Advanced *in situ* Diagnostic Techniques for Battery Materials

Xiao-Qing Yang and Xiqian YU Brookhaven National Lab. (BNL)

2015 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting Washington, DC, June 08-12, 2015

DOE Vehicle Technologies Office

ES059

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start: 10/01/2013
Finish: 09/30/2016

Budget

- Funding received in FY14 DOE: \$415k
- Funding received in FY15 DOE: \$415k

Barriers addressed

- \cdot To reduce the production cost of a PHEV battery
- \cdot Li-ion and Li-metal batteries with long calendar and cycle life
- $\boldsymbol{\cdot}$ Li-ion and Li-metal batteries with superior abuse tolerance

Collaborators

- University of Wisconsin at Milwaukee
- Drexel University
- Massachusetts Institute of Technology (MIT)
- Lawrence Berkeley National Laboratory (LBNL)
- Pak Ridge National Lab. (ORNL)
- Argonne National Lab. (ANL)
- Pacific Northwest National Lab. (PNNL)
- Johnson Control Inc.
- Beijing Institute of Physics
- Hydro-Québec (IREQ)

Relevance and Project Objectives

✓ Diagnostics study of thermal abuse tolerance (to improve the safety characteristics of electrode materials).

- → to establish and investigate the structural origin of thermal instability of various cathode materials, especially the high voltage LiNi_{0.5}Mn_{1.5}O₄ materials
- ➡ to search new approaches on how to improve the thermal stability of cathode materials including doping and surface modification techniques.
- ➡ to provide valuable information about how to design thermally stable cathode materials for HEV and PHEV applications.
- ➡ to develop new *in situ* diagnostic techniques with surface and bulk sensitivity for studying the thermal stability of various cathode materials.

✓ Diagnostics study aimed to improve the calendar and cycle life of batteries.

➡ to develop in situ diagnostic techniques with surface and bulk sensitivity to improve the calendar and cycle life of batteries by studying the mechanism of capacity, voltage, and power fading of Li-ion battery.

\checkmark Diagnostics study of electrode materials with lower cost potential.

Milestones

Month/Year	Milestones
Dec/14	Complete the thermal stability studies of a series of blended LiMn $_2O_4$ (LMO) - LiNi $_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM) cathode materials with different weight ratios using in situ time-resolved x-ray diffraction (XRD) and mass spectroscopy techniques in the temperature range of 25° C to 580° C \rightarrow Completed.
Mar/15	Complete the In situ XRD studies of the structural evolution of $Li_{2-x}MoO_3$ ($0 \le x \le 2$) high energy density cathode material during charge-discharge cycling between 2.0 and 4.8 V. \hookrightarrow Completed.
Jun/15	Complete the x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) studies at Mo K-edge of Li_2MoO_3 at different charge-discharge states. $\Rightarrow On$ schedule.
Sep/15	Complete the preliminary studies of elemental distribution of Fe substituted high voltage spinel cathode materials using transmission x-ray microscopy (TXM). → On schedule.

Approaches

- A combination of time resolved X-ray diffraction (TR-XRD) and mass spectroscopy (MS), together with in situ soft and hard X-ray absorption (XAS) during heating and transmission electron microscopy (TEM) to study the thermal stability of the electrode materials.
- Using in situ XRD and XAS, as well as TEM to study a model cathode material Li₂MoO₃ on the lattice breathing of layer structured materials during charge-discharge cycling, aiming to improve the cycle life of Li-ion batteries
- Using quick x-ray absorption spectroscopy technique to study the kinetic properties of Li_{1.2}Ni_{0.15}Co_{0.1}Mn_{0.55}O₂ high energy density cathode materials during constant voltage charge for high rate capability of Li-ion batteries.
- Extended collaboration with other US and international academic institutions and US industrial partners.

In Situ Techniques to Address the Mechanism

Technical Accomplishments

- By collaborating with Prof. Minhua Shao at Hong Kong University of Sciences and Technologies, carried out the thermal stability studies of a series of blended LiMn₂O₄ (LMO) -LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ (NCM) cathode materials with different weight ratios using in situ time-resolved x-ray diffraction (XRD) and mass spectroscopy techniques in the temperature range of 25°C to 580°C.
- By collaborating with Prof. Zhaoxiang Wang at Institute of Physics, Chinese Academy of Sciences, through a systematic study of lithium molybdenum trioxide (Li₂MoO₃) using synchrotron based XRD and XAS, as well as STEM, a new "unit-cell-breathing" mechanism during charge-discharge was discovered. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high-energy-density lithium-ion batteries.
- By designed Fe substitution, the thermal stability optimized high voltage spinel LiNi_{1/3}Mn_{4/3}Fe_{1/3}O₄ was synthesized and characterized, which is thermally stable at temperature as high as 500° C. Elemental distribution of Fe substituted high voltage spinel cathode materials was studied using new technique of transmission x-ray microscopy (TXM).

In situ XRD-MS data of electrochemically delithiated LMO and NCM mixture with weight ratio of 3:1

(a) *In situ* XRD-MS data of electrochemically delithiated LMO and NCM mixture with weight ratio of 3:1, and (b) zoomed in XRD patterns with (*hkl*)_H and (*hkl*)_C indexed for hexagonal NCM and cubic LMO respectively; patterns are only shown up to 300° C for clarity. (c) LeBail fitting of the XRD pattern at 580° C. *rock salt phases include MnO and (Mn,Co,Ni)O; their forming temperatures are close to each other.

Background of "Unit Cell Breathing" of layer-structured cathode materials

"Unit Cell Breathing" of layered LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ during charge

In situ X-ray diffraction (XRD) of layered Li₂MoO₃ during the first charge

direction of the "normal" breathing in most of the layer structured cathode materials

In situ X-ray diffraction (XRD) of Li₂MoO₃ during the first discharge

Reversible three-dimension contraction during discharge

Lattice parameter changes of Li₂MoO₃ during the first charge and discharge

Ex situ XANES and EXAFS spectra at Mo K-edge of Li₂MoO₃ at different delithiation and lithiation states

In situ x-ray absorption spectra of Li₂MoO₃ during the first charge

After charging, the uniform Mo-O bond length changed to three different new bond lengths and the Mo-Mo bond length increased Y. N. Zhou et al. *Nature Communications* 5, 5381 (2014)

Structure evolution of Li₂MoO₃ during charge

The atomic resolution images obtained by STEM show evidence of the Mo migration to Li layer

Mo₃O₁₃ cluster model for Li₂MoO₃ described in the literature

a-b plane

Mo-Mo metal-metal Bonding is the key factor for the "abnormal" breathing in Li_2MoO_3

Hibble S. J., Fawcett I. D., Inorg Chem 34, 500-508 (1995)

Diagram of the molecular orbital (MO) energies as a function of the orbital exponent for Mo 4d orbitals and the Mo-Mo distance in Mo₃O₁₃ cluster

HOMO (highest occupied molecular orbital) is **bonding** orbital And the removal of the 4d electrons during charging will weaken the metal-metal bonding and cause expansion in 'a' and 'b'

F. A. Cotton, *Inorganic Chemistry* 3, 1217 (1964) Y. N. Zhou et al. *Nature Communications* 5, 5381 (2014)

Normal and abnormal lattice parameter changes of layered compounds during delithiation

Cathode materials	Lattice		Charged phase	Lattice		Lattice change	
	parameter (Å)			parameter (Å)		_	
	а	С		а	С	Δα	Δc
LiCoO ₂	2.819	14.089	Li _{0.5} CoO ₂	2.813	14.370	-0.2%	2.0%
LiNiO ₂	2.883	14.215	Li _{0.5} NiO ₂	2.820	14.469	-2.2%	1.8%
$LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$	2.87	14.20	$Li_{0.5} Ni_{0.8} Co_{0.15} Al_{0.05} O_2$	2.81	14.52	-2.1%	2.3%
LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂	2.85	14.18	Li _{0.5} Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂	2.81	14. 46	-1.4%	2.0%
LiVO ₂	2.840	14.785	Li _{0.5} VO ₂	2.867	14.53	0.9%	-1.7%
LiNbO ₂	2.912	10.46	Li _{0.5} NbO ₂	2.924	10.465	0.4%	0.0%
Li ₂ MoO ₃ (our work)	2.867	14.829	Li _{0.53} MoO ₃	2.913	14.912	1.6%	0.6%

Strength of the M-M bonding in layered compounds for different transition metals in periodic table

Arrows show the trend to form abnormal breathing oxides

Response to last year reviewer's comments

Comments from 2014 AMR

- The author has been able to develop important collaborations to ensure that key problems of interest to the DOE VTO program have been attacked. The reviewer reported that the closing of the BNL National Synchrotron Light Source will necessitate a revision of the work scheduling until the new light source is available
- The reviewer explained that there were some uncertainties about future projects because of the closing of the light source. The reviewer pointed out that for some time it will be necessary for the group to travel to other synchrotrons in order to accomplish new studies; this will require considerably more planning. The reviewer also noted that the development of new collaborators will require careful thought to optimize the collaborative results..
- The reviewer noted that the PI recognizes that the collaborations need to expand the collaborations with U.S. industry and academic researchers, however and the reviewer agrees with this effort for the future.

Response

- The collaborations to resolve the key problems of interested to DOE VTO program has be maintained and enhanced. New work schedules to work at other synchrotron facilities at APS at Argonne National Lab and SSRL at Stanford University and ALS at Berkeley have been developed and worked out.,
- The new planning of using other synchrotron facilities such as APS at Argonne National Lab and SSRL at Stanford University and ALS at Berkeley National Lab. had been developed. The collaboration with scientists at the above facilities have been established, some research quality data had been collected, scientific papers have been prepared or published
- The collaborative research with US industrial partners and institutions have been expanded and strengthened.

Collaborations with other institutions and companies

- Lawrence Berkeley National Laboratory Transitions from Near-Surface to Interior Redox upon Lithiation using high resolution TEM
- Massachusetts Institute of Technology Transitions from Near-Surface to Interior Redox upon Lithiation using high resolution TEM
- Drexel University Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides
- Oak Ridge National Laboratory long-life lithium-ion battery with a highly porous TiNb2O7 anode
- Argonne National Lab. (ANL) In situ XRD and XAS study of high energy density Li₂MnO₃-LiMO₂ composite (LMR-NCM).
- Pacific Northwest National Lab. (PNNL) HR-TEM study of high voltage LiNi_{0.5}Mn_{1.5}O₄ spinel cathode materials.
- Johnson Control Inc. In situ XRD and XAS study of high energy density cathode materials
- Beijing Institute of Physics, Chinese Academy of Sciences High energy density cathode material diagnostic studies using atomic level resolution STEM and in situ XRD and XAS

Remaining Challenges and Barriers

- Systematic studies of on the oxidation states and electronic structural changes of Li₂MoO₃ at different charge-discharge states are needed. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) at Mo K-edge of Li₂MoO₃ at different charge-discharge states will be good techniques for these studies.
- Three dimensional element mapping of layer structured cathode materials are need as diagnostic tools for Li-ion battery research. Transmission x-ray microscopy technique will be developed for battery research based on the high penetration power of x-ray beam. High voltage spinel material will be a good material for such studies.
- The cycling rate dependent structural changes, especially at high rate cycling are very important for understanding the fundamentals governing the rate capability for high power density batteries for electric vehicle applications. Time resolved XRD and XAS will be good tools for such studies

Proposed Future Work for FY 2015 and FY2016

FY2015 Q3 Milestone:

Continue and complete the x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) studies at Mo K-edge of Li₂MoO₃ at different charge-discharge states..

FY2015 Q4 Milestone:

Continue and complete the preliminary studies of elemental distribution of Fe substituted high voltage spinel cathode materials using transmission x-ray microscopy (TXM).

FY2016 work proposed:

Using time resolved XRD and XAS to study the structural changes at various cycling rates, especially at high rate cycling in order to provide guidance for developing electrode materials with high power density. The widely used commercial layer structured cathode materials will be studied first.

Expand the collaborative research with US academic research institutions and industrial partners.

Summary

Relevance

- ✓ Diagnostics study of thermal abuse tolerance (to improve the safety characteristics).
- ✓ Diagnostics study aimed to improve the calendar and cycle life of batteries.
- Diagnostics study of electrode materials with lower cost potential.

Approaches

- Time resolved X-ray diffraction (TR-XRD) and mass spectroscopy (MS)
- In situ x-ray diffraction and absorption spectroscopy
- Quick x-ray absorption spectroscopy
- High resolution transmission electron microscopy (HR-TEM)

Technical Accomplishments

- Completed thermal stability studies of a series of blended LiMn₂O₄ (LMO) -LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ (NCM) cathode materials with different weight ratios.
- Anew "unit-cell-breathing" mechanism for Li₂MoO₃ during charge-discharge was discovered using synchrotron based XRD and XAS, as well as STEM
- Thermal stability optimized high voltage spinel LiNi_{1/3}Mn_{4/3}Fe_{1/3}O₄ was synthesized and characterized

Proposed Future work

- Continue and complete the XAS studies at Mo K-edge of Li₂MoO₃ at different charge-discharge states.
- Continue and complete the studies of elemental distribution of Fe substituted high voltage spinel cathode materials using transmission x-ray microscopy (TXM)
- Using time resolved XRD and XAS to study the structural changes at various cycling rates, especially at high rate cycling