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Overview

Timeline Barrier
e Start date: September 1, 2013 * Joining and assembly. High-
* End date: August 30, 2017 volume, high-yield joining

technologies for lightweight and

* Percent complete: 25% T ,
dissimilar materials need further

improvement.
Budget Project Partners
* Project budget: $595,520 * Dr. Karsten Woll (former postdoc)
— Budget Period 1: $144,860 — now with Karlsruhe Institute of
— Budget Period 2: $149,167 Technology, Karlsruhe, Germany
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Relevance — Project Objectives iI:y'

Overall Objective: Develop and characterize novel reactive foils
based on reduction-oxidation (Redox) reactions for use in
bonding dissimilar materials

Achievements for FY2014:

* Mechanically fabricated 23 Cu-based and Ni-based Redox Foil systems
representing 11 unique chemistries

* Determined baseline strengths for bonding aluminum 6061, magnesium
AZ31, aluminum coated boron steel (ACBS), and hot stamped boron steel
(HSBS) with Al:CuO-based, Al:Cu,0-based and Al:NiO-based Redox Foils,
that were fabricated using initial techniques.

* Minimized mass ejection from Redox Foils more than 10x through dilution
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Milestones iI:r'
o s ot e ——] s

9/30/20152» Optimize Redox Foil chemistries and dilutions On Track
9/30/20152 Optimize microstructures of Redox Foils On Track
3/31/2016? Optimize mechanical fabrication of Redox Foils On Track
9/30/20162° Determine critical applied pressure for bonding pending
9/30/20162° Identify range of acceptable Redox Foil thickness pending
12/31/2016%¢ Optimize surface preparation methods pending
12/31/2017 Determine bond strengths and failure modes pending
9/30/2017 Determine corrosion behavior of optimized bonds pending
12/31/2017 Determine microstructure/degradation near bonds pending

aRepresents Go/No Go Decision; P10 MPa bond strength is needed; €20 MPa



Approach — Existing Technology

e Reactive joining has been
commercialized with Al/Ni
formation reactions.

— NanoBond™ process
— NanoFoil™ (Ni/Al Foils)
— Local heat source

— No thermal damage

e Requires pre-wet solder
layer

 Expensive due to vapor
phase processing of foils

Target for 300 mm Wafer Fab

Commercial NanoBond™ Process
(formation reaction)

Component A

Solder < % NanoFol ™™ 7
Pre-wet _

Component B

R

Component A

Reacting
NanoFoil™

Component B

o

Ni Target
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'Brass Backing Plate 0.1mm
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Approach — Propose Technology ily

* Joining with Redox Foil

— Exothermic reaction creates Redox Foil Process
. (thermite reaction)
its own braze
— Little thermal damage (HAZ) l Component A % Additional outer
~ No <% braze layers can be
— Propagates ~0.1 m/s Pre-wet . : = 7 2dded as needed
 (Can bond dissimilar metals :
— Ex. Steel to Mg l l l
* Mechanical Fabrication VA—
Reacting 2
— Cheaper than vapor phase Redox Foil T
processed reactive materials T T T

— High volume production of
Redox foils can be enabled

| 41+ MO+ dilution — ALLO, + (M + dilution) + heat|
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Technical Progress: Fabrication

 Redox Foils fabricated by consolidating and processing
(swaging and rolling) micron sized powders

Fuel Oxide
Al:NiO:20%Ni
Diluent 7
100 Reactants
i {HI Ni

90 | | NiO . - —_—

80} 1 Al | Diameter reduction during
whed 70 u “ ” -
c [ - Qo
Q 60 1 T o | . Lo
5 50 - ' g g i As-swaged mixture in jacket
ﬂ. 40 | =t m . i,
8 30| i o g | As-rolled mixture in jacket
© - ; =5 . : 2
s 20 - v ' :

10} : | Redox Foil

ol ]
0 10 20 30 40

wt % Dilution
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Technical Progress: Bonding Parameters i.:"

e Constant pressure Applied Load

— 13 MPa
— Maintained by spring ‘

e 400 um thick foils Spring
* Foils spark ignited outside of Collar
bond area
* Base components Spring Spring
— Al 6061 Support
— Mg AZ31
— Al coated boron steel (ACBS)

— Hot stamped boron steel (HSBS) Flat
Punch

Top Component

Bottom Component\ Redox
Foil
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Technical Progress: Bond Strengths i.y

Al:Cu0:40%Cu (400 um thick)

8
* Copper appears to wet AL o0s
bonding substrates D?_E ] [ |
* Too much flow of material 2 .| I 1800
c ' <
from the bond area £ .0 lono 5
* Flow will be reduced in large E, 5 %
bond areas ) 1% &
— 2 <
© @)
() : : 1 200
c 1t Tested in Tension
N
Al 6061 ACBS HSBS

System |

Al:Cu0:40%Cu on Al 6061
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Technical Progress: Bond Strengths il:y'

Al:NiO:10%Ni (400 um thick)

8 _ * Lower bond strength

TF 11000 i
=T than copper foils
O 6 [ :
=3 1800 Z * Nickel braze does not
c =
=W leso & wet substrates well
5 | Ll
= } la00 C
D ol [ 8
gg - 200 @
c 1r
0p)] 0-

ACBS HSBS Mg AZ31*
Base Metal

W \|-NiO:10%Ni on Al 6061

500 pm
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Technical Progress: Fracture Surfaces iI:y’

Substrate visible after
fracture in bond interface

The CuO/Cu,0-based foils
eject more material but have
better wetting

The NiO-based Redox Foils
eject less material but have
poor wetting

Strategy: dilute to minimize
mass ejection and then alloy

Al:Cu0:40%Cu spreads Al:NiO:10%Ni leaves to maximize wetting and
on both surfaces, porous braze, fracture minimize corrosion
fracture within braze at substrate interface

6/12/15 11



Technical Progress: Dilution

* Dilute foils enough to bring temperature of reaction below
boiling points of products (and reactants)

* Dilution provides additional braze material

T T Tt T T T T T T T T 7
—— AINIO:Ni Product
3000 |- ——Al:CuO:Cu - roaucts
| —A:cui20Ccu —L T 100, N =1 ALO,
K | TBO|I, Ni 90 1
: 80 ]
2500 F = TBon, Cu = 7ol
— Boil, Al & ol
T S
O . O 5ol
3 boiling points Melt, Al203 g 40
- S5 30
o 20}
1500 | T S
Melt, Ni ol
1 0 10 20 30 40
1000 | T R R SR R S SRR T W Melt, Cu wt % Dilution
0 10 20 30 40 50 60 70 \&0

wit% Dilution
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Technical Progress: Propagation iI:y'

* Mass ejections and propagation velocity depend on chemistry
and dilution

Redox Foil
ignition
Copper s
electrode Clamping
blocks
Al:NiO:10%Ni Al:Cu,0:10%Cu
Time +00000.024000 Time +00000.006600

& A.:m;

-—
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Technical Progress: Foil Characterization i.:"

e Asdilution increases, normalized mass ejection and velocity
decrease

 Can mass ejection be eliminated without quenching?

-
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Technical Progress: Quenching in Bonds i.:"

* Foils must generate heat faster than heat is dissipated into
surroundings or else the reaction will quench

QRX > QL < Sumof heat .Iosses, including into
substrate, foil, and atmosphere

Pressure
Propagation ‘ Reacted Areas
—
To % -|:’. =
Redox Foil {X_P \ 0
ignition Bottom -

Ignition

Quenched reaction —
stops at interface

Al:Cu,0:10%Cu
Aluminum 6061

tBhO”d pr:C’patgat?S.l o
rough entire foi Bottom base substrate after

foil iinition and iuenchini
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Technical Progress: Quenching in Bonds i-:J

* Large dilutions in NiO and Cu,O systems lead to quenching in
a bond (indicated by open symbols and dashed lines)

* Increase reactivity so foils can still propagate within a bond
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IS o | T
T} - | = 01 T o E
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6/12/15 16




=
Technical Progress: Quenching in Bonds i-:J

* Large dilutions in NiO and Cu,O systems lead to quenching in
a bond (indicated by open symbols and dashed lines)

* Increase reactivity so foils can still propagate within a bond
* Larger dilutions will yield larger quantities of braze

T T T T T T T T T T T T T T T T ] T I T | T | T I T I T T
1.0 - e n . e

5 —=— ALNIO:Ni 10 11 Open symbols and dashed lines —s— ALNIO:Ni - |7
S A ﬁ:gugocg 1 F | indicate systems that quench —A— Al:CuO:Cu
@ —v— Al:Cu20:Cu i . . —v— Al:Cu20:Cu | ]
“ o8| —a— Propagates | i during bonding of Al blocks —a— Propagates | |
S L ---0--- Quenches i - ---0--- Quenches
o -
2 —_ & /"“—-I Il“
O 0.6 l —a—1 T 4 2 1f ¥ 3
2 [ A E \ -
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£ > a 2
3 04 I kY, i 9 I T ]
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Technical Progress: Enhancing Reactivity il:i

 Decrease reactant spacing via alternative methods (ball
milling)

* Incorporate ball milled powder into Redox Foil

Conventional Swaged/Rolled Material

COMPC  10.0kV  X1,800 WD 11.6mm 10pm

Reactant spacing 1-3 micron Reactant spacing < 1 micron
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Response to Previous Year Comments i-:J

* This project started in October 1, 2013 but was not reviewed
in 2014.
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Collaborations iI:r'

* Severstal — Material supplier ﬂ
Supplied aluminum-coated boron steel and

hot-stamped boron steel for testing SeverStaI

* Dr. Karsten Woll — Former postdoc
Now at Karlsruhe Institute of Technology
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Remaining Challenges and Barriers il:r'

Challenge: Mass ejection & large volume fraction of alumina
Solution: Increase dilution to minimize ejection and increase braze

Challenge: High dilution can lead to quenching
Solution: Decrease average reactant spacing to enhance reactivity

Challenge: Molten braze from Redox reaction wets poorly
Solution: Alloy best braze(s) with reactive elements

Challenge: Best braze(s) may lead to corrosion
Solution: Alloy braze systems to minimize corrosion
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Future Work

* Minimize reactant spacing and enhance reactivity so as to
maximize dilution

* Identify optimum dilutions for the NiO and Cu,O systems
— wt% dilution as well as chemistry
— Maximize wetting, minimize ejection

e |dentify optimum means for combining diluent with reactive
particles.

* Create statistically signification datasets for shear strengths of
bonds and determine the modes of failure in the joint.
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Summary

e Several Ni- and Cu-based Redox systems have been fabricated
and studied while varying the level of dilution.
— Velocity and mass ejection decrease with increasing dilution

— The amount of braze available to the bond increases with dilution

* Preliminary bonding data suggests that moderate bond
strengths can be obtained and depend strongly on foil
chemistry and the materials being bonded.

e Further microstructural refinement is needed to promote
propagation of the Redox reaction through the bond interface
in heavily-diluted foils.
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Instruction

Technical Back-Up Slides

(Note: please include this “separator” slide if you are
iIncluding back-up technical slides (maximum of five
technical back-up slides). These back-up technical slides
will be available for your presentation and will be included
in the DVD and Web PDF files released to the public.)
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Technical Backup: Fabrication i.:"

Cold Press Powders - thermite mixtures Rolli | i
(25 C max) olling - create planar foi

(25 C)

Powders compacted
Powders mixed and

added to tube

File Jacket leaving foil

Redox Foil

Swaging - radial reductions of tube
(100 C max)

Steel Jacket
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Technical Backup: Quenching Limits
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Technical Backup: Alternative Diluent il:r'
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