

Energy Efficiency & Renewable Energy

VTO Analysis Portfolio

June 17, 2014

Jacob Ward

Vehicle Technologies Office

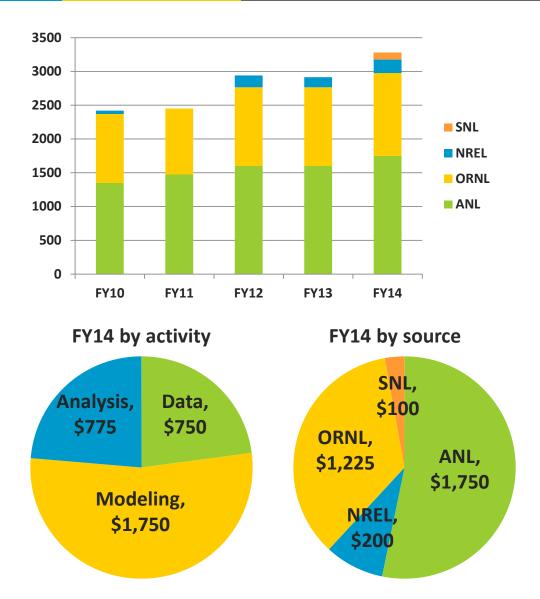
VTO Analysis Goals, Objectives, and Strategy

Plan, execute, and communicate technology, societal, economic, and interdisciplinary analyses for VTO, EERE, DOE, and external stakeholders

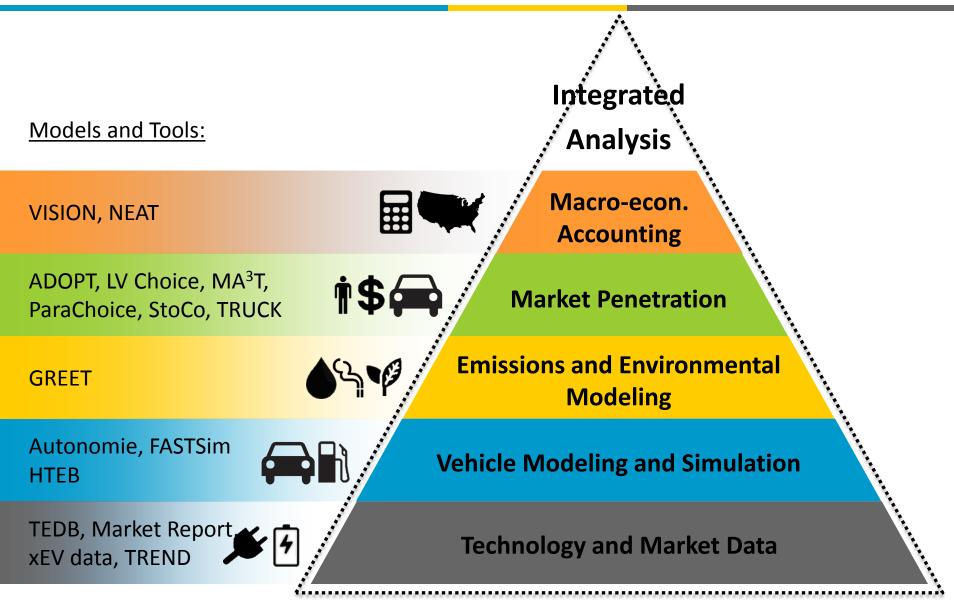
objective

Robust transportation energy analysis that speaks for itself

strategy

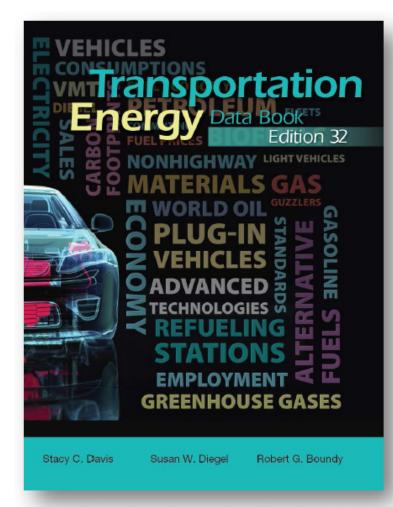

Support a strong foundational of data, build relevant analytical models, and execute insightful integrated analyses

VTO Analysis Budget


(all numbers in thousands of dollars)

- Budget has been roughly steady around \$3 M for five fiscal years
- The portfolio funds data, modeling, and original analysis
- Laboratory support comes from ANL, ORNL, NREL, and SNL

VTO Analysis Portfolio at a Glance


- Published Transportation Energy Data Book, edition 32
- Track and publish P/H/EV sales domestically and abroad
- Develop database to test effects of economic effects on vehicle sales

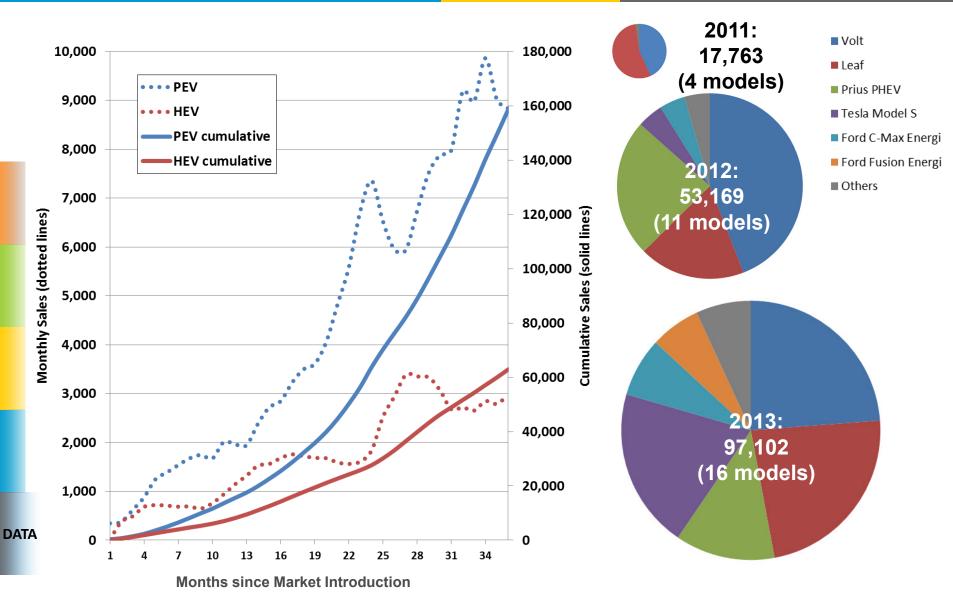
future work

- Continue updating and disseminating data sources regularly
- Expand market knowledge with third-party data
- Distill and publish robust economic effects affecting and related to vehicle sales

DATA

2013 Vehicle Technologies Market Report

CAK RIDGE NATIONAL LABORATORY


Website address: http://cta.ornl.gov/vtmarketreport/

Website address: http://cta.ornl.gov/data/

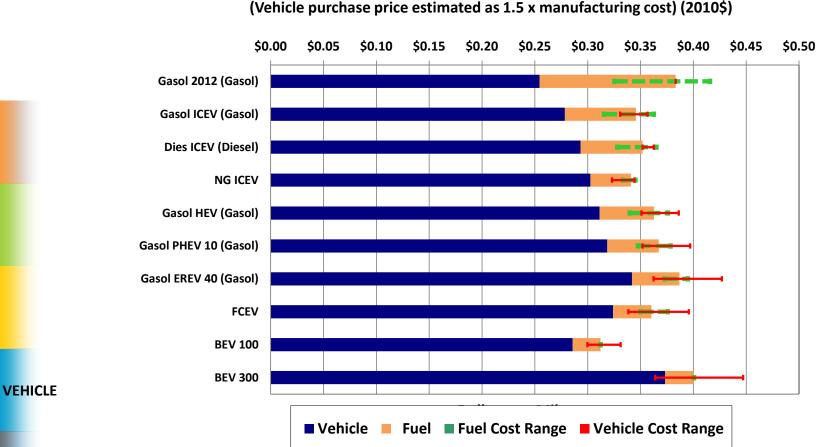
DATA

P/H/EV data show sales are increasing

- Calculate vehicle cost-performance pair meta-data
- Establish VTO inputs for official EERE Low-Carbon Scenario
- Facilitate DOE Levelized Cost of Driving (LCD) official Program Record

future work

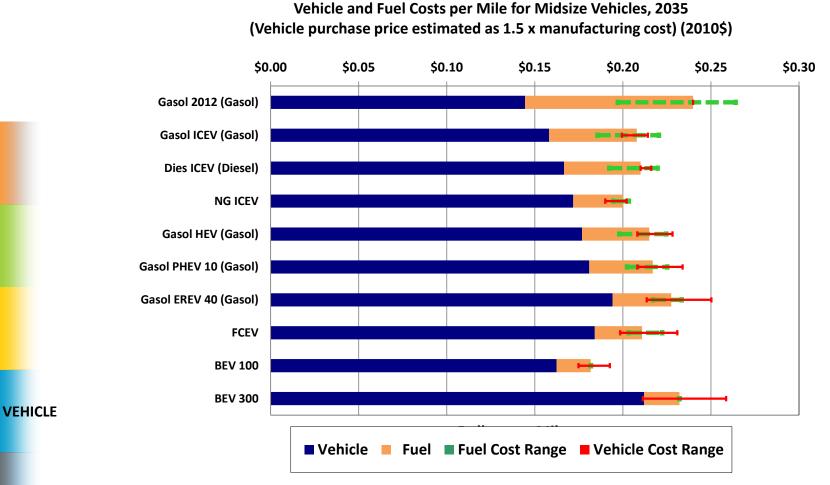
 Continue development of user-friendly vehicle characteristics GUI and diagnostic metrics


VEHICLE

- Author and publish results and methodology documentation
- Leverage vehicle characteristic meta-data into a family of spinoff publications

Example Results – Levelized Cost of Driving (\$/mi)

Private View: 5-year ownership period


Vehicle and Fuel Costs per Mile for Midsize Vehicles, 2035 (Vehicle purchase price estimated as 1.5 x manufacturing cost) (2010\$)

Notes: Average distance driven per car-year derived from USDOT/NHTSA analysis, Resale value at 25% of price, 7% net discount rate for future fuels expenditures, 2035 Results – 5-Year Ownership, 14,000 Miles, (22,500 km) per year (2010 Dollars)

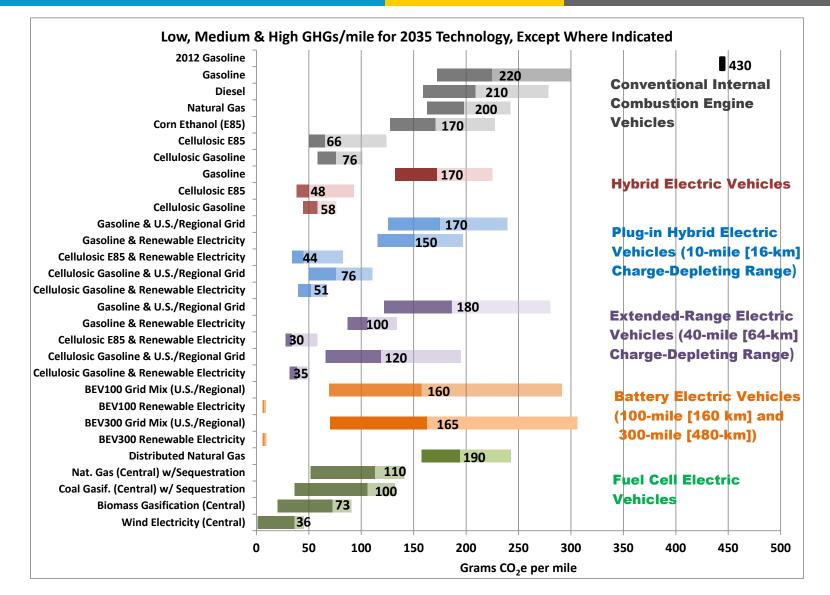
Example Results – Levelized Cost of Driving (\$/mi)

Societal View: 15-year vehicle life

Notes: Average distance driven per car-year derived from USDOT/NHTSA analysis, Resale value at 25% of price, 7% net discount rate for future fuels expenditures, 2035 Results – 15-Year Ownership, 14,000 Miles, (22,500 km) per year (2010 Dollars)

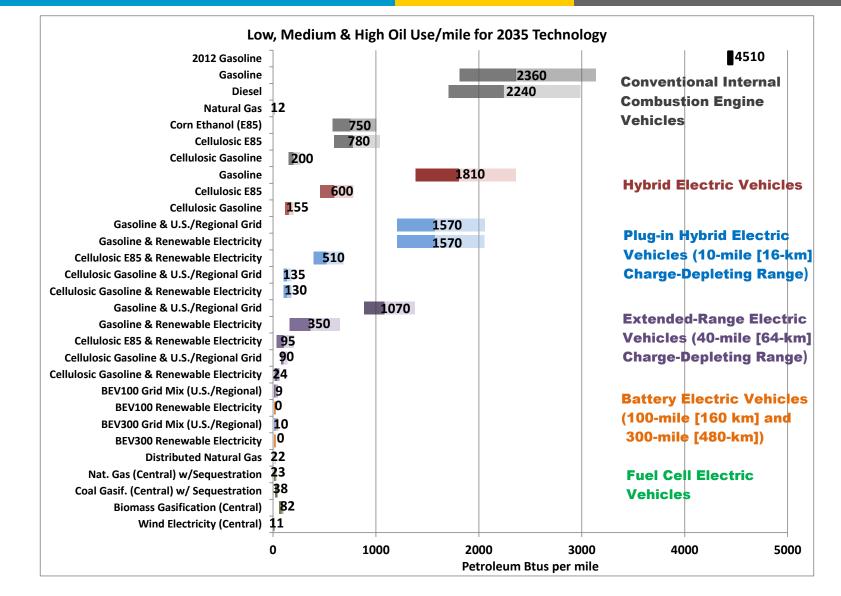
- Provide input to and publish DOE Well-to-Wheel (WTW) official Program Record
- Research and incorporate facility/infrastructure cycle data
- Further develop "GREET.net" user-friendly software platform

future work


- Continue expansion of GREET.net user-friendly GUI
- Research and refine "back-end" infrastructure and facility data
- Formally begin vehicle-fuel pathway water footprint modeling

ECO

Example Results – Emissions (gCO₂e/mile)



Energy Efficiency &

Renewable Energy

Example Results – Petroleum Use (BTU/mile)

- Coordinate 6 vehicle choice models (VCMs) for suite operation using common input
- Refine range-anxiety research and incorporate into models
- Estimate market penetration scenario and provide inputs to

MARKET

various analyses

uture work

- Cross-validate VCMs via suite operation
- Expand VCM dialogue by engaging with experts beyond the DOE community, both nationally and internationally; compare and refine models accordingly

Motivation for understanding consumer choice

Three important contextual caveats:

- 1. DOE's Energy Information Administration (EIA) is the *only* part of DOE responsible for future energy projections (through the Annual Energy Outlook, AEO)
- 2. Neither VTO nor EERE are in the business of market projection.
- 3. VTO-supported market/consumer choice analysis models are tools for understanding how VTO R&D investment and complementary Federal policies can further VTO goals (reducing petroleum consumption, abating GHG emissions, and bolstering energy security)

MARKET

<u>Primary use</u>: VTO R&D portfolio benefits analysis

- VTO R&D lowers technology cost and improves performance
- Translating technology progress to national benefits requires market understanding

Secondary use: Federal policy analysis

- Federal policies

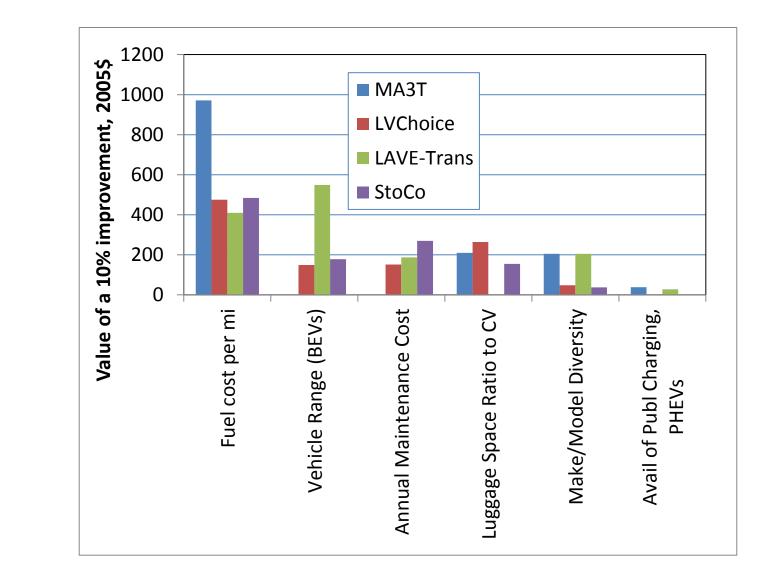
 (subsidies, infrastructure investment) complement technology progress
- Interactions require market understanding

Ad hoc use: scenario analysis

- Full transportation transition scenarios require some investment (in technology and policy)
- Market understanding provides insight into such transitions

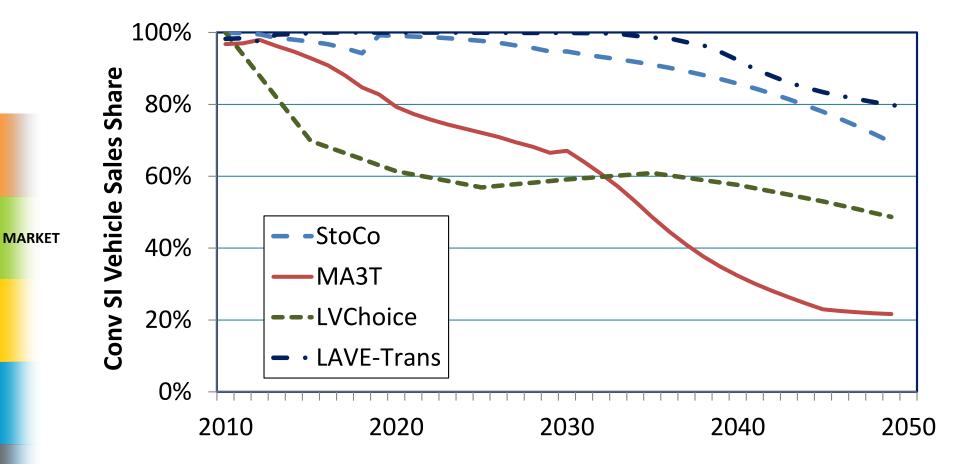
Models are generally similar at a high level

	ADOPT	LAVE- Trans	LV Choice	MA ³ T	ParaChoic e	StoCo
Authoring institution:	NREL	ORNL	TA Engineering	ORNL	Sandia	ANL
Origin:	NREL LDRD	CA ZEV NRC	Simplified version of EIA's NEMS	Legacy development from TAFV, HyTrans, etc.	Sandia LDRD	EERE uncertainty analysis
Inputs from:	Autonomie (vehicle) GREET (emissions) EIA (fuel)					
Standard outputs:	market share energy use GHG emissions					


MARKET

...but each model offers unique analytical capabilities

		ADOPT	LAVE-Trans	LV Choice	MA ³ T	ParaChoice	StoCo
	Unique outputs:		 transition uncertainty analysis 			 parametric trade-space output 	 results with uncertainty distributions
MARKET	Unique methods:	 competes all LDVs (over 1000 trims) "clones" successful models consumers at ZIP code level 	 benefit-cost calculation for energy transition "back- casting" for desired transition 	 explicit consideratio n of size classes intentional mimicry of NEMS 	 1458 consumer segments 	 Monte Carlo analysis 	 stochastic simulation
	VTO uses:	 ZIP code- level analysis 	 transition policy analysis 	 NEMS "light" simulation 	 PHEV and market segmentatio n 	 parametric analysis 	 uncertainty analysis
	Notable third-party users:		 NRC "Transitions "Study 	NPC Study			


Choice models consider inputs differently...

MARKET

...and choice models produce different results.

- Update baseline scenarios to match historical and AEOprojected future data

MACRO

- Expand tool set to novel analysis modes (e.g., off-highway)
- Design and execute integrated, coherent macroeconomic analysis scenarios examining and estimating VTO technology R&D benefits

future work

- Author and publish benefit metrics and methodology
- Prepare and execute iterative analytical updates as VTO goals, targets, and milestones are updated

BaSce/GPRA quantifies VTO benefits

		Year		
Impact	Metric	2020	2030	2050
Energy security	Oil savings, cumulative (billion bbl)	1.0	7.7	31.1
	Oil savings, annual (million bpd)	0.9	2.4	3.5
	New vehicle mpg improvement (percent) ^a	50		
	LDVs HTs	53 25	75 39	82 43
	On-road mpg improvement (percent)			
	LDVs HTs	9 12	44 27	87 36
Environmental	Environmental CO ₂ emissions reduction, ^b cumulative (million t CO _{2 eq})		3,500	14,000
دكي	GHG emissions reduction, annual (million t CO _{2 eq} /yr)			
ii	LDVs HTs	85 64	259 142	350 235
E	Total	149	401	585
Economic	Primary energy savings, [®] cumulative (quads)	7	53	218
Þ	Primary energy savings, annual (quads/yr)	2.2	6.2	9.0

TABLE 12 Vehicle Technologies Program Benefits Metrics^a

^a Improvement relative to baseline (No Program) fleet in the same year.

^b "Reductions" and "savings" are calculated as the difference between the results from the baseline (No Program) case (i.e., in which there is no future DOE funding for this technology) and the results from the Target case (i.e., in which requested DOE funding for this technology is received and the program is successful). All cumulative metrics are based on results beginning in 2015.

http://www.transportation.anl.gov/pdfs/G/955.PDF

21

MACRO

Analysis Type: Models:	DATA	VEHICLE	ECO	MARKET	MACRO
TEDB					
xEV sales					
SRA database					
Autonomie					
FASTSim					
НТЕВ					
GREET					
MA3T					
ADOPT					
VCM					
SEDS					
TRUCK					
VISION					

The VTO analysis portfolio (left) covers the full analysis space and includes some redundancies

_

-

Some projects (e.g., BaSce/GPRA, below) span all categories for a truly integrated analysis

GPRA integrated analysis	рата	VEHICLE	ECO	MARKET	MACRO
expert input	N				
Autonomie		X			
НТЕВ		X			
GREET			K		
MA3T				K	
TRUCK				X	
VISION					Ż

VTO Analysis (VAN) Presentations

Time	Project ID	VAN Category	Principal Investigator	Project Title		
1:45	VAN009	DATA	Stacy Davis, ORNL	Transportation Energy Data Book, Market Report, and Fact of the Week		
2:15	VAN011	DATA	Joann Zhou, ANL	E-drive Vehicle Sales Analyses		
2:45	VAN008	VEHICLE	Aymeric Rousseau, ANL	Evaluation of VTO Benefits Using Large Scale Simulation		
3:15	VAN012	MARKET	Alicia Birky, TA Engineering	Modeling for Market Analysis: HTEB, TRUCK, and LV-Choice		
3:45						
4:15	VAN006	MACRO	Joann Zhou, ANL	Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool		
4:45	VAN010	MACRO	Changzheng Liu, ORNL	Reassessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM)		
5:15	VAN013	MARKET	Changzheng Liu, ORNL	Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model		

VTO Analysis (VAN) Posters

Project ID	Principal Investigator	VAN Category	Project Title
VAN003	Mark Singer, NREL	DATA	Consumer Vehicle Technology Data
VAN002	Michael Wang, ANL	ECO	GREET Life Cycle Analysis
VAN004	Aaron Brooker, NREL	MARKET	Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT
VAN005	Zhenhong Lin, ORNL	MARKET	Consumer-Segmented Vehicle Choice Modeling: the MA3T Model
VAN014	Dawn Manley, SNL	MARKET	Parametric Vehicle Choice Modeling: ParaChoice
VAN001	Tom Stephens, ANL	MACRO	VTO Baseline and Scenario (BaSce) Activities
VAN015	Michael Nicholas, UC-Davis	MACRO	PEV Consumer Behavior in Practice (PCBIP)

Jacob Ward Vehicle Technologies Office vehicles.energy.gov

Annual Merit Review June 16-20, 2014

Energy Efficiency & Renewable Energy