

Vehicle Thermal System Modeling in Simulink[®]

P.I. : Jason A. Lustbader Team: Tibor Kiss

National Renewable Energy LaboratoryJune 16, 2014Project ID #: VSS134

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview – New Project

Timeline

Project Start Date: FY14 Project End Date: FY15 Percent Complete: 25%

Budget

Total Project Funding:

- DOE Share: \$225K
- Contractor Share: \$0K

Funding Received in FY13: \$0K Funding for FY14: \$225K

Barriers

- Cost Timely evaluation of vehicle thermal systems to assist with R&D
- Computational models, design and simulation methodologies *Develop tool to help with optimization of future vehicle thermal system designs and prediction of impacts on fuel economy*
- Constant advances in technology Help industry to advance technology with improved tools

Partners

- Collaborations
 - o Halla Visteon Climate Control
 - o Delphi
 - Daimler Trucks
 - VTO Advanced Power Electronics and Electric Motors (APEEM) Team
 - In discussion with others
- Project lead: NREL

Relevance

THE CHALLENGE

- Heating has a large impact on electric vehicle range, larger than air conditioning (A/C) systems
- Electrified heavy-duty A/C systems may provide necessary infrastructure to add heating at limited additional cost
- With increasing electrification, vehicle thermal systems are increasingly important for effective and efficient light- and heavy-duty vehicle design
- Autonomie lacks tools for vehicle thermal systems modeling based on 1st principles

THE OPPORTUNITY

- Tools will assist with evaluation of advanced thermal management and heating solutions using flexible, freely available tools for the MATLAB[®]/ Simulink environment that can cosimulate with Autonomie
- Leverage NREL's vehicle thermal management expertise
 - Energy storage thermal management
 - APEEM thermal management
 - Integrated vehicle thermal management project
 - Heating, ventilating, and air conditioning (HVAC) expertise, building on the A/C system model developed previously

Relevance/Objectives

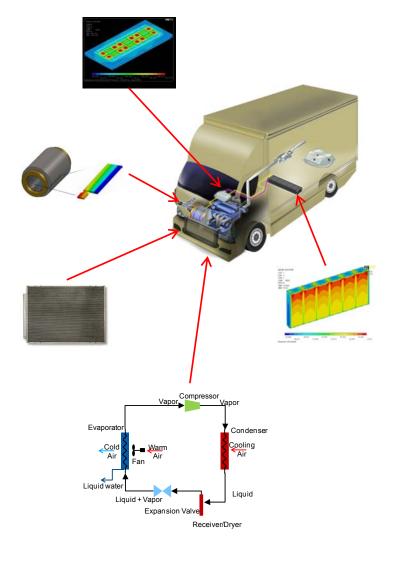
Goal

By 2015, develop flexible, publically available tools in MATLAB/Simulink for vehicle thermal systems modeling that can co-simulate with Autonomie and apply these tools with industry partners for R&D on advanced thermal systems.

Objectives

- Develop analysis tools to assess the impact of technologies that reduce thermal load, improve climate control efficiency, and reduce vehicle fuel consumption
- Connect climate control, thermal systems, and vehicle-level models to assess the impacts of advanced thermal management technologies on fuel use and range
- Develop an open, accurate, and transient thermal system modeling framework using the MATLAB/Simulink environment for co-simulation with Autonomie

Approach – Milestones and Go/No-Go's

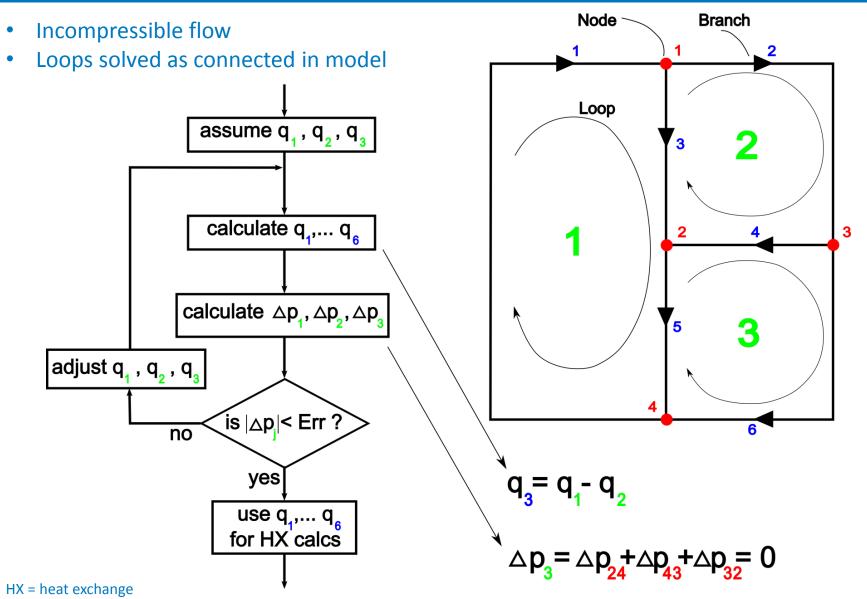

	FY 2015									
Q1	Q2	Q3	Q4	Q1		Q2	Q3	Q4		
Develop single model blocks	Develop single-phase model blocks M1 Validate and apply model to system			M2	Develop flexible, publically available tools in MATLAB/Simulink for vehicle thermal systems modeling that can co-simulate with Autonomie. Investigate advanced thermal system tradeoffs					
				Improve an modeling b		ndd detail to ks	МЗ			
	Add simple energy storage and power electronics thermal models					Add improved energy storage and power electronics models and validate				
Write and imp	rove "Getting St	tarted" guide		Investigate system tradeoffs applying model with M4						

Milestones:

- M1. Complete initial modeling framework. Run system simulation with basic cooling system components and demonstrate feasibility. **Go/No-Go**: Model of concept demonstration system predicts reasonable trends. ✓
- M2. Validated single-phase model built from building blocks, allowing for easy modification. Release beta version of model. **Go/No-Go:** Confirm that model can be successfully validated and is predicting performance with acceptable accuracy (20%)
- M3. Improve component models, adding detail. Validate model to within 15% of available data.
- M4. Improve model capabilities expanding on the single-phase, energy storage, and power electronics thermal models and validate. Apply developed Simulink tools with industry partners to look at system tradeoffs in co-simulation with Autonomie. Release updated code with expanded capabilities.

Approach/Strategy – MATLAB/Simulink-Based Tool

- 1-D simulation tool based on first principles; conservation of mass, momentum, and energy
- Leverage prior successful two-phase A/C system model development and thermal component expertise at NREL
- Develop a flexible software platform, capable of modeling the full range of vehicle thermal systems
- Include major components: heat exchangers, pumps, transport lines, fans, power electronics, battery chiller, engine, thermostat, A/C system (from prior development), etc.
- Develop models that run at least 10X real time to match well with the Mapped Component A/C system model previously developed



Approach/Strategy – Key Features

- The model will be flexible and capable of modeling a wide range of system configurations and components
- The model will be switchable between varying levels of accuracy an execution speed, e.g., useful for predicting both short (pump RPM) and long (engine warmup) transients
- For fast execution of the model, a method that works with relatively high simulation time step is needed therefore,
 - Incompressible flow for coolant is assumed
 - Solid thermal masses will have a limited level of spatial distribution
 - Coolant thermal mass will have varying levels of spatial distribution
 - Heat transfer calculations will have varying levels of speed and accuracy by using the Effectiveness-NTU method, Distributed Parameter component models, and Mapped Performance component models as appropriate
- For accuracy, temperature-dependent coolant viscosity and specific heat are needed

Technical Accomplishments – Coolant Flow Calculations

Solves general flow loops as connected in model

Completed initial representative component models

Component	Status					
Coolant	50/50 ethylene glycol/water temperature-dependent properties					
Water pump	2-D lookup table for flow rate vs. pressure rise and RPM					
Plenum model	Enthalpy in plenum is the integral of incoming minus outgoing enthalpy flow rates					
Thermostat	1-D lookup table for position vs. coolant temperature, and 2-D lookup table for flow rate vs. position and pressure differential					
Radiator	Switchable between Mapped Performance sub-model and Distributed Parameter sub-model					
Low-temperature heat exchanger, space heater, transport lines	Use assumed effectiveness					
Oil cooler	Use assumed effectiveness					
Battery cooler	Simple 1-node model, Effectiveness-NTU method, use UA to calculate effectiveness					
Engine	Simple 1-node model, Effectiveness-NTU method, use UA to calculate effectiveness					
Non-capacitive junction	Mix out incoming coolant mass and enthalpy flow rates					

Completed initial representative component models

Non-Capacitive Junction:

 $\dot{m}_{out} = \sum_{i} \dot{m}_{in}$ $\dot{H}_{out} = \sum_{i}^{i} \dot{H}_{in}$

Plenum:

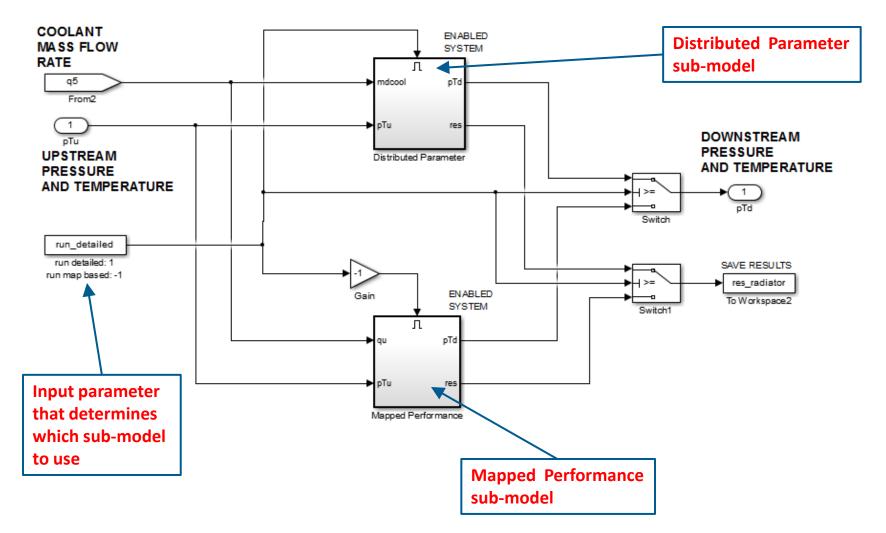
 $\frac{dH_{plenum}}{dt} = \dot{H}_{in} - \dot{H}_{out}$ $h_{plenum} = H_{plenum}/m$ $\dot{m}_{out} = \dot{m}_{in}$ $\dot{H}_{out} = \dot{m}_{out} \cdot h_{plenum}$

For All:

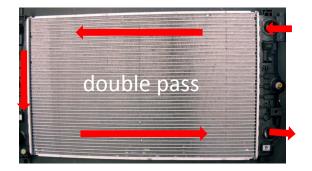
$$\begin{split} h_{out} &= \dot{H}_{out}/\dot{m}_{out} \\ T_{out} &= T(h_{out}) \\ p_{out} &= p_{in} - \Delta p(\dot{m}_{out}) \end{split}$$

Low-temperature Radiator, Space Heater, and Transport Lines:

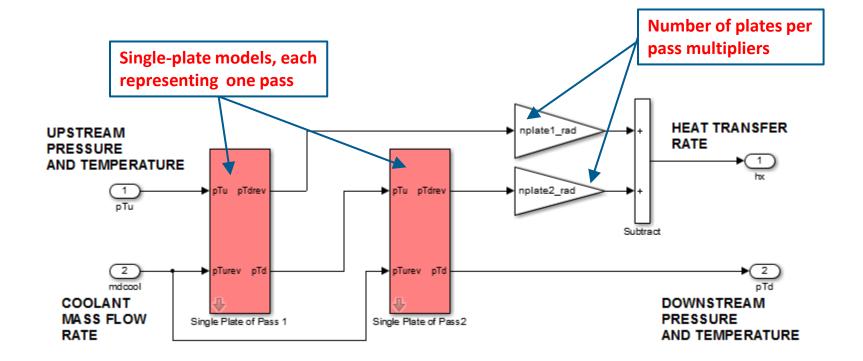
$$\begin{split} \dot{m}_{out} &= \dot{m}_{in} \\ \dot{H}_{out} &= \dot{H}_{in} - \varepsilon \cdot \left[\dot{H}_{in} - \dot{m}_{in} \cdot h(T_{air}) \right] \end{split}$$

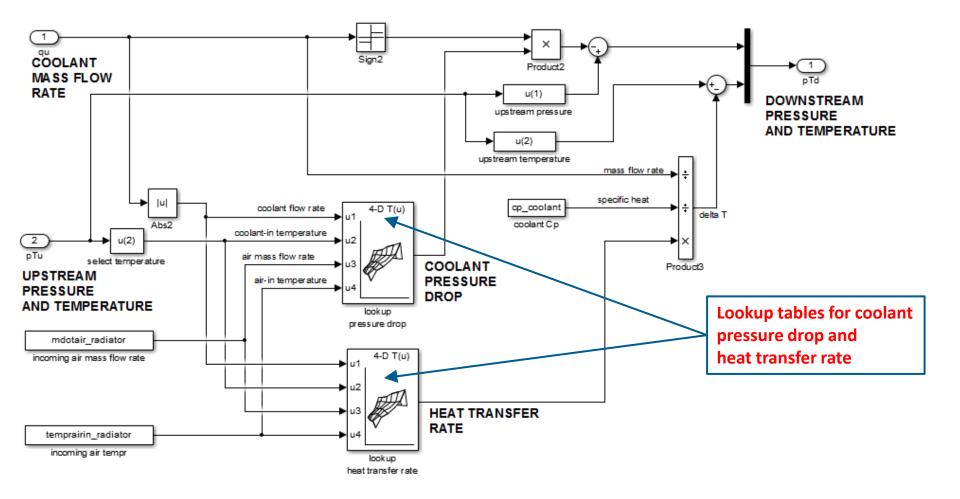

Engine and Battery Cooler:

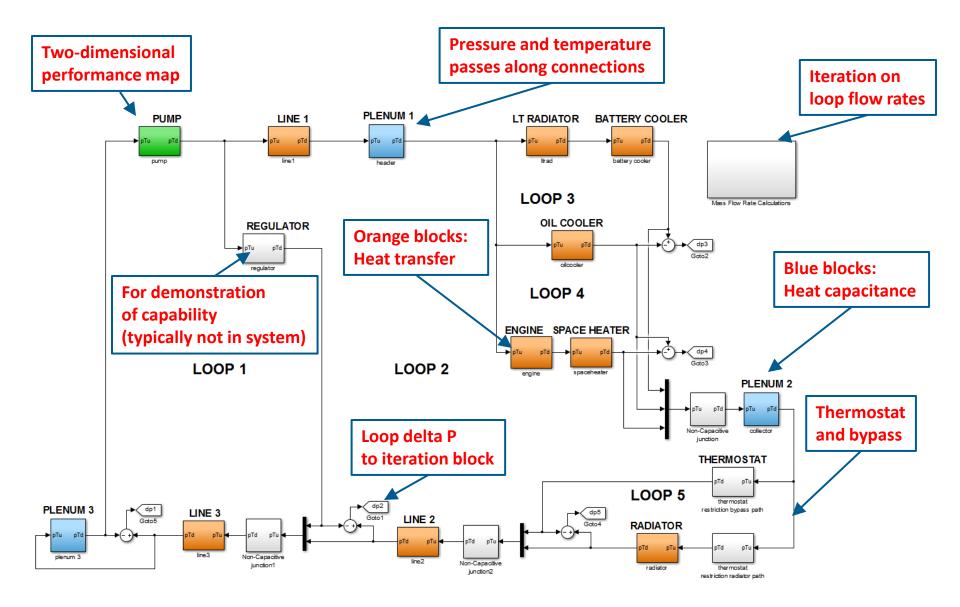
same as Low-temperature Radiator, except...


 $\varepsilon = \varepsilon (U \cdot A)$

Radiator model: Distributed Parameter or Mapped Performance

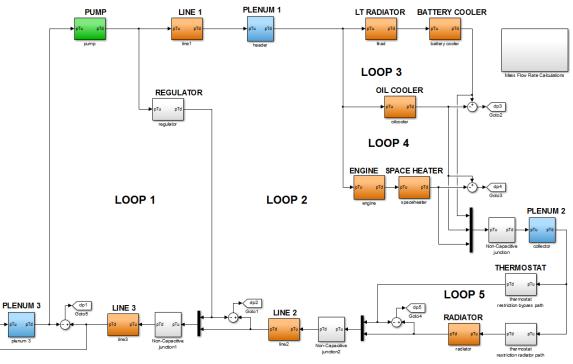

Both Distributed Parameter and Mapped Performance sub-models available in the same model, user can set which is used


Radiator model: Distributed Parameter sub-model option


- Allows user flexibility to define heat exchanger design
- Airside compact heat exchanger model from literature

Radiator model: Mapped-Performance sub-model option

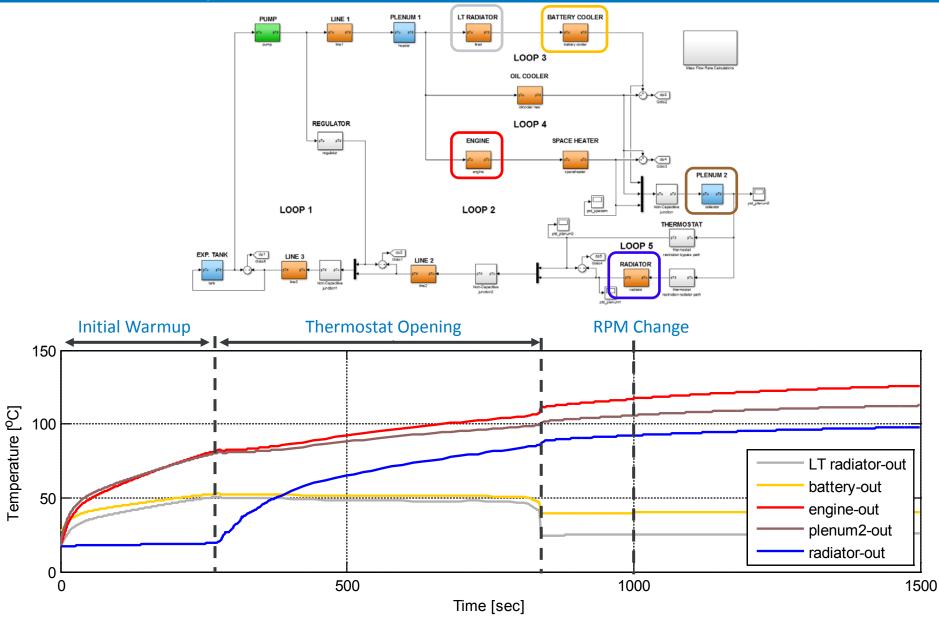
Top-level of the demonstration model in Simulink

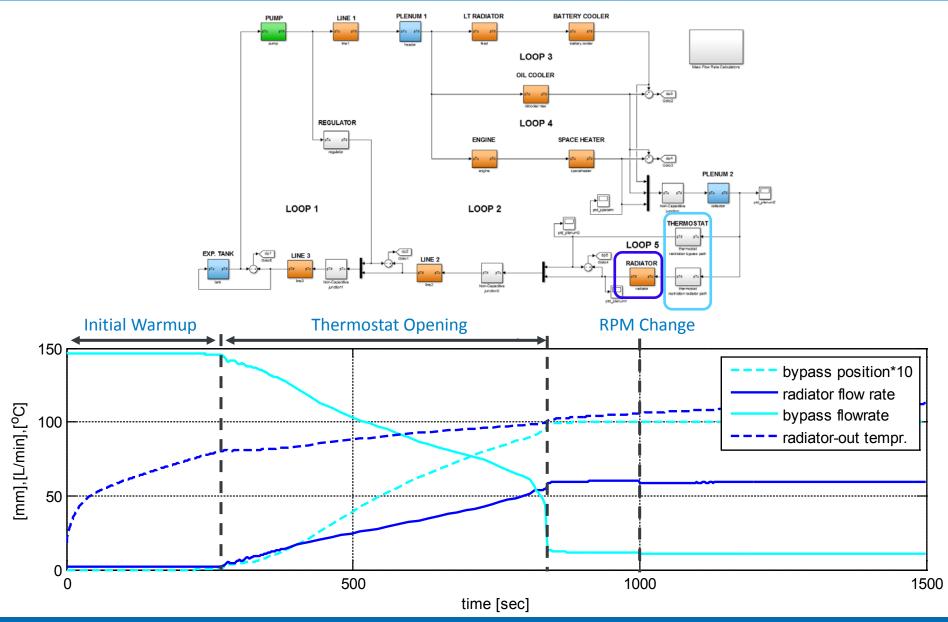


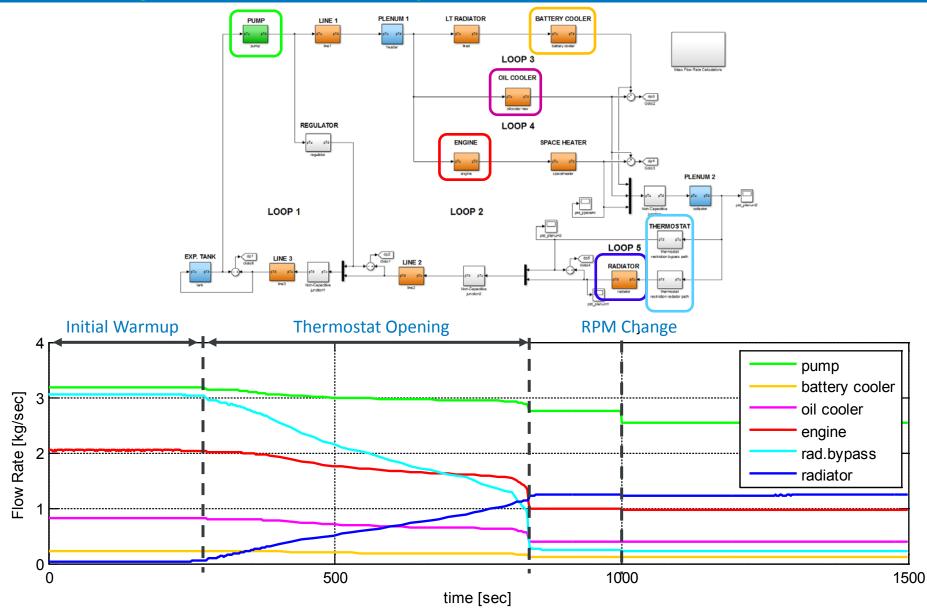
Results with demonstration model


- **Initial Simulation Conditions**
- Start from cold soak
- Constant engine heat rejection
- Constant air flows
- Constant 1,500 pump RPM until it drops to 1,000 RPM at 1,000 sec

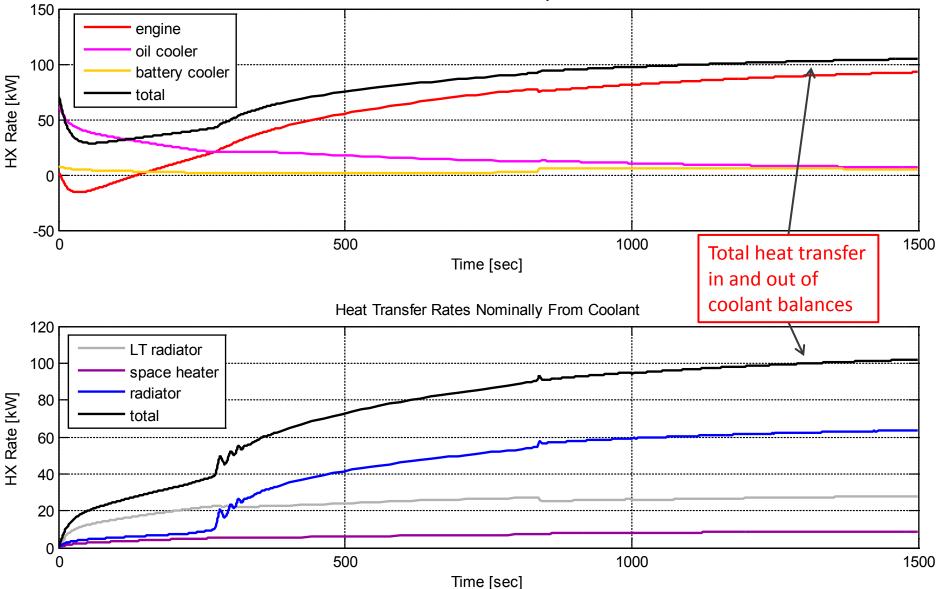
M1 Go-No-Go: Model of concept demonstration system predicts reasonable trends – Initial model shows expected reasonable trends


Demonstration model to test components, not intended to represent actual system


Coolant pressure

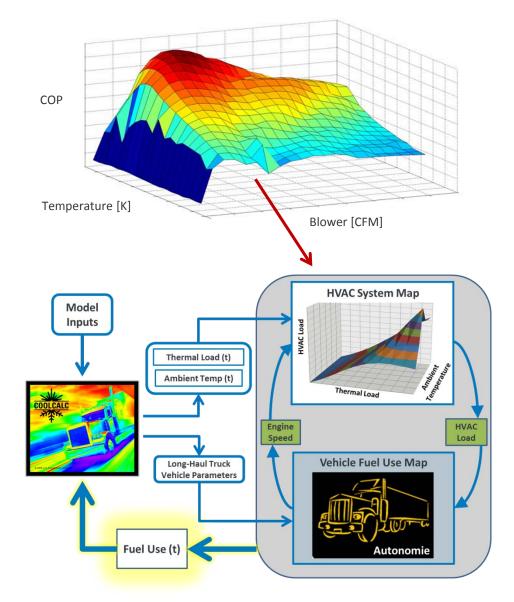

Coolant temperature

Thermostat bypass and resulting radiator behavior



Coolant flow behavior at sample locations

Heat transfer in and out of the system balances


Heat Transfer Rates Nominally to Coolant

Results are supporting other NREL thermal projects

- Provides the link between HVAC, thermal system, and vehicle performance
- Provides

 capabilities to
 model advanced
 HVAC and thermal
 system concepts

COP = coefficient of performance

Proposed Future Work

Continue model development

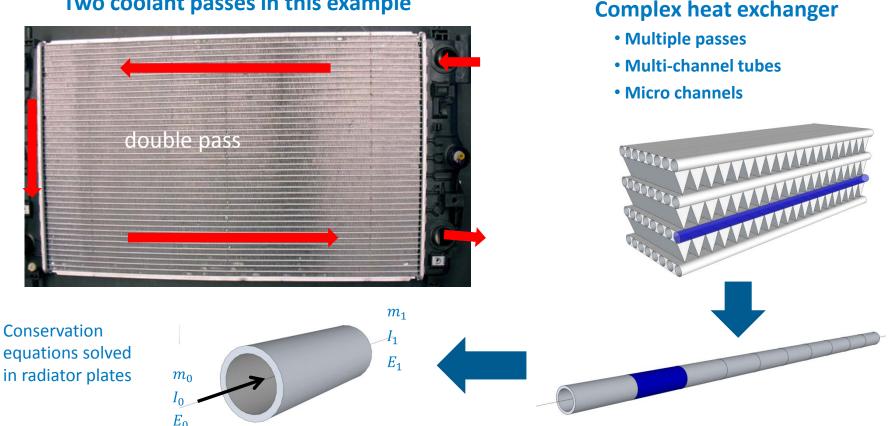
- Create Distributed Parameter sub-models for all components with heat exchange
- Create Mapped Performance-based sub-models for all components with heat exchange
- Make sub-models of components with heat exchange switchable between Distributed Parameter and Mapped Performance versions
- Develop process of mapping the performance of all such components with the same model (eliminate the need for a suite of models)
- Incorporate existing A/C system model
- Collaborate with NREL Advanced Power Elections and Energy Storage groups to incorporate component thermal models
- Build vehicle thermal system using component data and validate to systemlevel measured performance
- Model application with industry partners
 - Model advanced light-duty vehicle thermal systems
 - Heat pump system
 - Advanced heat recovery concepts
 - Heavy-duty hybrid cooling systems
 - Build validated idle-off long-haul truck A/C system model

• Leverage model results for the CoolCab project impact estimation

Collaboration and Coordination with Other Institutions

- Halla Visteon Climate Control
 - Provided data for A/C system model and validation
 - Funding Opportunity Announcement award partner, assisting with models
 - Technical advice and discussion
- Delphi
 - Advanced concept modeling
- Daimler Trucks
 - Assisting with SuperTruck project
- NREL Advanced Power Electronics and Energy Storage Teams
 - Leveraging expertise and models
 - Enabling analysis of vehicle level impacts of power electronic thermal system changes
- Argonne National Laboratory
 - Autonomie integration
 - Vehicle-level system data
- Other collaboration discussion in progress

Summary


- With increasing electrification, vehicle thermal systems are increasingly important for effective and efficient light- and heavy-duty vehicle design
- Tools are being developed for evaluation of advanced thermal management and heating solutions using flexible, freely available tools for the MATLAB/Simulink environment that can co-simulate with Autonomie
- An initial thermal system modeling framework has been developed and the results are reasonable; the next step will be to model and validate models of specific vehicle thermal management systems
- Developed several initial partnerships and several other collaborations are being discussed

Technical Back-Up Slides

(Note: please include this "separator" slide if you are including back-up technical slides (maximum of five). These back-up technical slides will be available for your presentation and will be included in the DVD and Web PDF files released to the public.)

Distributed Parameter Model

Two coolant passes in this example

- A pass is a number of plates over which the coolant and airflow can be assumed identical
- A pass in this sense can be a traditional pass (serial pass) or some number of plates in a serial pass bundled together to create parallel passes (e.g., when airflow is very non-uniform)
- Only one plate in each pass is simulated, heat transfer and flow rates are multiplied by number of plates
- The steady state flow conditions are calculated using conservation of mass, momentum, and energy

Condenser wall to refrigerant: $Q_{tr} = \overline{h}A_i(T_t - T)$

where the film coefficient is calculated with the Dittus-Boelter equation:

$$\left(\overline{Nu}_{D}\equiv\right)\frac{\overline{hD}}{k}=0.023Re_{D}^{4/5}Pr^{n}$$

The coefficient *n* can be modified for a particular geometry.

Heat transfer from heat exchanger wall to air: $Q_{at} = \overline{h}_a A_o (T_a - T_t)$

 $j = 0.425 * Re_{Lp}^{-0.496}$ where j is the Colburn factor

j = St * Pr^{0.666} and $St = \frac{h_a}{c_p \rho V}$

and Re_{Lp} is the Reynolds number based on the louver pitch.

Or the more general correlation by Chang and Wang

$$j = Re_{Lp}^{-0.49} \left(\frac{\theta}{90}\right)^{0.27} \left(\frac{F_p}{L_p}\right)^{-0.14} \left(\frac{F_l}{L_p}\right)^{-0.29} \left(\frac{T_d}{T_p}\right)^{-0.23} \left(\frac{l}{L_p}\right)^{0.68} \left(\frac{T_p}{L_p}\right)^{-0.28} \left(\frac{\delta_f}{L_p}\right)^{-0.05}$$

Where Θ is the louver angle, F_p is the fin pitch, L_p is the louver pitch, F_l is the fin length, L_l is the louver length, T_d is the tube depth, T_p is the tube pitch, and δ_f is the fin thickness.

Chang, Y.J., and Wang, C.C., "A Generalized Heat Transfer Correlation for Louver Fin Geometry," *Int. J. Heat Mass Transfer*, Vol. 40, No. 3, pp. 533-544, 1997.