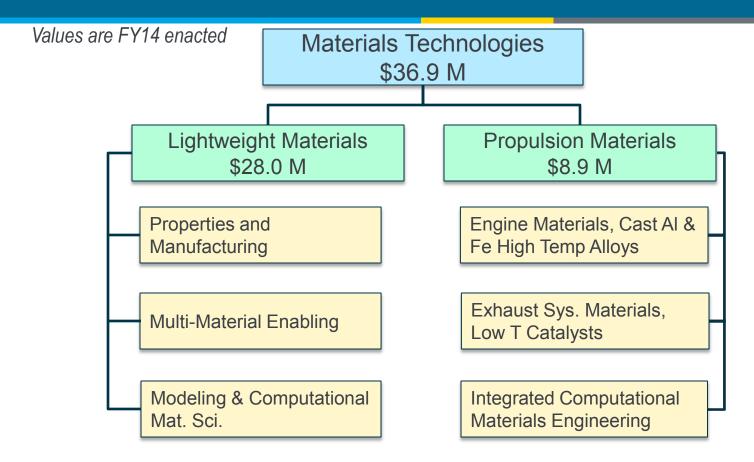


Energy Efficiency & Renewable Energy



Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost

Materials Technologies

Energy Efficiency & Renewable Energy

	Lightweight	Propulsion
FY13 Enacted	\$27.5 M	\$11.9 M
FY14 Enacted	\$28.0 M	\$ 8.9 M
FY15 Request	\$47.0 M	\$ 7.069 M

Materials Technology Gap Priorities

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Material	Mg	Carbon Fiber	CF composites	GF composites	AHSS	AI	Advanced Metals – (Ti, Ni)
Lack of Predictive Models	Х	Х	X	X	Х	Х	
Optimized Manuf. (lower cost)		Х	X	X	Х	Х	Х
Optimized Performance (lower cost, higher strengths, etc)	X	X		X	Х		Х
Design Tools		Х		Х			Х
Raw material supply	Х						Х
Multi-material Joining			Х			Х	
Damage Detection			Х				
Corrosion	Х						

3 | Vehicle Technologies Program

Workshop Propulsion Materials R&D Gaps and Targets

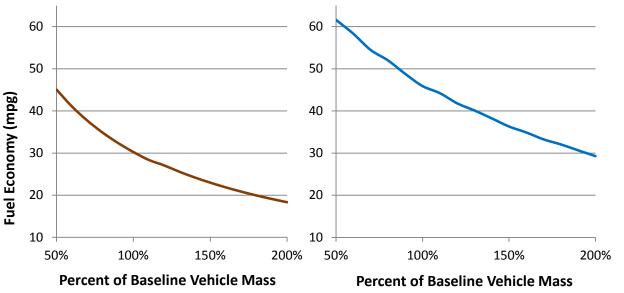
Energy Efficiency & Renewable Energy

Metric	2013	2050	Material Gaps
Powertrain Weight Reduction (ICE/HEV)	Baseline - LDV Baseline - HDV	40% lighter- LDV 20% lighter- HDV	Structure and Volumetric Efficiency (block, head, transmission; AL ,CF)
Power density	LDVs -2.7L 196 HP (73.4 HP/L) HD15L 475HP (32 HP/L)	LD 1.3L 196 HP (150 HP/L) LW-LD 0.7L 98 HP HD 9L 475HP (53 HP/L)	Structure and rotating components (crankshaft, pistons, connecting rods, gears; Steels +)
Energy Recovery	LDV <5% Turbocharged HD ~99% Turbocharged	LDV ~50% Turbo/ TEs/ Turbo-compounding HD~ 99% Turbo/ TEs/ Rankine Cycle/ Turbo- compounding	Turbochargers, Superchargers, Turbo- compounding, Rankine Cycle components, seals, fluid interactions
Exhaust Temperatures (Exhaust Valve to Turbo Inlet)	LDV - 800 °C HDV - 700 °C	1000 °C - LDV 900 °C - HDV	Valves (super alloys & Ceramics) E Manifolds, Turbochargers
Cylinder Peak Pressures	LDV ~ 50 bar HDV 190 bar	>103 bar - LDV gasoline >150 bar ATP-DI gasoline >260 bar – HDV	Structure and rotating components , gaskets, valves, friction
Engine Thermal Efficiency	LDV 30% e HDV 42% e	LDV 45% e, Stretch 55+% e HDV 55% e, Stretch 60% e	Control Heat Losses (Pistons, Cylinder wall, Cylinder head, exhaust manifold)

Vehicle Weight Reduction

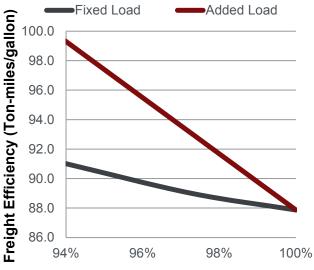
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


Conventional ICE

Hybrid/Electric Vehicles

Commercial/Heavy Duty

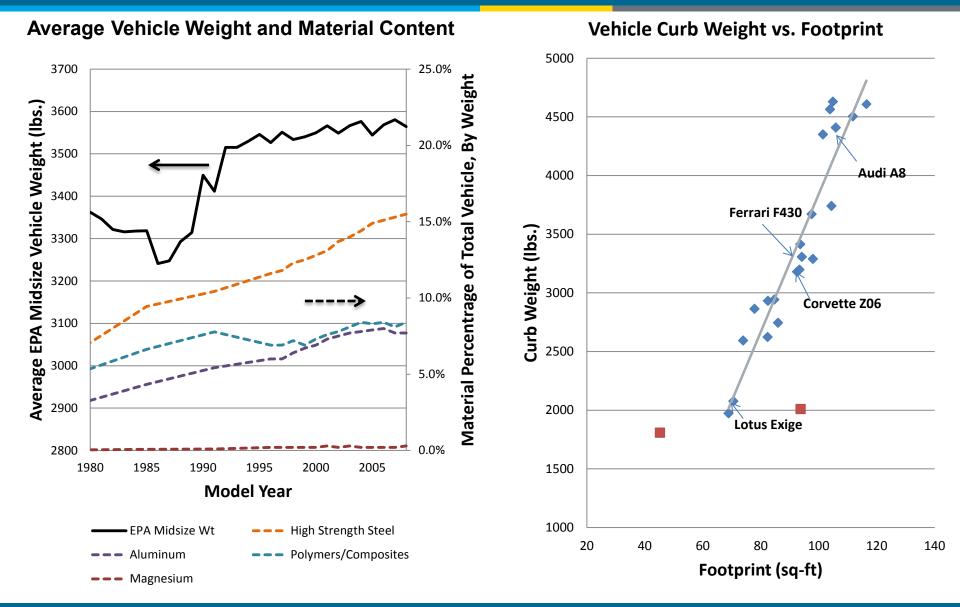


NREL 2011

6%-8% improvement in fuel economy for 10% reduction in weight

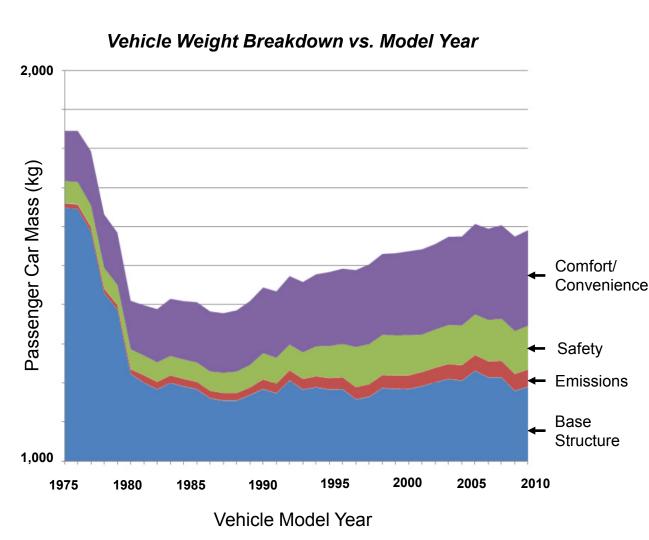
NREL 2011

Improvement in range, battery cost, and/or efficiency


Percent of Baseline Vehicle Mass Without Cargo

Ricardo Inc., 2009

13% improvement in freight efficiency for 6% reduction in weight


Trends in Vehicle Weight Reduction

ENERGY Energy Efficiency & Renewable Energy

6 | Vehicle Technologies Program

Where's the Weight Reduction?

Stephen M. Zoepf "Automotive Features: Mass Impact and Deployment Characterization" MS Thesis, Massachusetts Institute of Technology, June 2011, page 36.

 Comfort, safety, and emissions control have all improved

Energy Efficiency &

Renewable Energy

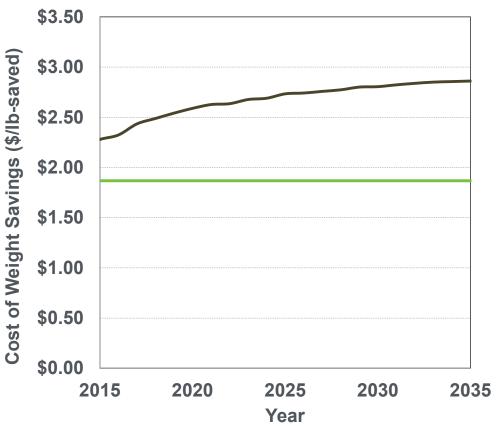
U.S. DEPARTMENT OF

ENERGY

 Base structure weight has decreased

System and component weight reduction has been applied to performance and comfort rather than total vehicle weight reduction

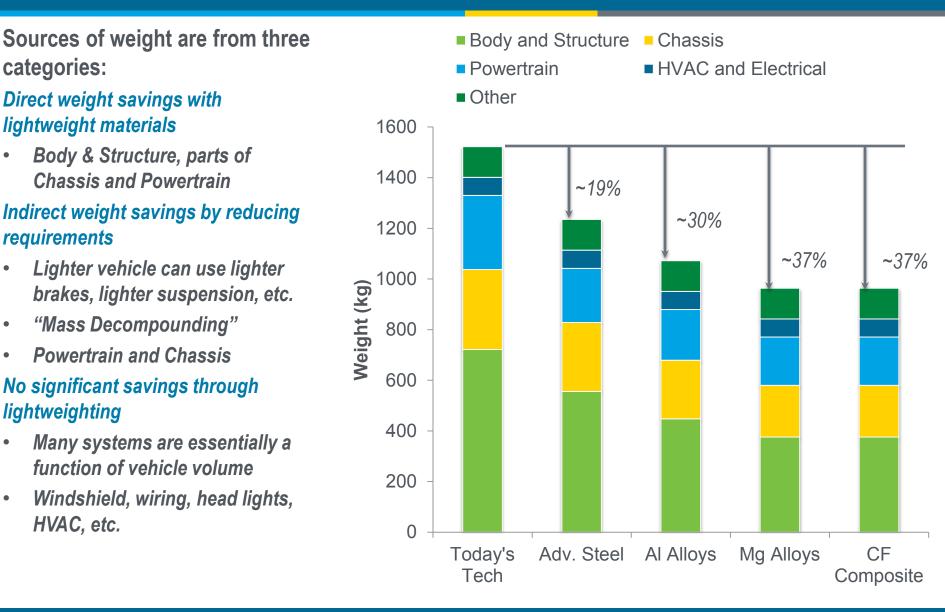
Acceptable Cost – Societal View



Societal view: Fuel efficiency improvement must pay back lightweighting cost over vehicle lifetime

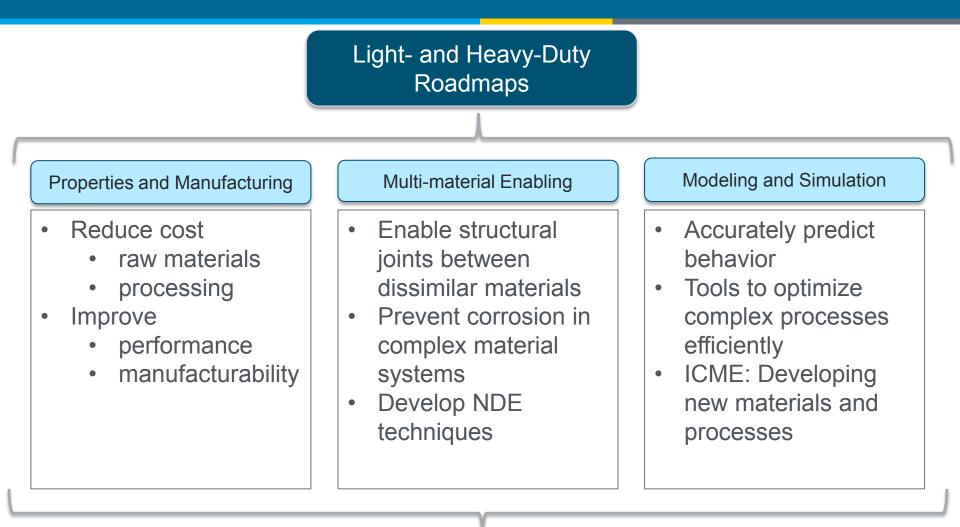
- Model Input
 - Baseline weight: 3500 lbs.
 - Baseline FE: 28.4 mpg
 - VMT per year: 12,000 mi.
 - Vehicle life: 15 yr.
 - FE improvement per weight saved: 7%/10%
 - Fuel Price
 - \$3.50/gal
 - EIA projection
 - Discount rate: 7%

Acceptable Cost Per Pound of Weight Saved


- —EIA Projected Gas Price (High Case)
- —\$3.50 per gallon

Total Vehicle Weight Reduction Potential

U.S. DEPARTMENT OF ENERGY


Energy Efficiency & Renewable Energy

Lightweight Materials Program

Energy Efficiency & Renewable Energy

Demonstration, Validation, and Analysis

Properties and Manufacturing

Cost (~\$3-10/ lb-saved)

U.S.,

7%

Russia,

4%

Others

, 9%

China,

80%

Energy Efficiency & Renewable Energy

Magnesium Alloys

When it "works" \rightarrow 40-70% weight reduction

Otherwise \rightarrow

- Lack of domestic supply, unstable pricing
- Challenging corrosion • behavior
- Inadequate strength, • stiffness, and ductility
- Difficult to model • deformation behavior

When it "works" \rightarrow 30-65% weight reduction

Otherwise \rightarrow

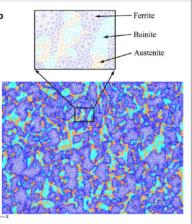
Cost (~\$5-15/ lb-saved)

- High cost of carbon fiber • (processing, input material)
- Joining techniques not easily • implemented for vehicles
- Difficult to efficiently model • across many relevant length scales

Aluminum Alloys

When it "works" \rightarrow 25-55% weight reduction

Otherwise \rightarrow


- Cost (~\$2-8/lb-saved)
- Insufficient strength in • conventional automotive alloys
- Limited room temperature ٠ formability in conventional automotive alloys
- Difficult to join/integrate to incumbent steel structures

Advanced High Strength Steel

15-25% weight reduction \rightarrow

- Inadequate structure/properties understanding to propose steels with 3GAHSS properties
- Insufficient post-processing ٠ technology/understanding
- What other relevant properties • should be considered? Hydrogen embrittlement, local fracture, etc.

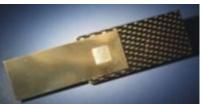
Choi et. al., Acta Mat. 57 (2009) 2592-2604

Multi-material Enabling

U.S. DEPARTMENT OF

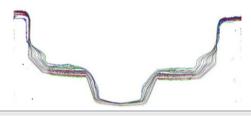
Energy Efficiency & Renewable Energy

Magnesium Alloys


- Corrosion (galvanic and general)
- Difficulty Joining
 - Mg-Mg
 - Mg-X
 - Riveted Joints
- Questionable compatibility with existing paint/coating systems

Carbon Fiber Composites

- Corrosion and environmental degradation
- Some difficulty joining
- Questions regarding non-destructive evaluation


Aluminum Alloys

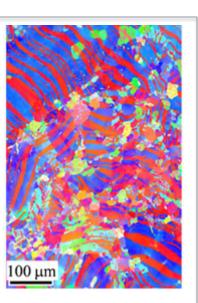
- HAZ property deterioration
- Difficulty joining mixed grades
 - Joint integrity
 - Joint formability
- Difficulty recycling mixed grades

	Mg	Si	Cu	Zn
5182	4.0 - 5.0	< 0.2	< 0.15	< 0.25
6111	0.5 - 1.0	0.6 - 1.1	0.5 - 0.9	< 0.15
7075	2.1 - 2.9	< 0.4	1.2 - 2.0	5.1 - 6.1

AHSS

- HAZ property deterioration
- Limited weld fatigue strength
- Tool wear, tool load, infrastructure

12 | Vehicle Technologies Program

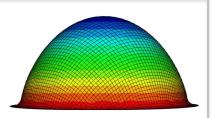

Modeling and Computational Materials Science

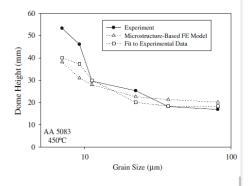
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Magnesium Alloys

- Complicated deformation in HCP Mg alloys
 - Highly anisotropic plastic response
 - Profuse twinning
- Few established design rules for anisotropy
- Substantial gaps in basic metallurgical data

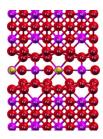

Q. Ma et al. *Scripta Mat.* **64** (2011) 813–816


Carbon Fiber Composites

- Insufficient capability in modeling relationships between physical properties, mechanical properties, and ultimately behavior
- Lack of validated, public databases of CFC material properties
- Inadequate processing-structure predictive tools

Aluminum Alloys

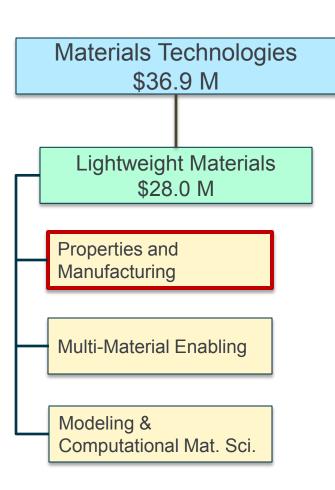
- Basic metallurgical models are well established
- Substantial fundamental data is available
- Useful predictive models established for some conditions
- Truly predictive, multiscale models are still lacking



AHSS

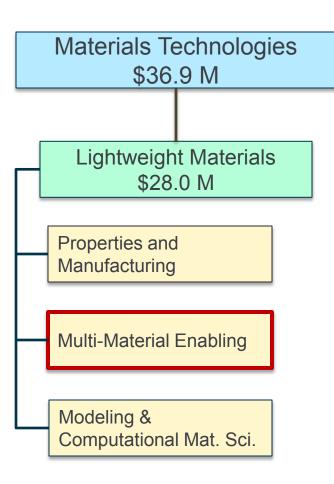
P.E. Krajewski et al. Acta Mat. 58 (2010) 1074–1086

- General lack of understanding on structures, phases, and deformation mechanisms to achieve 3GAHSS properties
- Very complicated structures, phases, and deformation mechanisms likely


N.I. Medvedeva et al. Phys. Rev. B **81** (2010) 012105

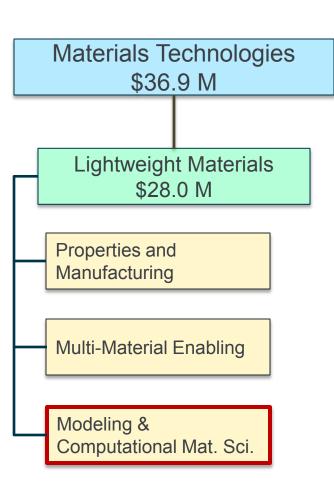
Lightweight Materials – Properties and Manufacturability

Energy Efficiency & Renewable Energy



- Carbon fiber (CF)
 - **ORNL**: Carbon Fiber production process optimization using plasma oxidation
 - **ORNL**: Carbon Fiber Technology Center prototyping and batch production facility
 - **Zoltek**: Low cost carbon fiber production using traditional and non-traditional starting materials
- Light Metals
 - U. Michigan, PNNL, Ohio State U., Arizona State U., Mississippi State U., ORNL: Building the Scientific Foundation for Advanced Magnesium Alloys
 - INFINIUM: Scale-Up of Low-Cost Zero-Emissions Magnesium by INFINIUM Electrolysis
 - **PNNL**: Processing an property improvements for aluminum and magnesium alloys, advanced steel microstructure development
 - USAMP: Mg Intensive Vehicle Front End R&D

Lightweight Materials – Multi-material Enabling



Energy Efficiency & Renewable Energy

- Cross-cutting
 - Vehma and Ford: Multi-Materials Lightweight
 Vehicle
 - IBIS : Technical Cost Modeling of Lightweight Vehicles
 - LBNL : Safety Data and Analysis
- Light Metals
 - Chrysler, Ohio State, Johns Hopkins, ORNL, Michigan State: Breakthrough Concepts in Multi-material Joining
 - **ORNL:** Fundamentals of Mg corrosion in automotive-relevant environments
 - **ORNL**: Demonstrating techniques for AHSS and mixed material joining
 - Ford: Pulsed/Impact Joining of AI and Advanced
 Steels
 - PNNL: Demonstrating techniques for AI and Mg joining

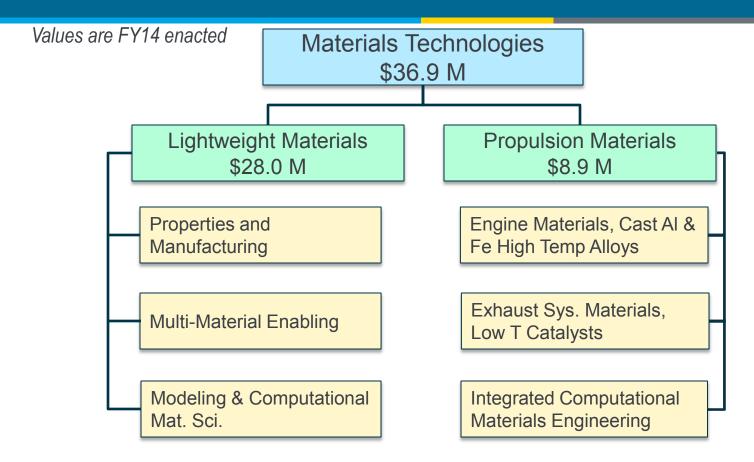
Lightweight Materials – Modeling and Computational Materials Science

 Carbon fiber (CF) and carbon fiber composites (CFC)

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

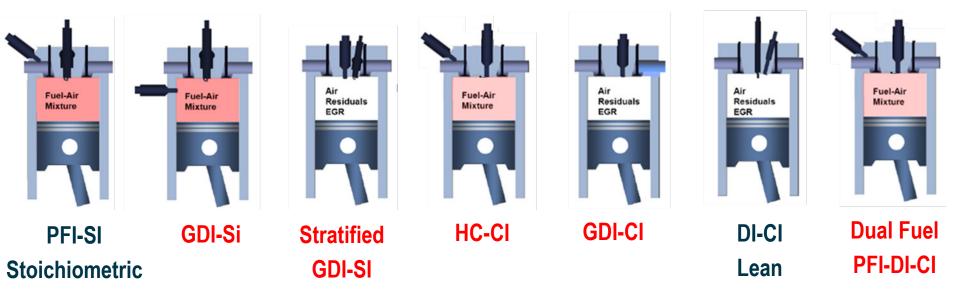

Renewable Energy

- ORNL & PNNL: CFC Predictive Engineering-Long Fiber Injection Moldings
- **USAMP** : Validation of Front Bumper Crash Models of Polymer Composites
- Light Metals
 - **PNNL** : Mechanistic-based Ductility Predictions for Complex Mg Castings
 - **USAMP** : ICME Development of Advanced Steel for Lightweight Vehicles

Materials Technologies

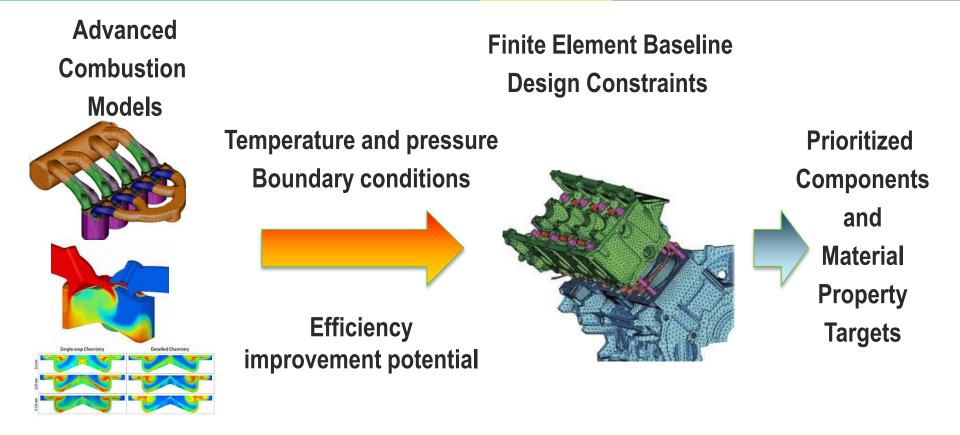
Energy Efficiency & Renewable Energy

	Lightweight	Propulsion
FY13 Enacted	\$27.5 M	\$11.9 M
FY14 Enacted	\$28.0 M	\$ 8.9 M
FY15 Request	\$47.0 M	\$ 7.069 M


- Targets powertrain materials requirements for future automotive and heavyduty applications: engine, transmission, exhaust components, and targeted materials for electric powertrains.
- Addresses materials for high efficiency Internal Combustion Engines, powertrain materials interactions with new fuel compositions.
- Most (85%)Propulsion Materials projects utilize Integrated Computational Materials Engineering (ICME) to set performance targets and accelerate results in materials discovery, materials formulation, and materials processing techniques.
- Identifies gaps in existing ICME tools and develops new topics to expand the use of computational methods in materials development and materials engineering

Pathways to High Efficiency ICEs

Multiple high efficiency combustion pathways, each having unique thermal, peak pressure, and pressure rise rate parameters, result in a variety of engine design and materials challenges.

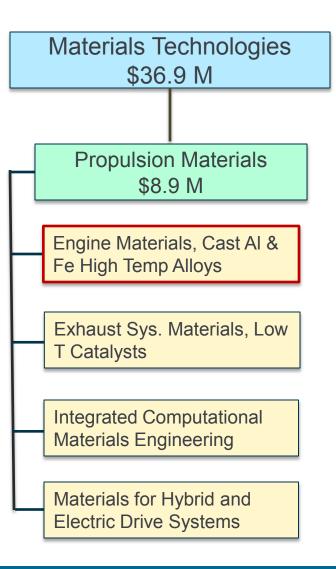

What are the components and materials that will limit designers ability to build reliable engines from the outcome of this combustion research?

Materials Target Setting

Energy Efficiency & Renewable Energy

Identify and prioritize the material improvements needed to enable high efficiency combustion systems, and <u>quantify the benefits</u>.

Propulsion Materials Program


Energy Efficiency & Renewable Energy

Light- and Heavy-Duty Roadmaps, US Drive Low T Catalyst Workshop Report

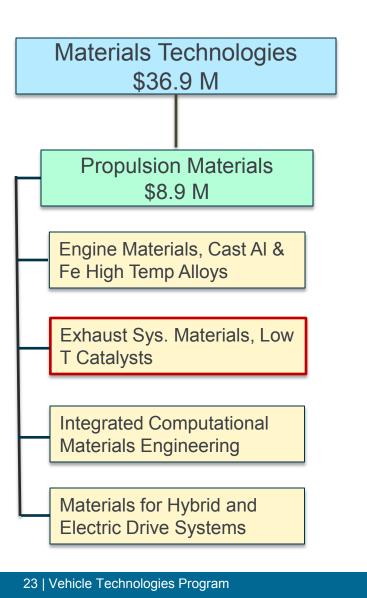
Engine Materials	Exhaust System Materials	Integrated Computational Materials Engineering
 Improve Engine Efficiency Improved Materials Strength Durability Operating T Manufacturability Lower Cost 	 Low Cost High Temp Alloys for Exhaust Manifolds, Turbocharger Housings and Turbines Low Temp Catalyst Materials and ceramic substrates 	 New materials and processes using multi- scale modeling Modeling to create tailored materials Predict behavior Optimizing complex processes

Demonstration, Validation, and Analysis

Propulsion Materials–Internal Combustion Engine (ICE) materials

 Targets the Advanced Combustion Engine team stretch goals, 50%+ efficiency for heavyduty and automotive engines

U.S. DEPARTMENT OF


ENERGY

Energy Efficiency &

Renewable Energy

- Lightweight Cast alloys for automotive engines and transmissions: GM; Ford; ORNL/Chrysler: Lightweight high strength aluminum alloy development to replace A356 or A319 and enable higher operating temperatures and higher efficiency combustion regimes.
- High performance Cast Ferrous Alloys for Heavy-duty Applications: Caterpillar: High strength, low cost cast alloy development to provide performance superior to Compacted Graphite Iron, easily cast and machined, and at a cost similar to cast iron, enabling engines with higher peak cylinder pressures and increased efficiency.
- High performance Cast Steels for Crankshafts: Caterpillar/GM: High performance low cost cast steel providing performance similar to high cost forged steel units, enabling a low cost pathway to increased engine efficiency in automotive and heavy duty applications.

Propulsion Materials– Exhaust System Materials, Low T Catalysts

- Low Temperature Aftertreatment Catalyst Materials
 - **ORNL**: Evaluation of catalyst microstructures and
- Exhaust Aftertreatment Components
 - ORNL/Ford: Impacts of biofuels on component life and development of mitigation strategies

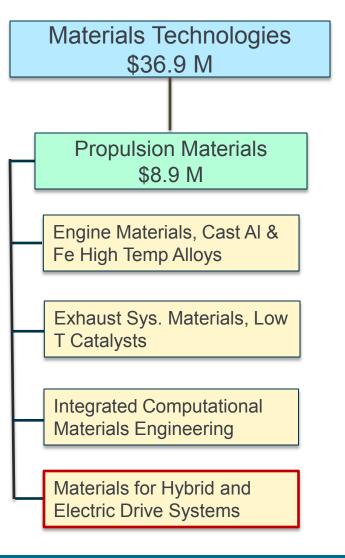
U.S. DEPARTMENT OF

ENERGY


Energy Efficiency &

Renewable Energy

• **ORNL**: Durability of diesel particulate filters


Propulsion Materials– Properties and Manufacturability

- Integrated Computational Materials Engineering
 - **ORNL**: Exploratory methods based on First Principals Calculations, Density Functional Theory, and Calculated Density of States to identify new materials compositions with tailored properties:
 - Thermoelectric Materials, 3 new compositions have been validated;
 - Non-rare earth magnetic materials, 2 new compositions have been validated;
 - Low Temperature Catalyst materials, 1 new low temperature catalyst have been validated for Oxides of Nitrogen
 - Each Propulsion Materials FOA project includes a multi-scale ICME application, validation, and gap analysis component (two were included in the President's Materials Genome announcement).

Propulsion Materials– Materials for Hybrid and Electric Drive Systems

 Projects very limited in scope to address specific gaps in material properties, materials processing, or material joining

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

- **ORNL:** Enabling Materials for High Temperature Electronics: Organic materials not 200°C-capable
- **ORNL:** Enabling Materials for High Temperature Electronics: Solders not 200°C-capable
- **PNNL**: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors
- Goal to rapidly transition results to the APEEM team

New non-rare earth magnetic materials are predicted within the ICME activity and validated by the APEEM team

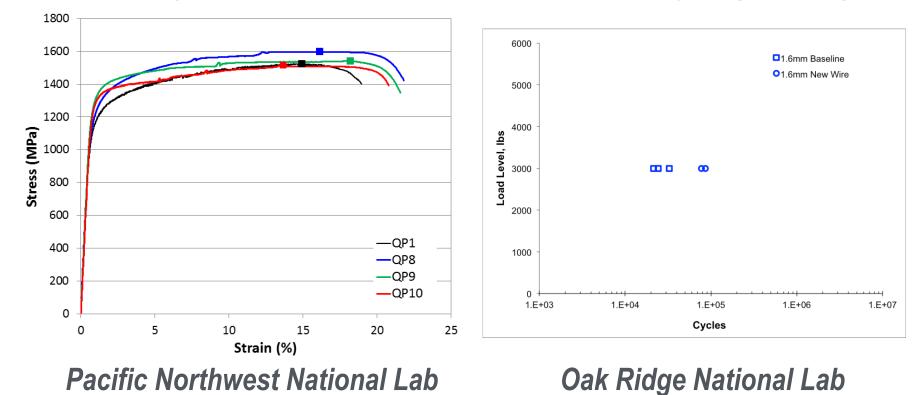
Developed a high-strength sheet steel

with strength exceeding 1500 MPa

while maintaining more than 20%

elongation to failure

Demonstrated proof-of-concept for improving weld fatigue life of advanced steels through the use of novel weld


wire chemistry and processing

U.S. DEPARTMENT OF

ENERGY

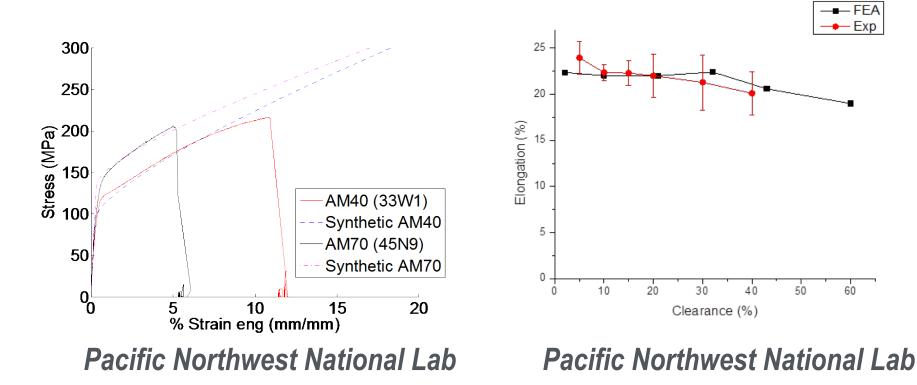
Energy Efficiency &

Renewable Energy

26 | Vehicle Technologies Program

eere.energy.gov

Demonstrated a polycrystal finite


element-based model utilizing intrinsic

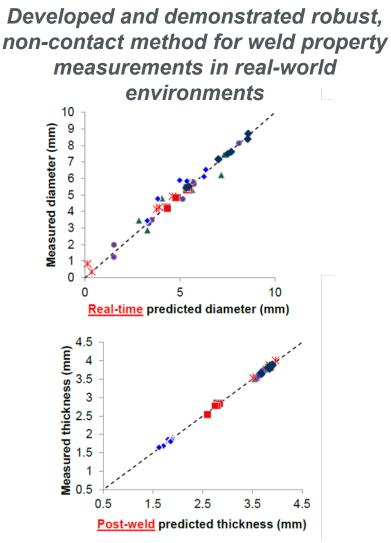
and extrinsic factors to predict yield

and hardening in Mg die castings to

greater than 90% accuracy

Produced and experimentally validated numerical model of formability in aluminum sheet as a function of edge condition that predicts elongation to failure with accuracy >90%

eere.energy.gov


- FEA Exp

40

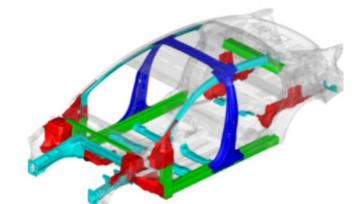
50

60

ENERGY Energy Efficiency & Renewable Energy

Oak Ridge National Lab

Validated commercial scale process for manufacturing carbon fiber using precursors with 25% lignin



Completed design/CAE and significant portion of prototype construction of a multi-material, lightweight vehicle with >23% weight reduction compared to conventional vehicles

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

VEHMA, Ford Motor Company

Brought large-scale carbon fiber reactor online to support continued advancement of carbon fiber research

Oak Ridge National Lab

Contact Information

Edwin Owens

Edwin.owens@ee.doe.gov

Web site:

http://energy.gov/eere/vehicles/vehicle-technologies-office

