Thermally Stable Ultra-Low Temperature Oxidation Catalysts

János Szanyi and <u>Chuck Peden</u> Institute for Integrated Catalysis Pacific Northwest National Laboratory

Chang H. Kim, Wei Li, Se H. Oh, and Steven J. Schmieg, General Motors Global R&D Center Program Managers: Ken Howden and Gurpreet Singh

The work was funded by the U.S. Department of Energy (DOE) Vehicle Technologies Office.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

ACE027 June 19, 2014

Institute for INTEGRATED CATALYSIS

Proudly Operated by Battelle Since 1965

Project Overview

Timeline

- Start October 2013
- Finish September 2016
- 17% Complete

Budget

- Total project funding
 - DOE \$750K
 - GM \$450K

 Discussed on next slide

Partners

- Pacific Northwest National Laboratory
- General Motors
 Global R&D

Barriers

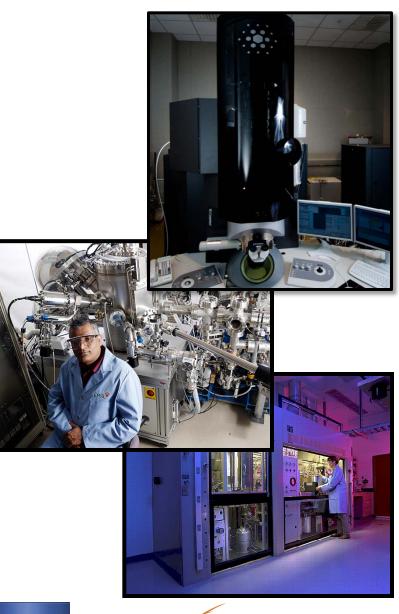
Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

ACEC Low Temperature Aftertreatment Group Michael Zammit and Craig DiMaggio(Chrysler), Chang Kim(GM), Christine Lambert(Ford), George Muntean(PNNL), Chuck Peden(PNNL), Jim Parks(ORNL), Ken Howden(DOE)

- Low Temperature Activity: Catalysts do not currently achieve significant activity performance until ~200 °C. Performance at lower temperatures (>90% conversion at 150 °C) is desired. Added to address comment from Steve Overbury that we should spell out low temperature driver.
- Catalysts must be stable to meet durability requirements, and stabilization will enable lower temperature performance for light-off. Sintering of active metal sites is a major barrier.
- Low-T limits of current and developing aftertreatment technologies need to be accurately established including, for example, fundamental studies aimed at determination of reaction mechanisms and catalyst structure/function.

Goals and Objectives

- In this GM-PNNL CRADA, PNNL will investigate a number of candidate low temperature oxidation catalysts as fresh materials, and after realistic laboratory- and engine-aging. Some specifics for the initial catalyst materials to be studied are contained in GM's recent patent disclosure on non-PGM based ultra low temperature oxidation catalysts.
- The studies being performed here are aimed at:
 - Better understanding of fundamental chemical and physical properties of the non-precious metal-based catalysts.
 - Determination of various aging factors that impact the long-term performance of new generation low temperature oxidation catalysts.
 - Assessment of the appropriateness of the laboratory conditions in realistically reproducing the effects of actual engine aging conditions.
- Figures of merit:
 - T₅₀ for CO and hydrocarbon oxidation of ~150 °C.
 - Stable performance after 750 °C for 72 hr under 10% H₂O/air (~120 kilo miles).



Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Vehicle Technologies Office

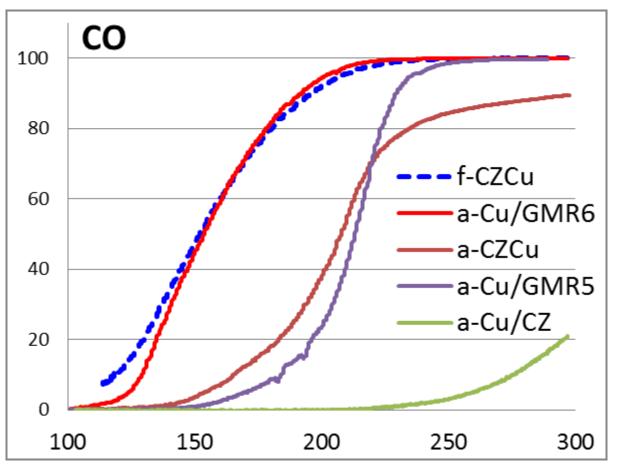
Approach/Strategy

- Prepare and Process non-PGM low temperature CO and HC oxidation catalysts
 - To date, all catalyst samples (fresh and high temperature aged) have been provided by GM in powder form. Reactor testing and aging being performed at GM.
 - PNNL will also synthesize some standard and novel catalysts based on developing structure/function relationships identified here.
- Utilize catalysis expertise, and state-of-theart catalyst characterization and testing facilities in PNNL's IIC to determine structure/activity relationships and deactivation mechanisms
 - XRD, XPS, EPR, TEM/EDX and SEM/EDX
 - CO, NO TPD, FTIR
 - Lab reactor studies

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Collaborations/Interactions

- Jointly use new understandings to develop new and improved catalysts for low-temperature CO and hydrocarbon oxidation.
- Kick-off meeting held at PNNL, November 1, 2013.
- Conference calls are held 5-7 times a year to discuss the results.
- Annual face-to-face meeting will be scheduled for later this year.


Results shown today are largely preliminary.

Initial Promising Results

Feed: 500 ppm CO, 260 ppm C_3H_6 , 87 ppm C_3H_8 , 200 ppm NO, 8% O_2 , 8% H_2O and N_2 bal.; Flow rate: 300 sccm, GHSV=170,000 h⁻¹; Temperature ramping: 2 °C/min

Chang H. Kim, Iljeong Heo, Se H. Oh, Wei Li, and Michelle H. Schmid, "*Oxidation Catalysts for Engines Producing Low Temperature Exhaust Streams*", Patent Application **US 2012/0291420 A1** (11/22/2012).

- Laboratory-prepared CZsupported Cu catalyst (CZCu) strongly deactivate during hydrothermal aging.
- Commercial CZ-supported Cu catalyst (Cu/GMR6) after hydrothermal aging was as active as the fresh CZCu catalyst.
- Some initial questions:
 - What makes the commercial CZ much better support?
 - What is the nature of the active Cu species?
 - Reaction mechanism?

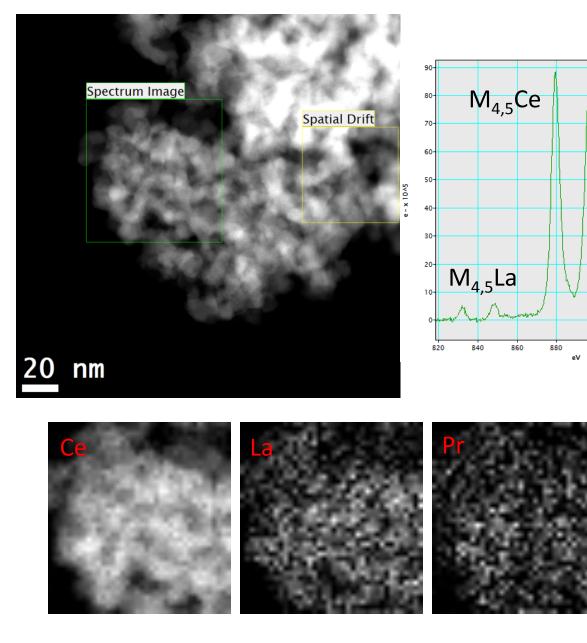
Physical Properties of Fresh and Aged Catalysts

Physical Properties of Fresh and Aged Catalysts: BET surface area (m ² /g)						
Sample	Fresh	Aged	<u>S_{final}/S_{initial}</u>			
CZ	171	59	0.35			
Cu/CZ	122	0.4	0.003			
CZCu	123	6	0.05			
GMR6	66	59	0.89			
Cu/GMR6	53	30	0.57			

BET surface area (SA) decrease upon hydrothermal aging: Cu/CZ SA loss is much greater than Cu/GMR6

Cu particle size	e by XRD (Deb <mark>Fresh(nm)</mark>	oy-Sherrer's eqn.) Aged (nm)	<u> </u>	Cu sintering:
Cu/CZ	6	27	<u>1033</u>	Cu species particle size is much greater in
Cu/GMR6	8	11	28	aged Cu/CZ than in Cu/GMR6

Chang Kim and coworkers, unpublished.


Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

8

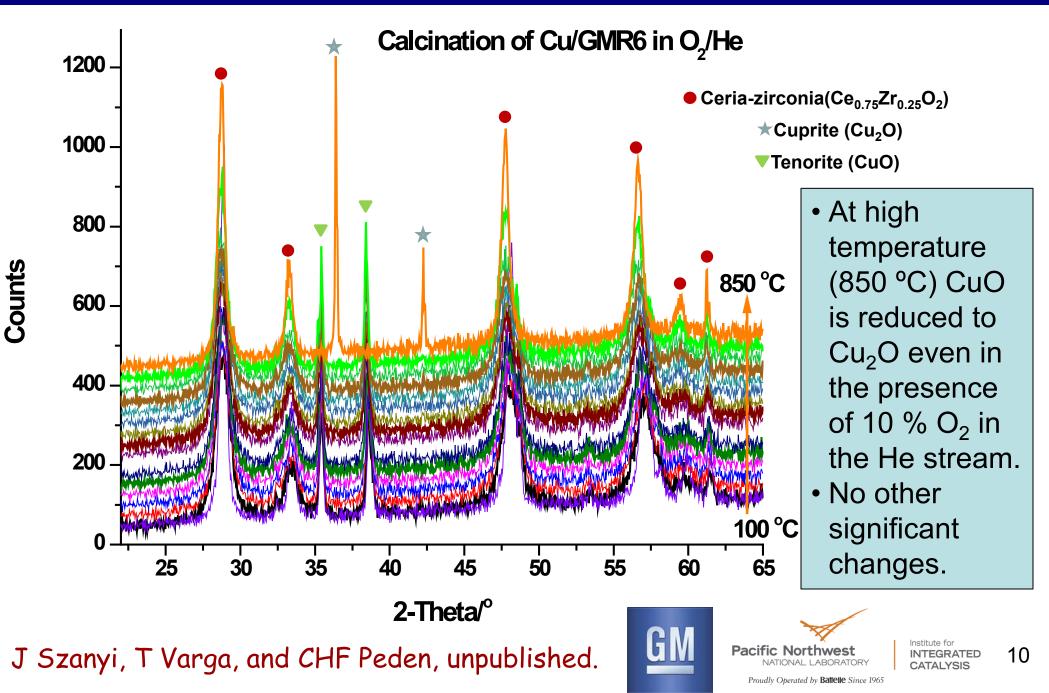
Institute for

TEM/EDX analysis: GMR6 support

Vehicle Technologies Office

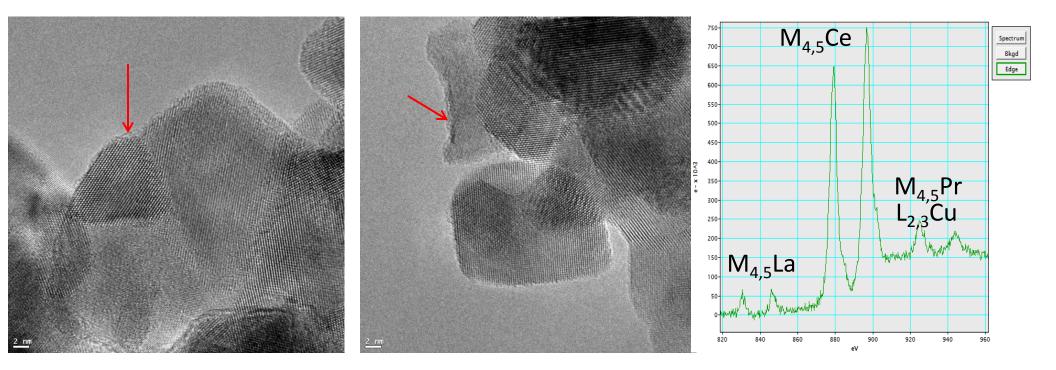
J Szanyi, L Kovarik, and CHF Peden, unpublished.

M_{4,5}Pr


g

EELS and EDX • analysis clearly shows the presence of evenly distributed Pr and La in the commercial CZ support material

- Pr and La also • evident in XPS data (see extra slides)
- These additives may • contribute to the enhanced structural stability of this material during hydro-thermal aging


In situ XRD on Cu/GMR6: No significant changes until 850 °C

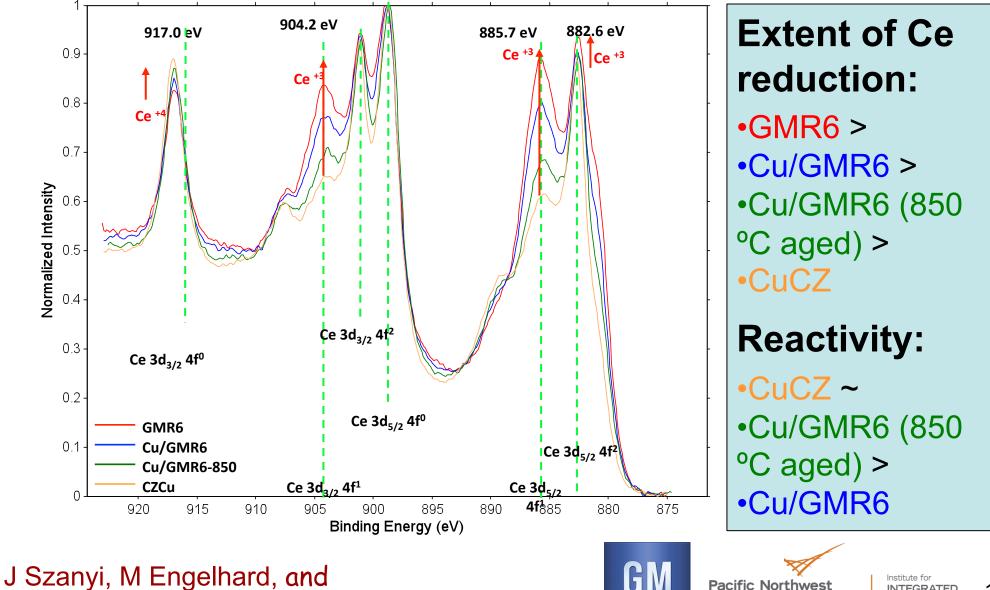
Vehicle Technologies Office

TEM/EDX analysis: Cu/GMR6(850)

Vehicle Technologies Office

High temperature hydrothermal aging results in the formation of some amorphous phase on the highly crystalline (commercial) CZ support particles.

J Szanyi, L Kovarik and CHF Peden, unpublished.

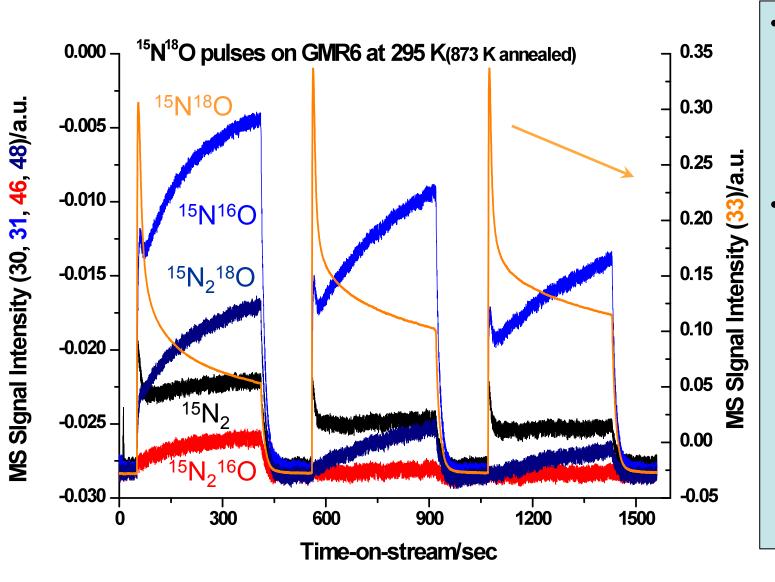

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Institute for INTEGRATED CATALYSIS

Most Active Materials Seem Most Difficult to Reduce by H_2

Vehicle Technologies Office

XPS analysis: Reduction at 500 °C in 10% H₂/He for 1 hr

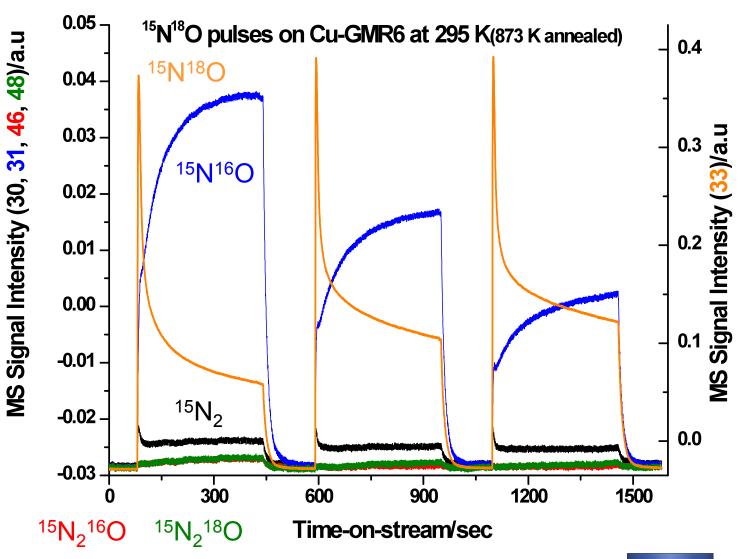

CHF Peden, unpublished.

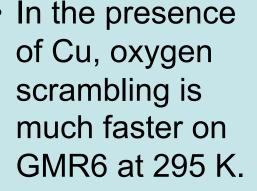
Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

12 INTEGRATED CATALYSIS

Oxygen mobility on GMR6 at 295 K

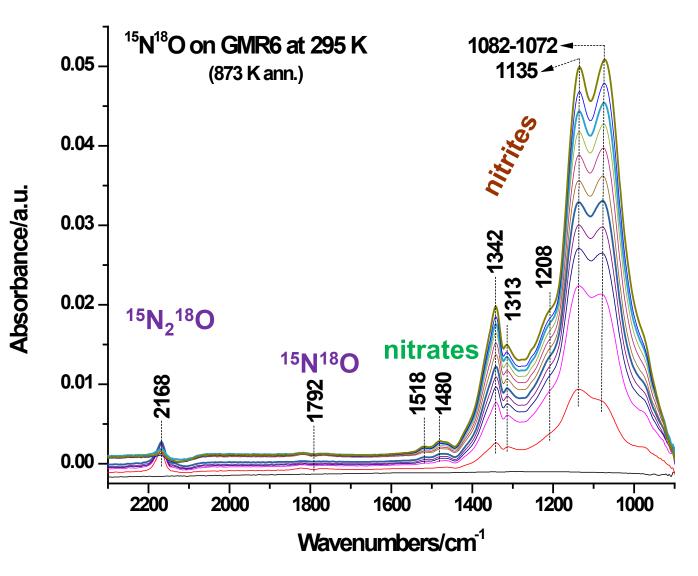
- Extensive oxygen scrambling between ¹⁵N¹⁸O and CeZrO_x: highly mobile oxygen in CeZrO_x.
- Curiously, besides oxygen exchange, reduction of $^{15}N^{18}O$ also takes place even at 295 K on the 873 K-annealed CeZrO_x support (both N₂ and N₂O are produced, mainly during the first $^{15}N^{18}O$ pulse).


J Szanyi, and CHF Peden, unpublished.


Oxygen mobility on Cu/GMR6 at 295 K – Cu enhancement

Vehicle Technologies Office

J Szanyi, and CHF Peden, unpublished.

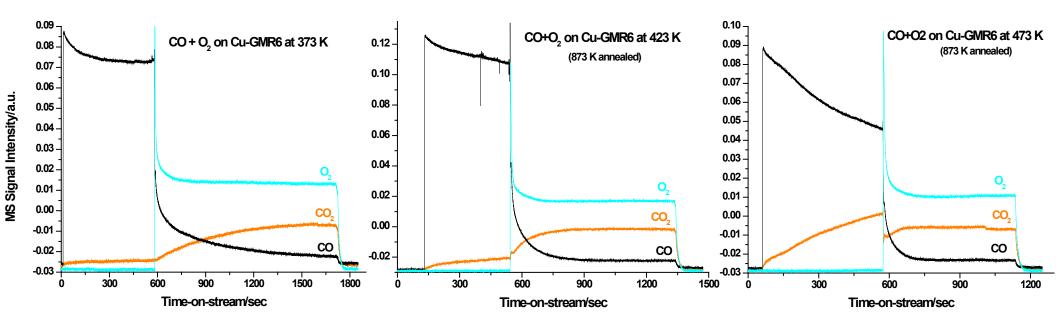


- The extent of NO reduction seems to be lower than on the support itself.
- Similar results obtained at reaction temperatures (see extra slides)

Institute for INTEGRATED CATALYSIS

FTIR: ¹⁵N¹⁸O interaction with GMR6 Vehicle Technologies Office

- Both oxygen scrambling between ¹⁵N¹⁸O and the support, and NO reduction take place.
- Nitrites form on the support surface.


J Szanyi, and CHF Peden, unpublished.

$CO+O_2$ reaction on Cu/GMR6 in the absence of H_2O and HCs

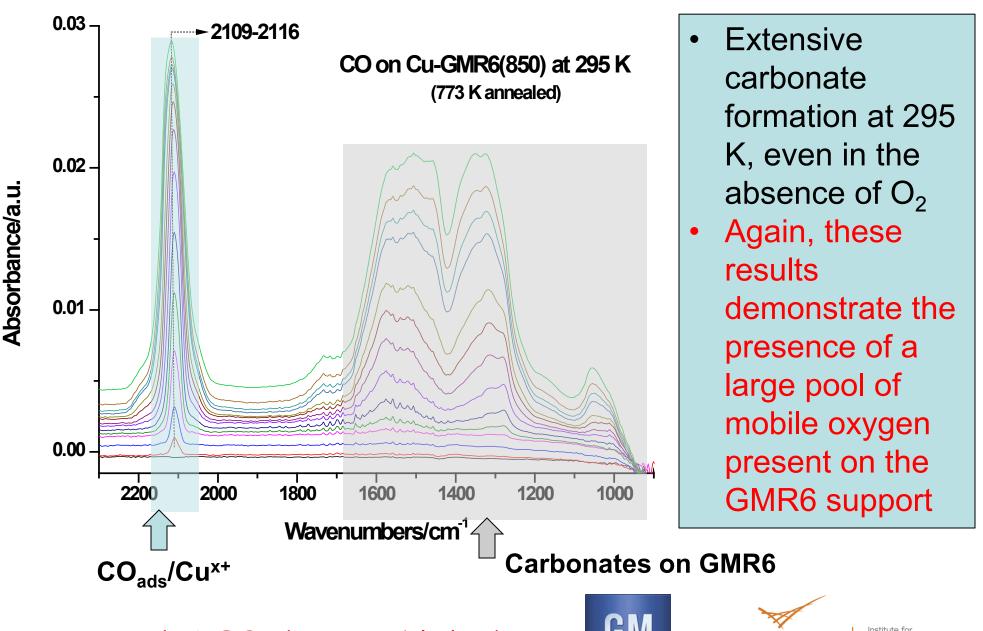
Vehicle Technologies Office

- With increasing sample temperature, the extent of CO conversion (to CO₂) increases in the absence of O₂ (at 473 K about 1/3 of CO is converted to CO₂ prior to the introduction of O₂)
- In the presence of O₂, CO oxidation is fast even at 373 K.

J Szanyi, and CHF Peden, unpublished.

FTIR: CO on Cu/GMR6 at 295 K

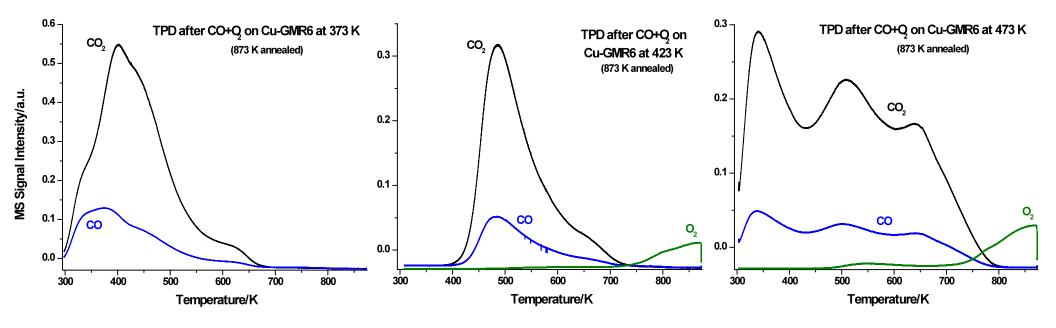
Pacific Northwest


NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

17

INTEGRATED


CATALYSIS

J Szanyi, and CHF Peden, unpublished.

TPD after CO+O₂ reaction on Cu/ GMR6

Vehicle Technologies Office

- During CO oxidation carbonates form on the GMR6 support.
- With increasing reaction temperature the amount of strongly-held carbonates increases.
- After CO+O₂ reactions at temperatures >423K, O₂ desorption is observed at high (>750 K) temperatures.

J Szanyi, and CHF Peden, unpublished.

- 1. Complete initial characterization studies of Cu/ceria-zirconia materials
 - Include comparison with simple model materials
- 2. Detailed kinetic studies of CO oxidation on fresh and aged Cu/ceria-zirconia catalysts
 - Kinetics measurements will be especially focused on mechanisms/limitations for low temperature performance (these will include use of the developing CLEERS low-T oxidation protocol)
 - In-situ spectroscopic (FTIR and XAS) measurements

3. Synthesis and characterization of new materials

- Ceria-supported and mesoporous Cu/ceria materials (recently described in the literature) for baseline mechanistic studies
- Developing mechanistic understanding and structure/function relationships will guide new materials development efforts
- Performance and aging studies will be carried out at GM

Summary and Conclusions

Novel low-temperature Cu/ceria-zirconia catalysts synthesized by GM display very promising low temperature CO and hydrocarbon oxidation behavior

- 1) High temperature aging significantly reduces the CO oxidation activities of CuCZ catalysts.
- 2) Cu supported on commercial CZ supports (in particular on GMR6) deactivates much less than those prepared on laboratory synthesized CZ supports.
- Deactivation is due (at least in part) to the large decrease in BET surface area and the large 3) drop in metal (Cu) dispersion during high temperature hydrothermal aging.
- Materials characterization and mechanistic studies have been initiated at PNNL with the following initial results:
 - EDX and XPS analysis revealed that the commercial GMR supports contained both lantana 1) and praseodinia additives that might act as structural stabilizers for the mixed CZ-oxide support.
 - 2) Isotope exchange experiments with ¹⁵N¹⁸O substantiated the very high oxygen mobility in both the GMR6 support and Cu/GMR6 catalyst materials that may contribute to their excellent oxidation abilities (reduction of NO was also observed over these materials even at 295 K).
 - CO molecularly adsorbs on the Cu phase of the Cu/GMR6 catalyst, while carbonates form on 3) the support even at 295 K. The amount of adsorbed CO₂ (carbonate) and its stability on the GMR6 support increase with increasing $CO+O_2$ reaction temperature.

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

institute for