hr E.O. NOx -- 0.50 g/bhp-hr T.O. NOx **Baseline on Texas route**

SuperTruck on Texas route

